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The standard monad libraries define a number of “bread and butter” monads, in-
cluding the State, Reader, Writer, List and Maybe monads. However, they are not
the only monads available to an enterprising Haskeller’s toolbox. In this text, we
look at three other monads—the Logic monad, the Prompt monad, and the Fail-
ure monad—each of which tackle a common problem found in the engineering of
programs.

The Logic monad

The Logic monad [1] implements “backtracking computations.” It is provided by
the logict package. Backtracking is a general approach that can be applied to
many search problems: given a partial solution, we determine if we can generate
any further partial solutions; if we cannot, we discard this partial solution and
backtrack to an earlier point in the search tree. Backtracking tends to be faster
than brute-force enumeration of the solution space, because if a partial solution
violates a constraint, then further extensions of that partial solution can be elimi-
nated, a process called pruning.

Strictly speaking, we don’t need the Logic monad to implement backtracking:
the List monad gives us nondeterministic computation, and over finite search
spaces both the Logic monad and the List monad can give us the same an-
swers. However, the Logic monad is much more efficient due to an underlying
continuation-based implementation. Additionally, the MonadLogic typeclass ex-
poses a few more operators that allow us to control when to perform a compu-
tation; this is a common practice in monad libraries, since it lets the interface
be divorced from the actual implementation, whether it is the Logic monad, the
LogicT transformer, or even the List monad. In this section, we will explicitly use
Logic for brevity.
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List monad equivalence

The Logic monad implements a strict superset of the List monad; as such, anything
in the List monad can be directly translated into the Logic monad. Function
signatures that have a type [a] now have a type Logic a; data in the List monad
is transformed accordingly:

[1] = return 1
[l = mzero
++ :: [a] > [a] -> [a] = mplus :: ma->ma->ma
concat :: [[a]l]]l] -> [a] = msum :: [mal] ->m a
[1,2,3] = (msum . map return) [1,2,3]

Notice that many of these transformations are simply generalizations of lists into
the MonadPlus context. If we explicitly change m a to [a] in the type signatures
of mplus and msum, we get back the original list operations.

To get data back out of the Logic monad (and back into lists), you can use the
following transformations:

id :: [a] -> [al] = observeAll :: Logic a -> [a]
take :: Int -> [a] -> [a]l] = observeMany :: Int -> Logic a -> [al
head :: [a] -> a = observe :: Logic a -> a
You can see a brief example this equivalence in Listing 1.

choices :: MonadPlus m => [a] -> m a
choices = msum . map return

evensList :: [Int]
evensList = do
n <- [1..]
if n ‘mod‘ 2 == 0
then [n]
else []
evensLogic :: Logic Int

evensLogic = do
n <- choices [1..]
if n ‘mod‘ 2 == 0
then return n
else mzero
evensList’ = observeAll evenslogic

Listing 1: Code in the List and Logic monads
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Nondeterminism and backtracking

In do notation, the <- operator extracts a pure value from the monad. In the Logic
monad, as in the List monad, the successive code takes on each value from the list
in turn, and the results get concatenated together, similar to a fork operation in
Unix. However, viewed as a search, the <- represents a branching operation: the
list represents possible extensions of the current candidate solution, and we now
select a single extension to further conduct search on.

The power in any monad is to hide away “incidental” details; in the case of the
Logic monad the incidental detail is that we’re doing a search over a nondetermin-
istic computation, and write code as if it were deterministic. It’s a little difficult
to see this in a toy example, so instead we will develop code for a nondeterministic
Turing machine.

A Turing machine consists of a tape, which we represent as two infinite lists of
symbols, a head, which can write to a single symbol on the Turing machine, an ac-
tion table, which we represent as an array and a state register. An implementation
of these data structures is shown in Listing 2. We also have two basic functions
for manipulating the tape—writing and moving—in Listing 3. Our particular im-
plementation is a two-state, five-symbol Turing machine.

A Turing machine operates by using its current state and symbol underneath
the head to index into the action table. A deterministic Turing machine would
have a single transition which encodes what the next state is, what symbol should
be written to the tape, and what direction the head should move after writing
the symbol. A nondeterministic Turing machine would have many possible tran-
sitions for each index, and the operator would be expected to keep track of the
branching—thus DTuringTransition encodes a deterministic transition, whereas
TuringTransition is nondeterministic.

