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Abstract. The so-called ‘typed tagless final’ approach of Carette et al.
[6] has collected and polished a number of techniques for representing
typed higher-order languages in a typed metalanguage, along with type-
preserving interpretation, compilation and partial evaluation. The ap-
proach is an alternative to the traditional, or ‘initial’ encoding of an
object language as a (generalized) algebraic data type. Both approaches
permit multiple interpretations of an expression, to evaluate it, pretty-
print, etc. The final encoding represents all and only typed object terms
without resorting to generalized algebraic data types, dependent or other
fancy types. The final encoding lets us add new language forms and in-
terpretations without breaking the existing terms and interpreters.
These lecture notes introduce the final approach slowly and in detail,
highlighting extensibility, the solution to the expression problem, and
the seemingly impossible pattern-matching. We develop the approach
further, to type-safe cast, run-time-type representation, Dynamics, and
type reconstruction. We finish with telling examples of type-directed
partial evaluation and encodings of type-and-effect systems and linear
lambda-calculus.

1 Introduction

One reinvents generic programming when writing accumulation, pretty-printing,
equality comparison functions for data types — and writing these functions again
and again for extended or slightly different data types. Generic programming
aims to relieve the tedium by making programs more applicable, abstracting
over values, shapes, processing strategies and so on. One may dually view a data
type as an encoding of a domain-specific language, and data type processing as
an interpretation of that language. That view comes to the fore if the data type
indeed represents an abstract syntax tree (AST). Generic programming then is
writing extensible interpreters. The embedded-language point-of-view highlights
that oftentimes not all sentences generated by a context-free grammar — not
all values fitting the datatype declaration — are regarded as meaningful. A type
system is a common way of stating the additional validity constraints. Typed
extensible interpreters of typed languages, fitting the theme of the school, express
both generic programming (parametrization over interpretations) and indexed
programming (expressing processing invariants and validity constraints).

There are two basic approaches to embedding languages and writing their
interpreters, which we shall call, somewhat informally, ‘initial’ and ‘final’. The
initial approach represents a term of an object language as a value of an algebraic
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data type in the metalanguage; interpreters recursively traverse the values de-
constructing them by pattern-matching. In the final approach, object language
terms are represented as expressions built from a small set of combinators, which
are ordinary functions rather than data constructors. The values of these ex-
pressions give denotations of the corresponding object terms. An object term is
hence represented not by its abstract syntax but by its denotation in a semantic
domain. Abstracting over the domain gives us a family of interpretations.

The most noticeable advantages of the final approach are seen in the en-
coding of typed object languages. The final approach expresses object language
types as metalanguage types, without any type tagging and its accompany-
ing overhead. The metalanguage type checker not only checks object types but
can also infer them. We can therefore statically ascertain that an object lan-
guage interpreter preserves object types and does not get stuck: The sound-
ness of the metalanguage’s type system entails the soundness of the object lan-
guage’s type system. As a consequence, the final approach easily solves other-
wise arduous problems of writing assuredly type-preserving partial evaluators
and continuation-passing style transformers. The final approach also turns out
extensible, helping solve the so-called expression problem, — and hence useful
also for unityped object languages.

The final approach [6] collects and polishes many old ideas, starting from
Reynolds [35] and its further development as final algebra specifications in [23,
41]. The approach relies on Yang’s [49] encoding of type-indexed values and its
generalization as the TypeCase pattern [30], and Thiemann’s [38] deforestation of
syntax constructors. These techniques require just a Hindley-Milner type system
with higher-order polymorphism, as realized in all variants of ML (as functors)
and Haskell (as constructor classes).

In this course we explain and develop the final approach, detailing and ex-
tending the original presentation [6]. We discuss the duality with the initial
approach, and the similarity and differences of the final and Church encodings.
We concentrate on operations that at first blush seem impossible in the tagless
final approach, such as pattern-matching, binary and other operations that do
not seem to be expressible as folds over a term.

The roadmap We start slowly, by introducing the final approach in §2 on a
overly simplistic example of a first-order unityped language, corresponding to the
ordinary algebraic data type. We introduce the approach together with the more
common initial embedding in §2.1 and discuss extensibility and the expression
problem in §2.2. The simplicity of the running example, albeit excessive, does
help to demonstrate the subtle aspects such as pattern-matching §2.4 and similar
non-compositional interpretations, and to explain the solution to the open de-
serialization problem in §2.3.

§3 makes the proper introduction, for typed higher-order languages, or data
types with binders. We dive into the complexities of interpreting typed languages
ensuring type preservation, and emerge with surprisingly lucid solutions. The
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attributes ‘typed’ and ‘tagless’ in the title of the course will finally be explained
in §3.1.

Having done all the introductions, we will have real fun in §4, sweeping
through type-safe cast, type checking, parametrization over the evaluation order,
typed CPS transformation, typed formatting and type-directed partial evalua-
tion. We touch upon the languages with fancy type systems, with effect, §4.2,
and linear, §4.3, types.

Throughout the course we use Haskell as our implementation language (meta-
language); familiarity with Haskell is assumed. The complete code for the course
is available online: http://okmij.org/ftp/tagless-final/course/

Main ideas Throughout the course we shall hear the refrain of several main
ideas:

— Multiple interpretations: writing a term once and interpreting it many times,
in standard and non-standard ways;

— Extensibility: adding more interpreters and enriching the language with more
syntactic forms — solving the expression problem:;

— Types: to specify interpreters and their logic, to delineate valid object terms;

— Finality: preferring lower-case, functions over constructors, elimination over
introduction, denotational over operational.

2 Interpreters for first-order languages

This warm-up section deals with first-order, unityped languages. We will have to
wait until §3 for the appearance of the ‘tagless typed’. The simplification in this
section, however drastic, does help introduce pattern-matching on final terms,
extensibility, and the solution to the expression problem.

2.1 Initial and Final embeddings

We start with a very simple language, to be extended later. The language has
integer literals, negation and addition. Here are sample expressions of the lan-
guage: —(1 + 2) and 8 + (— (1+ 2)). The latter is our running example.

The initial embedding of the language in Haskell encodes the expressions of
the language as the values of an algebraic data type:

data Exp = Lit Int
| Neg Exp
| Add Exp Exp

Our running example is written as follows:
til = Add (Lit 8) (Neg (Add (Lit 1) (Lit 2)))

The first interpreter of the language is an evaluator, which proceeds by case
analysis, that is, pattern-matching:



4 Oleg Kiselyov

eval: Exp — Int

eval (Lit n) =n

eval (Neg e) = —evale

eval (Add el e2) = eval el + eval €2

Evaluating our sample expression, eval til, gives the result 5.

We can embed our language in Haskell differently. If all we ever need is the
value of an expression, we can represent the term in our arithmetic language
by its value, or by a Haskell expression that computes that value. We introduce
a representation type for the meaning of an expression, Int, and the functions
computing the meaning of the three expression forms of the language (literals,
negation and addition).

type Repr = Int

lit = Int — Repr
lit n=n

neg : Repr — Repr
nege = — e

add : Repr — Repr — Repr
add el e2 = el + €2

The computation is compositional: the meaning of, for example, addition is com-
puted from the meaning, the value of, the summands. We see the first intimation
of the denotational semantics, with further to come. Our running example has
the form

tfl = add (lit 8) (neg (add (lit 1) (lit 2)))

which is a Haskell expression with the value 5. We will call this second, meta-
circular embedding a final embedding. It does appear to be dual to the initial
embedding: tfl is strikingly similar to til, differing only in the case of the iden-
tifiers.

The initial embedding seems more general however, permitting other inter-
pretations, for example, pretty-printing:

view: Exp — String

view (Lit n) = show n

view (Neg e) ="(=" H viewe H#")"

view (Add el e2) = "(" +H view el H "+ _" H view e2 H# ")"

The view interpreter ‘evaluates’ the very same term til to the string " (8 + (-(1
+ 2)))" rather than to an integer. In the final encoding, the evaluator is hard-
wired into the representation tfl, making it impossible to interpret the object
term as something other than integer. We want the final embedding to permit
multiple interpretations too; we must therefore find a way to parameterize the
‘constructor functions’ such as lit and neg by the result type.

Haskell has just the right tool for such a parametrization: a type class.
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class ExpSYM repr where
lit = Int — repr
neg : repr — repr
add : repr — repr — repr

The constructor functions lit, neg and add have essentially the same signatures
as before; the repr type however is in lower-case since it is now variable. The
declaration of ExpSYM should remind us even more of the denotational seman-
tics [46], over the semantic domain repr. As befits denotational semantics, the
meaning of an expression, whatever repr happens to be, is computed from the
meanings of the components. The running example has the same form

tfl = add (lit 8) (neg (add (lit 1) (lit 2)))

but the inferred type (provided we disable Haskell’s monomorphism restriction)
is different. It no longer Repr (that is, Int). Rather, it is ExpSYM repr = repr,
polymorphic over the semantic domain. An object term is represented not by its
abstract syntax but by its meaning, denotation in a semantic domain.

To interpret finally-encoded expressions, we write an instance for ExpSYM,
specifying the semantic domain. For example, we may interpret expressions as
integers

instance ExpSYM Int where
lit n =n
neg e =—e
add el e2 = el + €2

mapping object language integers to Haskell integers, and object language nega-
tion to Haskell negation. We write the evaluator as

eval : Int — Int
eval = id

so that eval tfl has the value 5. The function eval has a strange type for an
evaluator, and an even stranger definition — the identity function. It is more
proper to call eval a selector of an interpretation as an integer. A finally-encoded
expression has an indefinite number of interpretations; eval selects one of them.

The instance ExpSYM Int looks meta-circular, interpreting each expression in
the object language as the corresponding expression in the metalanguage: object
addition as Haskell addition. Unlike the initial interpreter eval : Exp — Int, the
final interpreter has no pattern-matching on (abstract) syntax and so has no
syntax-dispatch overhead. In that respect ExpSYM resembles threaded code [11].

SYM in ExpSYM stands for Symantics [6]: the class declaration defines the
syntax of the embedded language (its expression forms); class instances define
interpretations, or the semantics. Multiple interpretations are now possible: we
may interpret the very same term tfl as a string, to pretty-print it:!

! Generally there are many ways to pretty-print a term — e.g., using prefix or infix
notation for addition — all interpreting the term as a String. To distinguish among
them, we could wrap String in various newtypes, see §3.4.
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instance ExpSYM String where
lit n = show n
nege ="(—" HeH")
addel e2 ="(" Hel # "+ . He2H#")

view : String — String
view = id

with view tfl giving the string " (8 + (-(1 + 2)))". The pretty-printing interpreter
is again the identity; indeed it does not do anything. Only its type matters, which
selects from the multitude of, one may imagine, already computed interpreta-
tions.