We omit the deterministic implementation of a single step of running the Tur-
ing machine, precisely because the nondeterministic implementation in Listing 4
still communicates the essence of Turing machine execution clearly and can easily
simulate the deterministic version.

If we’d like to use our nondeterministic Turing machine to search the space
of deterministic Turing machines, we need to slightly modify the behavior of
stepMachine: specifically, any time we make a choice with <=, we should stick
with that choice for the rest of the machine’s execution (notice, in the original
implementation, that machine is a return value but is unchanged!) Amazingly,
Listing 5 requires only a single extra line of book-keeping (marked by -- *).

From there, performing a search for a machine involves having an initial “every
machine” Turing machine, implemented in Listing 6 by filling every entry in the
action table with “every transition”, and then stepping through it and pruning
results that don’t halt or that give the wrong answer.
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data RunningTuringMachine = RTM

{ rtmMachine :: TuringMachine
, rtmTape :: Tape
, rtmState :: TuringState

} deriving (Show)

type TuringMachine = Array TuringIndex TuringTransition
type TuringIndex = (State, Symbol)

type TuringAction = (TuringIndex, TuringTransition)
type TuringTransition = Logic DTuringTransition

type DTuringTransition = (TuringState, Symbol, TuringMove)

data Tape = Tape [Symbol] Symbol [Symbol]
data TuringState = Halt | State State
deriving (Eq, Ord, Show)
data State = StateA | StateB
deriving (Eq, Ord, Show, Enum, Bounded, Ix)
data TuringMove = MoveRight | MoveLeft | Stay
deriving (Eq, Ord, Show, Enum, Bounded, Ix)
data Symbol =SB | SO | S1 | SL | SR

deriving (Eq, Ord, Show, Enum, Bounded, Ix)

Listing 2: Data types for a nondeterministic Turing machine

moveTape :: TuringMove -> Tape -> Tape
moveTape Stay x = x
moveTape MoveRight (Tape left cur right) =
Tape (tail left) (head left) (cur :right)
moveTape MoveLeft (Tape left cur right) =
Tape (cur :left) (head right) (tail right)

writeTape :: Symbol -> Tape -> Tape
writeTape s (Tape left _ right) = Tape left s right

Listing 3: Tape manipulation functions
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stepMachine :: RunningTuringMachine -> Logic RunningTuringMachine
stepMachine rtm@(RTM _ _ Halt) = return rtm
stepMachine (RTM machine tape@(Tape _ cur _) (State state)) = do
(state’, cur’, move) <- machine ! (state, cur)
let tape’ = moveTape move $ writeTape cur’ tape

return $§ RTM machine tape’ state’

Listing 4: Nondeterministic step

stepMachine’ :: RunningTuringMachine -> Logic RunningTuringMachine
stepMachine’ rtm@(RTM _ _ Halt) = return rtm
stepMachine’ (RTM machine tape@(Tape _ cur _) (State state)) = do
trans@(state’, cur’, move) <- machine ! (state, cur)
let tape’ = moveTape move $ writeTape cur’ tape
machine’ = machine // [((state, cur), return trans)] —— *

return $ RTM machine’ tape’ state’

Listing 5: Step that collapses nondeterministic

-- Generates all values of a bounded, indexable data type.
generate :: (Ix a, Bounded a) => [a]
generate = range (minBound, maxBound)

everyTransition :: TuringTransition
everyTransition = msum . map return $ generate

everyMachine :: TuringMachine
everyMachine = array (minBound, maxBound) $
zip (range (minBound, maxBound))
(repeat everyTransition)

Listing 6: Every transition, every machine
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Fair disjunctions

A disjunction occurs whenever you combine the results of the Logic monad with
mplus. The new monad a ‘mplus‘ b will return the results of a first and the
results of b second. Shown in Listing 7 is a simple use of mplus to express all
integers.

naivelntegers :: Logic Integer
naiveIlntegers = return O ‘mplus’
choices [1..] ‘mplus‘ choices [-1,-2..]

Listing 7: Naive representation of Z

Unfortunately, if we try actually observing results from integers we find that it
never returns any negative numbers: choices [1..] succeeds an infinite number
of times.