In the initial embedding, encoded object terms and their interpreters are
ordinary, monomophic Haskell values, and hence are first-class. We may collect
terms into a list, of the type [Exp]

till = [Lit 1, Add (Lit 1) (Lit 3)]

and interpret uniformly by mapping an evaluator, such as eval from the module I:
map l.eval till gives the result [1,4] . The final encoding represents object terms
as polymorphic Haskell values, which are not fully first-class: storing them in
data structures or passing as arguments generally loses polymorphism. In some
cases, such as the present one, it does not matter. We may still collect terms
into a list

tfll = [lit 1, add (lit 1) (lit 3)]

and then map F.eval tfll obtaining the same [1,4] . We shall talk in detail about
lost and regained polymorphism in §2.3.

We have defined the final embedding of an object language in Haskell and
have seen its many similarities with the initial, data-type representation. Both
embeddings permit multiple interpretations, and appear dual. The object lan-
guage expressions in both encodings look the same modulo the case of the iden-
tifiers. The similarities prompt many further questions:

1. How to pattern-match on finally-encoded terms? How to process them in the
ways that do not seem to resemble evaluation, that is, seemingly inexpressible
as fold?

2. How to compare finally-encoded terms for equality?

3. How to use the final encoding to embed languages that are typed and higher-
order?

We will be talking about these questions throughout the course. Before we get
to them, we show the final approach answer to one of the common problems of
generic programming, writing extensible code.

2.2 Extensibility and the expression problem

We have seen one sort of extensibility already, when we defined a view interpreter
to complement the existing evaluator, and pretty-printed the existing object
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language terms. We now want to extend the object language itself, by adding a
new syntactic form, multiplication.

The initial encoding represents the object language as an algebraic data type;
to add new forms to the language we have to add new variants to the data type:

data Exp = Lit Int

| Mul Exp Exp

We have to change the data type declaration, and hence adjust or at least re-
compile all the code that directly or indirectly refers to that declaration. We thus
affirm the conventional wisdom [24, 40] that in basic functional programming it
is easy to add new operations on data but hard to add new data variants. That
is the problem — the expression problem.

The expression problem, like Sudoku, has gushed a fountain of various solu-
tions and language features; see [24] for the history, the main approaches to the
solution and references. We now demonstrate the final approach.

Suppose the final encoding of the original language, the type class ExpSYM
and its two instances, §2.1, are in a (separately compiled) module that we import
as F (its file name in the accompanying code is Intro2.hs). To add multiplication,
we define a new type class, just for the new language form:

class MulSYM repr where
mul = repr — repr — repr

which can be used right away to write extended language terms:

tfml = add (lit 7) (neg (mul (lit 1) (lit 2)))
tfm2 = mul (lit 7) F.tfl

In tfm1, the new mul appears alongside the old forms lit, neg and add imported
from F; the sample term tfm2 incorporates, with no changes, the imported term
F.tfl of the unextended language. The inferred type of the extended sample
terms, (ExpSYM repr, MulSYM repr) = repr, patently shows the terms’ using the
mix of old ExpSYM and new MulSYM features.

We are yet to extend the two existing interpreters, eval and view. We do not
touch the definitions of eval and view, however, or any other code in the module
F. We merely define the meaning of mul in the semantic domains of Int and
String:

instance MulSYM Int where
mul el e2 = el x e2
instance MulSYM String where
mulele2 ="(" el 4"« He2 ")

That is all. We evaluate a sample term, eval tfml, and pretty-print it, view tfm1,
with the unmodified eval and view. Recall that these ‘evaluators’, both the iden-
tity functions, merely select an interpretation in the desired semantic domain
(the result type). If we forget the MulSYM String instance, for example, at-
tempting to view tfm1l will raise a type error.
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Thus the final encoding makes it easy to add not only new interpretations
but also new language forms, making the interpreters extensible by default. All
the old code is reused, even in its compiled form. The extension mismatches are
statically caught by the type checker.

A simple initial encoding like Exp can also be made extensible, with the
folklore trick of defining a data type as a fixpoint of a constructor signature, a
functor (see Swierstra [36] for explanation and history). The paper [36] describes
combining constructor signatures by taking a co-product and automating the
injections. Alas, the automation requires the controversial overlapping instances
extension of GHC and the explicit enumeration of all constructor signatures
in interpreter types. In contrast, the final approach works in Haskell 2010 and
enjoys type inference. We will see in §3.4 that the final approach encodes terms
that cannot be represented as fixpoints of a functor.

The dictionary-passing implementation of type classes gives an insight into
the extensibility of the final approach. The implicit type class dictionaries are
extensible. The OCaml code final_dic.ml explicates this point, by implement-
ing the final encoding with explicit dictionary passing, using OCaml’s extensible
records as dictionaries. (OCaml also has extensible data types — so-called poly-
morphic variants — which permit writing simple classes of extensible interpreters
as well [13].)

2.3 The de-serialization problem

The de-serialization problem [25] is a new problem, spun off the expression prob-
lem. Recall that the expression problem, cast in terms of embedded languages, is
about defining new interpreters for the existing terms and extending interpreters
to handle an enriched language. In both cases we are given embedded language
terms as input. We have obtained the terms so far by entering Haskell code that,
when compiled and run, will produce the values representing the desired terms.
That method works well if we know the terms to process beforehand, or if we
may use a Haskell interpreter such as GHCi, which lets us enter and evaluate
code on-the-fly. The method of writing new Haskell code for each new embedded
language term does not work well for communicating terms between computers
or storing terms in files and processing them later.

One direction — storing and sending of the terms, or converting them into a
sequence of bytes — is unproblematic, being a variant of pretty-printing, which
we have already implemented. More difficult is the converse: reading a sequence
of bytes representing an embedded language term and producing a value that
can be interpreted with any existing interpreter. Reading, as a projection, is
necessarily partial, since the input sequence of bytes, having potentially come
from a network, could be corrupted. We wish to see the parsing error only once,
upon de-serialization, rather than every time we interpret the term. Furthermore,
extending our parser to accommodate the enriched language should reuse as
much of the old parser code as possible, without breaking it. The de-serialization
problem, of writing an extensible de-serializer [25, slide 18], is very hard. This
section presents one of the first solutions.
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We begin with the wire format for communicating and storing encoded em-
bedded language terms. We chose a JSON-like format, represented in Haskell
as

data Tree = Leaf String
| Node String [ Tree]
deriving (Eq, Read, Show)

We rely on standard Haskell read and show to read and write Tree values from
files.

The serializer, toTree, is just another interpreter of embedded language terms,
quite similar to the view interpreter in §2.1:

instance ExpSYM Tree where
lit n = Node "Lit" [Leaf $ show n]
neg e = Node "Neg" [e]
add el e2 = Node "Add" [el,e2]

toTree = Tree — Tree
toTree = id
tfl_tree = toTree tfl —— sample tree

The result tfl_tree of serializing our running sample expression is

Node "Add" [Node "Lit" [Leaf "8"],
Node "Neg" [Node "Add" [Node "Lit" [Leaf "1"],
Node "Lit" [Leaf "2"]]]

which does look like JSON data, or an S-expression.

Our task is to write the function fromTree, converting a Tree to a term
that can be interpreted with any existing or future interpreter. Maintaining
interpretation extensibility is challenging, as we shall see soon. To start, we
should decide on fromTree’s type. The type of a sample finally-encoded term
tfl = ExpSYM repr = repr suggests ExpSYM repr = Tree — repr for the type of
fromTree. Recall that the de-serializer may receive invalid input, for example,
Node "x"[] . To model partiality and to report parsing errors we turn to the
Error monad. We introduce a function to safely read an Int or other readable
value, reporting the parsing error

type ErrMsg = String
safeRead : Read a = String — Either ErrMsg a
safeRead s = case reads s of

[(x,”")] — Right x
_ — Left $ "Read_error:." +s

and use it to de-serialize integer literals; we de-serialize composite expressions of
our language inductively. The inferred type, shown as a comment, is as desired.

—— fromTree = (ExpSYM repr) = Tree — Either ErrMsg repr
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fromTree (Node "Lit" [Leaf n]) = liftM lit $ safeRead n
(

fromTree (Node "Neg" [e]) = liftM neg $ fromTree e
fromTree (Node "Add” [el,e2]) = liftM2 add (fromTree el) (fromTree €2)
fromTree e = Left $ "Invalid _tree:_." + show e

As an example, we de-serialize tfl_tree serialized earlier

tfl' _eval =
let tfl' = fromTree tfl_tree
in case tfl' of
Left e — putStrLn $ "Error:." He
Right x — print $ eval x

and evaluate it. Since the de-serializer is partial, we have to check for error
first, pattern-matching on Either ErrMsg repr value, before we get the term to
interpret. The code works — but the problem is far from being solved.

We want to interpret a de-serialized term many times with many interpreters.
If we try two, eval and view,

case fromTree tfl_tree of
Left e — putStrLn $ "Error:.” + e
Right x — do print $ eval x
print $ view x

we get a type error, reporting that x cannot have both types Int and String.
We have lost polymorphism. The problem is subtle: the function fromTree is
indeed polymorphic over repr, as its inferred type shows. However, to extract
the de-serialized term, we have to do pattern-matching; the variable x is bound
in the case pattern and hence, like a lambda-pattern-bound variable, gets a
monomorphic, non-generalizable type. Therefore, we cannot interpret x with
several arbitrary interpreters; the extensibility is lost.
We may try changing fromTree to have the following signature

newtype Wrapped = Wrapped (V repr. ExpSYM repr = repr)
fromTree : String — Either ErrMsg Wrapped

resorting to fake first-class polymorphism.? The successful case analysis of the
de-serialization result will give us a Wrapped value, which can be interpreted
in many ways, as its type indicates. Alas we lost a different sort of extensibil-
ity. To wrap a term of an extended language with multiplication, we need the
MulSYM repr constraint. There is no way to put that constraint into Wrapped
except by changing the type declaration, which will break fromTree and all de-
pendent code, requiring re-compilation.