The Logic monad exposes an alternative mplus called interleave, which in-
terleaves the results of the monads it is combining, so that Listing 8 returns the
following sequence:

0,1,-1,2,-2,3,-3,4,—4,---

which guarantees that any integer n will be seen in finite time.

fairIntegers :: Logic Integer
fairIntegers = return O ‘mplus®
(choices [1..] ‘interleave‘ choices [-1,-2..])

Listing 8: Representation of Z with fair disjunctions
If there are more than two monads to interleave, care must be taken: the
interleave operator is no longer associative. For example,
a ‘interleave‘ (b ‘interleave‘ c)
favors results of a, whereas,
(a ‘interleave‘ b) ‘interleave‘ c

favors results of c. If we can make a balanced full binary tree, we can be completely
fair:

(a ‘interleave‘ c) ‘interleave‘ (b ‘interleave‘ d)

returns:
ay, b17 (1, d17 az, b27 Ca, d27 e
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Fair conjunctions

We will unite the white rose and the red:—
Smile heaven upon this fair conjunction,
That long have frown’d upon their emnity!
—William Shakespeare, Richard III

A conjunction occurs whenever you extract a variable from the logic monad
with >>=; it is associated with choice. Shown in Listing 9 is a simple search for
factorizations of an integer over 2 x N.

nat :: Logic Int
nat = choices [0..]

naiveFactorize :: Int -> Logic (Int, Int)
naiveFactorize n =

nat >>= \x ->

nat >>= \y ->

guard (2°x *x y == n) >>

return (x, y)

Listing 9: Naive factorization

Unfortunately, this code will only ever find a single pair of factors for any given
number: (2°,n). If we remove the guard line, we discover why: because the
naturals are infinite, the monad has gotten “stuck” on z = 0, and we never try
r={1,2,3,---}.

The distributivity law for MonadPlus:

(mplus a b) >>= k = mplus (a >>= k) (b >>= k)

suggests that we can use interleave to implement fair conjunctions. Logic does
so, and exposes an alternate bind >>-. Instead of pursuing a computation of a
single choice to completion, it pursues the computation until a single result is
found, and then begins computation of a different choice. This has some subtle
implications, as can be seen in the restructuring of factorize in Listing 10.

We have split factorization into a generation step (which utilizes fair conjunc-
tions) and a filtering step. Without this separation, the function diverges after
returning two results. The Logic monad schedules computations for each of its
choices. The fair conjunction is not actually completely “fair”: if it were, it would
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fairGenerate :: Logic (Int, Int)
fairGenerate =

nat >>- \x ->

nat >>- \y ->

return (x, y)

fairFactorize :: Int -> Logic (Int, Int)
fairFactorize n =

fairGenerate >>= \(x, y) ->

guard (2°x *x y == n) >>

return (x, y)

Listing 10: Factorization with fair conjunctions

never let any choice return more than one result in the case of infinitely many
choices, and execution would look like:

0717273747"'

Instead, the Logic monad has a binary fair conjunction A and applies it recursively
to the (unbalanced) tree of choices ¢; A (c2 A (¢35 A ...)), asymptotically allocating
1/2% of processing for the kth choice. Execution in this case, assuming that each
choice requires infinite computation, looks like:

07]-’0727071a0737071a07270717074707"'

Recall that the Logic monad executes the first choice z = 0 and only switches to
the next choice once a result is observed. The non-termination is then the writing
on the wall: factorize kicks out results for z = 0 and = 1, and then returns to
x = 0, on which in spins forever as there are no more results.

This means that computations with infinite failure can be extremely fragile:
Oleg’s [1] example usage of >>- non-terminates if an extra association is added
after the >>- operator. These situations can generally be avoided by separating
out interleaved generation and filtering, which removes the possibility of infinite
failure.

Logical conditional

During the process of filtering candidate solutions, we can use standard MonadPlus
functions such as guard to implement deterministic checks against the solution.
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However, there is not a good way to conditionalize on finite failure; that is, given a
candidate solution, how might we spin off another nondeterministic computation
to see if we want to carry on, or try something different? We could use observeAll
to pull the data out of the Logic monad, and then check if the list is empty, but
this defeats composability and isn’t very efficient.

The Logic monad defines the ifte operator for precisely this case. The expres-
sion ifte expr th el is equivalent to expr >>= th if expr succeeds with at least
one result, and equivalent to el if it does not. The intuition is similar to Haskell’s
if..then. .else construct, except that the results of expr are made available to
th if it succeeds. Oleg [1] suggests that ifte is especially useful for “explaining fail-
ure” and applying heuristics; an operator with identical semantics exists in Prolog
with the name “soft cut.”

Pruning

In many computations, we only care about the first result we find: we may be
looking for a single counterexample. While laziness generally ensures that results
become accessible “as they are needed”, thus cutting down on wasteful computa-
tion, the ability to tell a computation that only the first result is needed means
that we can free any memory that was being used to keep track of backtracking.
We can indicate this using the once operator.

Further reading

For example uses of ifte and once, I highly recommend checking out the paper [1]
which defines this monad. If you are not interested in how the Logic monad is
implemented, skip the sections about msplit.

The stream-monad package [2, 3] implements some later research by Oleg on
nondeterministic computations. It’s a bit simpler than the Logic monad, and
provides more fair interleaving. It is not to be confused with the stream-fusion
package, which also provides Control.Monad.Stream.

Luke Palmer has implemented the Omega monad [4], which is the List monad
but does breadth-first search instead of depth-first search, and Sebastian Palmer
has implemented the Level monad [5], which does breadth-first search as well as
iterative deepening.

The Prompt Monad

The Prompt monad [6], and the associated typeclass MonadPrompt, gives us the
ability to restrict side effects with the type system, while giving us the flexibility



The Monad.Reader

to change flow control based on values that are normally stuck in the IO monad.
It is provided by the MonadPrompt package.

The problem the Prompt monad solves requires a little motivation. Purity is a
“big idea” in Haskell: it means that using just a type we can reason about the side
effects a computation may have. Haskellers are encouraged to use as restrictive a
type as possible to get the job done: pure code is best, and the smaller the monad
stack the better.

However, the I0 monad remains the elephant in the room: we “need” it to make
side effects in the outside world, but the moment we put code in the IO monad we
are letting it do anything it wants (such as fire ze missiles.) A simple workaround
is to define a data type that encodes effectful actions we want to permit which
our pure code gives to a small function in the IO monad responsible for actually
executing these effects. The type system then guarantees that only those actions
can be executed, and all is well in paradise...that is, until we want our code to
respond to the external environment as well. The Prompt monad, as its name
suggests, solves precisely this problem.

The Prompt monad is also an example of how monads can introduce an abstrac-
tion layer. We can swap out 1O with some testing jig that generates and receives
information as if it were the environment, without changing any of the code in the
Prompt monad (this is quite difficult to do in traditional impure languages, which
usually resort to grody metaprogramming tricks.)

The Prompt API

For the Logic monad, we were able to appeal to our experience manipulating lists
to figure out how to make the corresponding operations for the Logic monad.
Unfortunately, the Prompt monad has no such equivalence; fortunately, the most
commonly used portion of the monad is very short, as seen in Listing 11.

class Monad m => MonadPrompt p m where
prompt :: pa->ma

data Prompt p r
instance MonadPrompt p (Prompt p)
instance MonadPrompt p (PromptT p m)

runPrompt :: (forall a. p a -> a) -> Prompt pr -> r
runPromptM :: Monad m => (forall a. p a ->m a) -> Prompt pr ->mr

Listing 11: Prompt monad API

10
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As with any monad API, there are three sections: the first is the most general
monad typeclass which defines any special operations that are intrinsic to the
monad; the second are instances that you'd actually use in your program; and the
last are functions that let you actually run the monad.

The typeclass MonadPrompt defines a single function: prompt, which takes as an
argument p a representing the “request” being made, and returns the “response”
inside the Prompt monad. We’ll define values to pass as p a using generalized
abstract data types, in order have more fine-tuned control over what a, the return
type, is; when utilizing Prompt or PromptT, we pass simply p to indicate what types
of requests the Prompt monad services. (For those of you paying attention to kinds,
this might seem slightly unusual, since the kind of p is * -> *, so Prompt actually
has kind (* -> *) -> x -> x_a type usually seen in monad transformers).

The functions runPrompt and runPromptM take a function that converts our
“requests” either into pure values or values inside a monad of the user’s choosing,
and run the prompt monad with that function. The forall in their type signatures
indicate a rank-2 type, which is used in order to let the functions p a -> a and
p a —> m a range over multiple values of a without getting “stuck” to a particular
a once we've passed it to runPrompt. If this description seems confusing, don’t
worry; we’ll be looking at the form of p a and the function p a => m a closely in
the following sections.