The problem is indeed very hard. Yet there is a solution, involving a new,
puzzling interpreter:

instance (ExpSYM repr, ExpSYM repr') = ExpSYM (repr,repr') where

2 With the impredicative polymorphism GHC extension, we do not have to fake first-
class polymorphism and do not need Wrapped.
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lit x = (lit x, lit x)
neg (el,e2) = (neg el, neg e2)
add (ell,el2) (e21, e22) = (add ell €21, add el2 e22)

duplicate : (ExpSYM repr, ExpSYM repr’) = (repr,repr’) — (repr,repr’)
duplicate = id

interpreting an embedded language term as two new terms. We observe in pass-
ing that the three occurrences of lit on the second line of the code belong to three
different terms; the lit on the left-hand-side is of the term being interpreted; the
two lits on the right-hand side are the constructors of two fresh terms. Suspend-
ing our bewilderment at the duplicating interpreter, we use the duplicator for
multiple interpretations:

check_consume f (Left e) = putStrLn $ "Error:." H e
check_consume f (Right x) = f x

dup_consume ev x = print (ev x1) > return x2
where (x1,x2) = duplicate x

thrice x = dup_consume eval x >>=dup_consume view >=print o toTree

tfl ' _int3 = check_consume thrice o fromTree $ tfl_tree

and finally get working code, which prints the results of evaluating a successfully
de-serialized term with three different interpreters. The trick becomes obvious
in hindsight: a term has a polymorphic type if the term can be put — shared
or copied — into differently-typed contexts. The duplicator copies, converting a
monomorphic term into two monomorphic terms, with different, repr and repr’,
types. The two resulting terms hence can be passed to different interpreters.
Thus, every time we wish to interpret a term, we have to duplicate it first,
leaving a copy for the next interpreter (the function dup_consume illustrates that
idiom).3 It is an open question if the copying and its accompanying run-time cost
can be avoided.

To be able to extend our de-serializer, we have to write it in the open-
recursion style [27]. It is a bit unfortunate that we have to anticipate extensibility;
alas, open recursion seems unavoidable for any extensible inductive de-serializer.
After all, we will be extending not only the language but also the wire format.

fromTreeExt = (ExpSYM repr) =

(Tree — Either ErrMsg repr) — (Tree — Either ErrMsg repr)
fromTreeExt self (Node "Lit" [Leaf n]) = liftM lit $ safeRead n
fromTreeExt self (Node "Neg" [e]) = liftM neg $ self e

3 If one does not care at this point about enriching the language, one may avoid
repeated duplications by defining a duplicate -like interpreter that yields Wrapped
values. The unwrapping gives a term polymorphic over the interpretations of a non-
extensible language — informally, performing a generalization. See the interpreter CL
in TypeCheck.hs for an example.
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fromTreeExt self (Node "Add” [el,e2]) = liftM2 add (self el) (self e2)
fromTreeExt self e = Left $ "Invalid _tree:_." -+ show e

We tie the knot with the fix-point combinator

fix f =f(fix f)
fromTree’ = fix fromTreeExt

and run our examples:

tfl1E_int3 = check_consume thrice o fromTree’' $ tfl_tree
tfxE_int3 = check_consume thrice o fromTree’ $
Node "Lit" [Leaf "1", Leaf "2"]

The test tfxE_int3 tries to de-serialize an invalid input. Running the test prints
an error that the input tree is bad. Since check_consume cannot help but check
for errors before attempting interpretations, the printed error message confirms
that the parsing of the input completes before any interpretation starts. We have
indeed implemented a genuine de-serializer.

Our de-serializer is genuinely extensible as well. Not only can we interpret
the successful de-serialization result in many ways; we can also enrich our lan-
guage and re-use the existing, already compiled code. The file SerializeExt.hs in
the accompanying code demonstrates assembling of the extended de-serializer
from several, separately compiled pieces. We import the declaration of the base
language (class ExpSYM) and its interpreters; we then import, from a different
file, declarations of the new language form mul and of the extended interpreters.
We finally import the basic de-serializer from the third module, called S. What
remains is to add the instances for the serializer and the duplicator

instance MulSYM Tree where
mul el e2 = Node "Mul" [el,e2]

instance (MulSYM repr, MulSYM repr’) = MulSYM (repr,repr') where
mul (ell,e12) (e21, e22) = (mul ell e21, mul el2 e22)

We define a new, for the module SerializeExt, function fromTreeExt with only two
clauses. The first clause deals with the Mul node of the tree whereas the second
clause has the old de-serializer S.fromTreeExt handle the other tree nodes.

fromTreeExt self (Node "Mul" [el,e2]) = liftM2 mul (self el) (self e2)
fromTreeExt self e = S.fromTreeExt self e —— use the old one

Finally, we tie the knot
fromTree = S.fix fromTreeExt

We test processing of the old serialized terms (tfl_tree from the module S) and
the serialized extended terms

tfl’' _int3 = S.check_consume S.thrice o fromTree $ S.tfl_tree
tfm1'_int3 = S.check_consume S.thrice o fromTree $ S.toTree tfml
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The last expression is striking: it uses the old interpreter code S.check_consume
and S.thrice from a separately compiled module S to interpret the newly extended
de-serialized expression tree tfml.

We have solved the de-serialization problem, of writing an extensible de-
serializer. We will re-visit this solution when we move to higher-order, typed
languages, in §4.1.

2.4 Pattern-matching in the final approach

Evaluators, pretty-printers, serializers and other processors of embedded lan-
guage terms have been interpreters, folding over a term. This section describes
operations that do not look like folds. The initial approach lets us write such
operations easily, with pattern-matching and general recursion. The final ap-
proach does not seem to permit these operations or pattern-matching. This sec-
tion details why the impossibility is illusory, demonstrating at the end the tight
correspondence between the initial and final approaches, letting us translate op-
erations on terms back and forth. Although the general idea behind the final
pattern-matching — making the context-dependence explicit — is clear, its real-
ization at present is not as mechanical as one may wish. Explicating the idioms
of the final approach is the subject of current research. We start by recalling the
principle that underlies interpreters.