Generalized abstract data types

Idiomatic use of the Prompt monad involves generalized abstract data types (hith-
erto referred to as GADTs), so you'll need the GADTs GHC language extension.
GADTs are an extension to normal abstract data types (the types you define
using the data keyword) that allow richer return types for the data constructors—
applications range from generic pretty-printing to strongly-typed evaluators. [7]
In the case of the Prompt monad, we will define a GADT that we’ll use to re-
quest values from the outside the Prompt monad, and define a function of type
Request a -> I0 a to serve these requests. Without GADTSs, we have no way
of restricting a into a more specific type!; as Ryan Ingram says, “the GADT is
serving as a witness of the type of response wanted by the [program].” [§]

To give you a feel for how GADTSs are a superset of normal abstract data types,
consider the following equivalent pieces of code in Listing 12. In the GADT exam-
ple, we make explicit the type signature of the data constructor. Note that they
still are data constructors, so we can still use pattern matching, we can’t return
any old value (it has to be of type GADTExample ?, where ? is some type, a in
this case), and we don’t need to make “definitions” for Zero, One or Two, but it

L Although, a less beautiful alternate implementation could be made with existential types.

11
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data NormalExample a = Zero’ | One’ a | Two’ a a

data GADTExample a where
Zero :: GADTExample a
One :: a -> GADTExample a
Two :: a -> a —-> GADTExample a

Listing 12: Syntax comparison for GADTs

does make clear their functional nature; for example, Two is curried and the type
of Two True is Bool -> GADTExample Bool.

As mentioned before, GADTs allow richer return types, i.e. the return type
need not be GADTExample a. Listing 13 contains an actual GADT that will serve
as the basis for our Prompt example.

data Request a where
Echo :: String -> Request ()
GetLine :: Request (Maybe String)
GetTime :: Request UTCTime

Listing 13: GADT for the Prompt monad

These data constructors look suspiciously like functions that “echo” and “get a
line,” returning a value in some sort of Request wrapper. And indeed, we've used
the GADT in order to indicate both the input types and the output types of an
effectful procedure. However, this type doesn’t tell us how to go from input to
output.

Running the monad

We need to define a function that converts Requests, which are plain old data types
into actual side-effects and values behind the scenes. The definition in Listing 14
is fairly straightforward, although we use some exception handling capabilities to
represent lines retrieved from standard input as either Just String or Nothing,
which indicates an end-of-file. Notice that a takes on multiple values depending
on what Request is pattern-matched; for Echo s and GetLine it is String, but
for GetTime it is UTCTime—this is a feature of GADTs.

With handler function and GADT in hand, we can now write the monadic
prompt code in Listing 15 and execute it. prompt has the typep a -> Prompt p a.

12
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handleIO :: Request a -> I0 a
handleI0 (Echo s) = putStrln s
handleIO0 GetLine = catchJust

(guard . isEOFError)

(Just <$> getLine)

(const (return Nothing))
handleIO0 GetTime = getCurrentTime

Listing 14: Handler function

In our example, p is Request, and a is the return value of Request. We pass
prompt our Requests, and we get the result of the request back, hand1eI0 pulling
the strings behind the scenes.

runCat :: I0 O
runCat = runPromptM handleIO cat

cat :: Prompt Request ()
cat = do
line <- prompt GetLine
maybe (return ()) (\x -> prompt (Echo x) >> cat) line

Listing 15: Implementation of cat

Even better, since the monadic code makes no mention of the IO monad, we can
easily swap out handleIO for some other function, for example, one that replays a
transcript, as is seen in Listing 16. Instead of a handler function that shifts from
the GADT to the IO monad, will shift to the RWS (Reader, Writer, State) monad
to help us thread the transcript through operation and collect the results of this
computation.?

Further reading

The Prompt monad doesn’t have to only be used for a command line interface;
Felipe Lessa explores several possiblities for hooking up the Prompt monad to

GTK. [9]

’Disregard any naysayers claiming this is merely a very convoluted way of implementing id for
[String] -> [String].