Compositionality The principle of compositionality [37]:

(C) The meaning of a complex expression is determined by its struc-
ture and the meanings of its constituents.

is exemplified by the following clause of the evaluator for our language of arith-
metic expressions, §2.1.

eval (Add el e2) = eval el + eval e2

To determine the meaning, the value, of the addition expression, we need only
the meaning of its components el and e2; we do not need to know the syntactic
form of the summands, their nesting depth, etc. Furthermore, we determine
the meaning of el and €2 in isolation from each other and from the expression
they are part of — that is, regardless of their context. Compositionality thus is
context insensitivity. We defined the meaning of the addition expression without
needing to know other expressions in the language. Compositionality thus is
modularity, the all-important engineering principle, letting us assemble meanings
from separately developed components.

Our embedded language interpreters have been compositional; they define the
language’s denotational semantics, which is required to be compositional. The
compositional interpretation of a term is epitomized in a fold. Our interpreters
are all folds. In the final approach, the fold is ‘wired in’ in the definition of the
interpreters. Compositionality, or context-insensitivity, lets us build the meaning
of a larger expression bottom-up, from leaves to the root. Again, in the final
approach, that mode of computation is hard-wired in.
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There are however many operations — for example, program transformations
and optimizations — that do not seem compositional because the handling of
a sub-expression does depend on where it appears in a larger expression (i.e.,
depends on the context). An apt example is transforming a logical formula to
disjunctive normal form (DNF), by applying the distributivity laws and elim-
inating double-negation. To eliminate double-negation, we have to know if a
negated expression appears as part of a bigger negated expression. We take this
example to illustrate seemingly non-compositional processing, in initial and final
approaches. Although our sample language is of arithmetic expressions rather
than of logic formulas, the DNF transformation easily maps to our language, as
the multiplying-out of factors.

Pushing negation down: the initial view Pushing the negation down to the
literals, eliminating double-negation along the way is the first phase of DNF and
of the multiplying-out transformations. The following BNF grammar defines the
general form of expressions in our language:

e:z=int| nege | addee
We wish to transform the expressions to match a more restrictive grammar:

e : = factor | add e e
factor = = int | negint

which permits only integer literals be negated, and only once.

We write the negation pusher first in the initial approach, file PushNegl.hs,
where object language expressions are represented as values of the algebraic
data type Exp, §2.1. We rely on the law of negating a sum to push the negation
towards the literals, eliminating double-negation along the way:

push_neg = Exp — Exp

push_neg e@Lit{} =e

push_neg e@(Neg (Lit .)) =e

push_neg (Neg (Neg €)) = push_neg e

push_neg (Neg (Add el e2)) = Add (push_neg (Neg el)) (push_neg (Neg e2))
push_neg (Add el e2) = Add (push_neg el) (push_neg e2)

The type of push_neg emphasizes that we are transforming one expression to an-
other; the result is an embedded expression in its own right and can be processed
with any existing interpreter. The transformed expression should be equivalent
to the source with respect to a set of laws. Recall our sample term til, whose
printed view til form is "(8 + (-(1 + 2)))". Pushing the negation down gives
a new term, til_norm, which can be interpreted in many ways, for example,
pretty-printed til_norm_view and evaluated til_norm_eval:

til_norm = push_neg til
til_norm_view = view til_norm
—— "8+ ((-1)+ (-2)"
til_norm_eval = eval til_norm
—— 5
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The result of pretty-printing, in the comments after til_norm_view, shows the
negation having indeed been pushed down. The result of til_norm_eval is the
same as that of eval til, confirming that the value of the term is preserved upon
the transformation. As an additional example, negating til and pushing the
negation down, push_neg (Neg til), gives a term that pretty-prints as " ((-8) +
(1+2)".

The code for push_neg exhibits nested pattern-matching, betraying context-
sensitivity. The processing of a negated expression depends on its context. The
function push_neg is recursive but not structurally inductive: see, for example,
the clause push_neg (Neg (Add el e2)). Therefore, the termination of the trans-
formation is rather hard to see.

Pushing negation down: the final view We now write the negation pushing
transformation in the seemingly impossible final approach, the file PushNegF.hs.
The terms to transform are represented as polymorphic values of the type
ExpSYM repr = repr. We cannot pattern-match on them, we can only write an
interpreter of them. Writing an interpreter is what we shall do — paradoxically
implementing a seeming non-compositional transformation as a compositional
interpreter.

The operation of pushing negation down is indeed non-compositional, be-
cause the processing of a negated expression depends on its context. To be pre-
cise, it depends on whether the negated expression appears as part of a negated
expression. We make that context-dependence explicit:

data Ctx = Pos | Neg

instance ExpSYM repr = ExpSYM (Ctx — repr) where
lit n Pos=Iit n
lit n Neg = neg (lit n)
neg e Pos = e Neg
neg e Neg = e Pos
add el e2 ctx = add (el ctx) (e2 ctx)

This interpretation of a term yields another finally-encoded term ExpSYM repr =
depending on the context, Neg (within a negation) or Pos. The neg form inter-
prets its sub-expression in the opposite context. The transformation interpreter
supplies the initial, Pos, context:

push_neg e = e Pos

Several examples of pushing down the negation in the final style can be found in
the file PushNegF.hs. The result is a tagless-final term, which can be interpreted
in many ways; for example, pretty-printing view (push_neg tfl) gives "(8 + ((-1)
+ (2)".