13
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type Input = [String]
type Output = [String]

handleRWS :: Request a -> RWS r Output Input a
handleRWS (Echo s) = tell (return s)
handleRWS GetLine = do
lines <- get
if null lines
then return Nothing
else do
put (tail lines)
return (Just (head lines))

rwsCat :: RWS r Output Input ()
rwsCat = runPromptM handleRWS cat

simulateCat :: Input -> Output
simulateCat input = snd $ evalRWS rwsCat undefined input

Listing 16: Pure simulation of cat

14
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While the Prompt monad works well with small programs, on the order of Unix
utilities, it’s unclear how well this monad scales to larger user applications that
may be graphical, may have many more than a dozen ways for the user to interact
with the application, or may require asynchronous interaction. This is an area of
active research: possible places to look include functional reactive programming
(c.f. spreadsheets) and arrows.

The Failure Monad

The Failure monad [10] is not a monad per se, but a class MonadFailure for
monads that can fail, possibly with error information. It is provided by the
control-monad-failure and control-monad-failure-mtl packages (see page 21
for an explanation). There are also Applicative and Functor versions, although we
will not discuss them here. The package grew out of a frustration with the variety
of error handling mechanisms that abounded between libraries on Hackage; given
any function that may fail, you may get back a value wrapped in any of Maybe,
Either, ErrorT, a custom error type, or perhaps get an exception, which cannot
be caught until the IO monad. The dream is to automatically compose multiple
calls to errorful functions.

The Failure monad doesn’t quite fulfill the dream, but it’s an important step
in the right direction. The fact that it a typeclass means that code can be writ-
ten for some generic monad that may fail, and then the user of the code can
instantiate whichever monad they wish to handle the error. If you are a library
writer, you should strongly consider publishing an interface that is merely a generic
MonadFailure: with some extra restrictions on the type, this interface can be made
exactly backwards-compatible. And anyone, application writer or library writer,
can use MonadFailure delay any decision about which specific error wrapper to use
until the error needs to be handled. This is good style and improves composability.

The Failure API

The Failure API is extremely simple, as shown in Listing 17, because it doesn’t need
to define any functions to run the monad; any monad that has a MonadFailure
instance will have its own functions for running the monad. The single function
failure takes an argument of the error type e, and can be used as any type within
the monad.

15
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class Failure e m where
failure :: e > m v
class (Monad m, Applicative m, Failure e m) => MonadFailure e m

Listing 17: Failure monad API

Conversions

The MonadFailure typeclass has two type parameters: e, which is the type of the
data actually holding information about your error (String, Error, etc), and m,
which is the actual monad that can fail. There are lots of ways to express failure
in Haskell, [11] so we’ll demonstrate how to convert them to use the MonadFailure
typeclass.

Consider the simple implementation of safeHead in Listing 18. The fact that this

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:xs) = Just x

Listing 18: head with Maybe

function emits no error information means we have some latitude when genericizing
it. Listing 19 is one possible translation. Notice that safeHeadFailure can be

safeHeadFailure :: MonadFailure String m => [a] -> m a
safeHeadFailure [] = failure "empty list"
safeHeadFailure (x:xs) = return x

safeHead’ :: [a] -> Maybe a
safeHead’ = safeHeadFailure

Listing 19: head with MonadFailure

instantiated into the original, as is shown by safeHead’. You can instantiate any
value of class MonadFailure into the Maybe monad without regard to the type of
e, which is somewhat arbitrarily chosen to be String in this case.

Next, we’ll consider converting from a monad that does retain error informa-
tion, Either, in Listing 20. This code is written in a different style than the
Maybe example; namely, it eschews explicit constructors of Either in favor of

16
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safeHeadPair :: [a] -> [b] -> Either String (a, b)
safeHeadPair [] [] = fail "both lists empty"
safeHeadPair [] _ fail "first list empty"
safeHeadPair _ [] fail "second list empty"

safeHeadPair (x:xs) (y:ys) = return (x, y)

Listing 20: Pair of heads of list with Either String

the monad functions fail and return. In fact, the code could work under any
monadic type, although care should be taken since many monads don’t have a
meaningful implementation of fail and thus default to bottom, and addition-
ally Either is not a monad by default; you must import Control.Monad.Error
to make Error e => Either e a monad (and String just happens to be an in-
stance of Error—if this seems convoluted, it’s because it is). The conversion to
MonadFailure is a straight-forward replacement of fail with failure, as seen in
Listing 21.3

safeHeadPair’ :: MonadFailure String m => [a] -> [b] -> m (a, b)
safeHeadPair’ [] [] = failure "both lists empty"
safeHeadPair’ [] _ failure "first list empty"
safeHeadPair’ (] failure "second list empty"

safeHeadPair’ (x:xs) (y:ys) = return (x, y)

Listing 21: Pair of heads of list with Either String

The final example in Listing 22 is a bit longer, and serves to illuminate the style
of monadic programming that MonadFailure encourages, as well as demonstrate
that using Failure can be useful even if you are not a library writer. We develop
a simple system for checking out items from a library: these items are created with
a checkout date and a due date. The renew function lets someone push their due
date later, but only if the book hadn’t already expired (in which case it errors).

There are a few features of note: we use type to explicitly create a monad
stack called TimeMonad, which has the Reader monad capability to determine the
current time, as well as the Error monad transformer, which permits us to error out.
MyError is a userland data type that encodes errors that this application may emit;
in practice the type would be much longer (a small 500-line application I wrote

3Since MonadFailure requires the Monad instance on m, fail would probably work in the case
of e being String.
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type TimeMonad = ErrorT MyError (Reader UTCTime)

data MyError = ExpiredError
| MyParseError ParseError -- see Marshalling
| MiscError String
deriving (Show)
instance Error MyError where
noMsg = MiscError "Unknown error"
strMsg s = MiscError s

data Checkout = Checkout
{ checkoutName :: String
, checkoutTime :: UTCTime
, checkoutDue :: UTCTime
}

checkoutLength :: Checkout -> NominalDiffTime
checkoutLength ¢ = diffUTCTime (checkoutDue c) (checkoutTime c)

shiftCheckoutTime :: Checkout -> UTCTime -> Checkout
shiftCheckoutTime c¢ newTime = c
{ checkoutTime = newTime
, checkoutDue = addUTCTime (checkoutLength c) newTime
}

renew :: Checkout -> TimeMonad Checkout

renew ¢ = do
curTime <- ask
when (checkoutDue c¢ < curTime) $ throwError ExpiredError
return (shiftCheckoutTime c¢ curTime)

Listing 22: A simple checkout renewal system
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contained eighteen error constructors), and permits writing code in an “exception
throwing” style without actually using asynchronous or imprecise exceptions: a
code that throws an error bubbles up until some level of execution deals with it.

The Error monad is quite a heavy hammer, and I have initially written code
in the Maybe monad, only to have to go on a search, replace and typecheck hunt
when I realize Nothing isn’t actually sufficient information when there are several
layers of code in the Maybe monad, all of which could have resulted in this error.
With the Failure monad I can build in this capability from the start, but use it
with the simpler Maybe monad interface unless I need detailed information about
the error.

renew’ :: (MonadReader UTCTime m, MonadFailure MyError m) =>
Checkout -> m Checkout
renew’ c = do
curTime <- ask
when (checkoutDue c¢ < curTime) $ failure ExpiredError
return (shiftCheckoutTime ¢ curTime)

Listing 23: Implementation using typeclasses

Listing 23 contains two changes: the first is familiar; we’ve changed throwError
to failure. The other is the changed function signature. The original imple-
mentation was tied to the TimeMonad; the new code is more generic because all
the type requires is that the monad m have the MonadReader UTCTime and the
MonadFailure MyError “capabilities”; the actual m we pass in could be arbitrarily
more powerful but the type signature enforces that the resulting code will only use
those “capabilities.” Additionally, the new type signature expresses the fact that
the Reader monad and the Failure monad commute.

Marshalling

The failure package is still fairly nascent, and as such you are unlikely to see
third-party libraries exporting functions with it. . . yet. In the meantime, Control.Failure
exports the try function (part of the Try typeclass) which permits us to easily
marshal values in other Monads into another MonadFailure form.* It’s interface
is described in Listing 24.

If the input type m and output type m’ are the same, try acts as an identity, as
shown in Listing 25°.