One may informally argue that the negation-pushing transformation is more
perspicuous in the final style; for example, it is clearly seen as a homomorphism
with respect to addition. The transformation is now structurally inductive — it

repr,
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is a fold; the termination is apparent. Elucidating the idioms of programming
in the final style and of proving termination and other properties will hopefully
give a firm basis to argue about clarity.

The final approach is extensible with respect to enriching the language. This
advantage is preserved: pushing the negation is extensible as we add new forms
to the language, for example, multiplication. The file PushNegFExt.hs shows
assembling the extended transformer from the previously compiled components.
We merely add the negation-pushing interpretation of multiplication. (Unlike
addition, the negation of the product is equivalent to the negation of only one
factor; we chose to negate the second factor.)

instance MulSYM repr = MulSYM (Ctx — repr) where
mul el e2 Pos = mul (el Pos) (e2 Pos)
mul el e2 Neg = mul (el Pos) (e2 Neg)

The previously defined PushNegF.push_neg can be used as it is to process ex-
tended language terms.

Flattening: the initial view It is instructive to try another example of seem-
ingly non-compositional transformation. We continue the topic of the DNF-like
normalization: after negations are pushed down, additions should be flattened
and ‘straightened out.” The embedded expressions should satisfy even more re-
stricted grammar:

e = = factor | add factor e
factor == int| negint

The first summand must be a factor. The transformation amounts to repeatedly
performing the conversion of (Add (Add el e2) e3) to (Add el (Add e2 e3)), that
is, applying the associativity law to associate the factors to the right.

Again we start by writing the transformation in the initial approach, file
Flatl.hs, on terms represented by the data type Exp:

flata = Exp — Exp

flata e@Lit{} = e

flata e@Neg{} =e

flata (Add (Add el e2) e3) = flata (Add el (Add e2 e3))
flata (Add el e2) = Add el (flata e2)

The code literally implements the algorithm of the repeated reassociation-to-the-
right, assuming that only literals are negated. Unlike the pushing of negations, we
repeatedly process the transformed expression in the last-but-one clause, which
is patently not structurally inductive. The termination, and hence, correctness, is
even harder to see. To show the termination, we have to introduce lexicographic
ordering on the left- and the overall depths of a term. The nested pattern-match
again betrays the context-sensitivity of the transformation.

To convert the terms of our language in the DNF-like form, we compose the
two transformations.
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norm = Exp — Exp
norm = flata o push_neg

Applying norm to a term ti3

ti3 = (Add til (Neg (Neg til)))
ti3_view = view ti3

—— B+ (1+2)+ (=(=B+(=(1+2))

ti3_norm = norm ti3
ti3_norm_view = view ti3_norm

—— "B+ (D) + (=) + @B+ (1) +(=2))"

produces ti3_norm that pretty-prints as shown in the comment line.

Flattening: the final view To write the flattening-of-additions transforma-
tion in the final approach, we again apply the principle of making the context
explicit. Explicating the context-dependency turns the transformation into a
compositional interpretation. In the initial flata code, the context-dependency
manifested in the nested pattern-match (Add (Add el e2) e3): the processing of
an addition expression depended on whether the expression is the left immediate
child of an addition, or not. That is precisely the context information we need
to make explicit.
In the file FlatF.hs we introduce

data Ctx e = LCA e |NonLCA

to discriminate the two contexts we care about. The variant LCA e3 represents
the context Add [] e3, of being the left immediate child of the addition — or, of
being added to e3 on the left. The following interpreter yields a flattened term,
depending on the context:

instance ExpSYM repr = ExpSYM (Ctx repr — repr) where
lit n NonLCA =it n
lit n (LCAe) =add (lit n) e
neg e NonLCA = neg (e NonLCA)
neg e (LCA e3) = add (neg (e NonLCA)) €3
add el €2 ctx = el (LCA (e2 ctx))

As in the initial approach, we have assumed, in the second neg clause, that the
push_neg transformation has been applied and so only literals are negated. The
file FlatF.hs shows several examples of flattening and normalizing sample terms.

Recall that the data type Ctx with its two variants was meant to represent
the context of an expression. In BNF that context can be defined as follows,
where [] stands for the hole:

C:=Add Cel[]

The last clause of the flattening interpreter, add el e2 ctx, specifies the meaning
of C[Add el e2], that is, of the addition expression in the context ctx. That
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meaning is el (LCA (e2 ctx)): the meaning of el in the context Add [] C[e2].
Overall, the last clause of the interpreter implements the transformation

C[Add el €2] ~ Add el C[e2]

which is precisely the rule of reassociating to the right. We argue again that
the transformation is more perspicuous in the final approach, being structurally
inductive. The termination and the correctness are much easier to see.

The reader is encouraged to add multiplication to the embedded language
and implement the complete transformation of multiplying-out the factors.

Relating initial and final approaches in the first order The examples have
demonstrated that it is possible after all to express seemingly non-compositional
operations in the final approach: non-compositionality disappears when the con-
text is explicated. The examples hinted at a connection between the two ap-
proaches, at the conversion of an initial-style transformation to the final style.
The conversion so far has been creative. One may wonder about a systematic,
mechanical process.

We describe two ways to systematically convert an operation on initially-
encoded terms to the corresponding operation on the corresponding finally-
encoded terms. We outline the first method, describing the second in detail.