41t works for applicatives too, as seen in the type signature.
5 As of writing, the example for Either requires an import of Control.Applicative and, for at
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class Try m where
type Error m
try :: ApplicativeFailure (Error m) m’ =>m a -> m’ a

Listing 24: Try API

maybeVal :: Maybe Int
maybeVal = try $ Just 3

eitherVal :: Either String (O
eitherVal = try $ Left "error"

Listing 25: Try as identity

However, in many cases, what we’d really like to do is take an arbitrary error
type from some third-party library and convert it into our own, application specific
error type. One simple way to do this is to have a wrapper constructor inside your
error data type, and defer handling the error to your global error handling code.

Curiously enough, MyError from the TimeMonad example has a constructor de-
fined just for Parsec! In Listing 26, we take a ParseError from Parsec and place it
into MyParseError, which we defined previously in Listing 22. The instance “lifts”

instance Failure MyError m => Failure ParseError m where
failure e = failure (MyParseError e)

theirParse :: Parser a -> String -> Either ParseError a
theirParse parser s = parse parser "" s
myParse :: (MonadFailure MyError m, Failure ParseError m) =>

Parser a -> String -> m a
myParse parser s = try $ theirParse parser s

Listing 26: Implementation using typeclasses

the failure from Either ParseError into the more general Failure MyError m => m.
There is one oddity in this code, which is the specification of Failure ParseError m
in the signature: without it, m is overly general and results in overlapping instances.

least mtl, an orphan instance of Applicative for Either.
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If you instantiate myParse anywhere else in the module, Haskell will be able to
infer the correct type, but otherwise you need that extra restriction.

We should note that there is a namespace collision between failure and parsec
on try, so we suggest keeping your parsec code in a one module and your failure
code in another.

There is another way to pass around errors from arbitrary third parties: instead
of defining an error type, define an error typeclass and write instances of it for
every third-party error type you want to support. You don’t even need try; any
errorable type will cleanly “cast” into the more generalized typeclass. The downside
of this approach is that this typeclass will have to support any type of operation
you may want to do: it is the only interface you get for accessing error information.

Addendum

The Failure monad publishes two versions of its module: Control.Monad.Failure
and Control.Monad.Failure.MTL. This stems from the fact that there are three
widely recognized monad libraries inside Haskell: mt1, which comes by default with
GHC; transformers, which defines monads in terms of transformers on top of the
Identity monad; and monadLib, Galois’ brainchild and similar to transformers.
Each of these defines important monadic types and instances.

If you try mixing two libraries together, even indirectly (from an external library
that imports a different monad library, you’ll notice two things: first, you’ll have
numerous ambiguous occurrences of constructors from the monads, since both li-
brary will attempt to export it’s own, and second, you’ll have overlapping instances
as each library attempts to define its own. Furthermore, functions from the one
library will refuse to take data from the other: defined in separate modules, they
are different types.

Practically speaking, you should pick one of these libraries and stick with it.
This article is written with mtl, and should be translatable to another Monad
library with a little coaxing.
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Appendix

instance Enum TuringState where
succ Halt = State minBound
succ (State x) = State (succ x)
pred (State x) | x == minBound = Halt
| otherwise = State (pred x)
toEnum O Halt
toEnum n = State $ toEnum (n-1)
fromEnum Halt = 0O
fromEnum (State x) = 1 + fromEnum x
instance Bounded TuringState where
minBound = Halt
maxBound = State maxBound
instance Ix TuringState where
range (n, m) = [n..m]
index (Halt, m) Halt = O

index (Halt, State m) (State x) = 1 + index (minBound, m) x

index (State n, State m) (State x) = index (n, m) x
inRange (Halt, _) Halt = True

inRange (Halt, State m) (State x) = inRange (minBound, m) x
inRange (State n, State m) (State x) = inRange (n, m) x

inRange _ _ = False

Listing 27: Enum, Bounded and Ix instances for TuringState
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instance Show Tape where

show (Tape left cur right) = intercalate " " symbols
where symbols = "..." : symbols’ ++ ["..."]
symbols’ =
reverse (lshow 3 left) ++
[’*> : show cur ++ "x"] ++

lshow 17 right
lshow n xs = map show $ take n xs
instance Show TuringTransition where
show logic | null $ observeAll logic = "*undefinedx"
| otherwise = intercalate ", " strings
where strings = [show a, show b, show c]
(a, b, c) = observe logic

Listing 28: Show instances for Tape and TuringTransition
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