The final approach represents a term in the embedded language as the value of
the type ExpSYM repr = repr, where the type class ExpSYM is defined for exam-
ple as in §2.1. The Haskell compiler GHC uses a so-called dictionary-translation
[17] to represent polymorphic values with a type-class constraint. In the case of
ExpSYM, the dictionary is defined as

data ExpSYMDict repr =
ExpSYMDict{ lit_dict : Int — repr,
neg_dict = repr — repr,
add_dict = repr — repr — repr }
type FinTerm repr = ExpSYMDict repr — repr

so that an embedded term is represented by GHC as the value of the type
FinTerm repr. The latter is the Bohm-Berarducci encoding of algebraic data type
Exp in System F [5], which may be regarded as the typed version of Church en-
coding. In the first-order unityped case, the non-extensible final encoding is thus
equivalent to the Church/Bohm/Berarducci encoding of the data type repre-
senting the embedded language. (The type class dictionary in the explicit form
ExpSYMDict is clearly not extensible.) The case of the typed object language,
with more than one type, is discussed in §3.5.

The initial and the closed-to-language-extensions final approaches can also
be related most straightforwardly (see the file PushNegFl.hs), by transforming
a finally-encoded term to the corresponding data-type-encoded term, and vice
versa. The relation thus is a bijection, witnessed by two total interpreters: inter-
preting a finally-encoded term as a data type

instance ExpSYM Exp where
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lit = Lit

neg = Neg

add = Add
initialize = Exp — Exp
initialize =id

and conversely

finalize = ExpSYM repr = Exp — repr

finalize (Lit n) =lit n

finalize (Neg e) = neg (finalize e)

finalize (Add el e2) = add (finalize el) (finalize e2)

The interpreters look like glorified identity functions; the left- and right-hand-
sides of each clause mention the same ‘constructors’, but in different cases. The
finalize interpreter is explicitly a fold.

The push_neg transformation then in the final style is obtained from the
corresponding transformation on the data type values by composing with the
conversion interpreters:

push_neg = finalize o |. push_neg o initialize

Thus if we forget about extensibility, any processing on data type values, how-
ever non-compositional, can be performed on the corresponding finally-encoded
terms. Using the intermediate data type to implement a transformation on
finally-encoded terms is inefficient, and destroys the extensibility. It is an open
question whether the intermediate data type values can be deforested or fused
in.

3 Interpreting typed higher-order languages

Having warmed up, we turn to data types with binders and well-formedness
constraints — in other words, to the embedding and interpretations of typed,
higher-order object languages. This section introduces the typed tagless final
approach in full, demonstrating not only the extensibility but also object types,
expressing them in the metalanguage and manifestly ensuring their preservation
during interpretations. Surprisingly we get by without dependent types, using
only Haskell 2010. Our sample object language in this section will be simply
typed lambda-calculus with constants, with binding represented either as de
Bruijn indices, §3.3, or higher-order abstract syntax (HOAS), §3.4. As before
we will be contrasting, §3.2, the final approach with the initial one. The initial
approach will now require generalized algebraic data types (GADTSs); we relate
GADTs and the tagless final approach in §3.5. We call our approach in full ‘typed
tagless final’. We begin by explaining type tags, which may seem inevitable when
interpreting a typed language in a typed metalanguage.
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3.1 The problem of tags

We introduce type tags on the example of lambda-calculus with booleans, which
was the introductory example of [31], extensively discussed in [6]. The object
language, untyped for now, can be embedded in Haskell as an algebraic data
type, similarly to the first-order case of §2.1.

data Exp = V Var

| B Bool

| L Exp

| A Exp Exp
data Var = VZ |VS Var

The language has variables (represented as de Bruijn indices), boolean literals,
abstractions L e and applications A el e2. A sample term applying the identity
function to the boolean true is represented as

til = A (L (VVZ)) (B True)
We naively try to write the textbook evaluator

—— Does not type check

eval0 env (V v) = lookp v env

eval0 env (Bb) =b

eval0 env (L e) = \x — eval0 (x:env) e

eval0 env (A el e2) = (eval0 env el) (eval0 env e2)

The first argument env to evalO is the environment, a finite map from variables
to values; the function lookp looks up the value associated with the given vari-
able. The code is correct, and would have worked had our metalanguage been
untyped. Expressed in a typed language, evalO is ill-typed, which we can tell
even without seeing the implementation of lookp. The second clause returns a
boolean b whereas the next one returns a Haskell function, which cannot be of
the type Bool. All branches of a pattern-match on ordinary algebraic data types
must yield values of the same type. We have little choice but introduce the union
type for booleans and functions, the universal type:

data U = UB Bool |UA (U — U)

The evaluator will return a value of the type U. The evaluator environment
will likewise associate variables with the U values, letting us use the ordinary,
homogeneous Haskell list to represent the environment, with lookp extracting an
element of the list by its index.

lookp VZ (x:-) = x

lookp (VS v) (-:env) = lookp v env

——eval: [U — Exp — U

eval env (V v) = lookp v env

eval env (Bb) =UBb

eval env (L e) = UA (\x — eval (x:env) &)

eval env (A el e2) = case eval env el of UAf — f (eval env e2)
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This code type-checks and works. Evaluating the sample term as eval [] til
gives the result UB True. The result is of the union type U, with UB being the
discriminator, or the tag, of the value. The discriminators UB and UA of the
union type U tell the type of the injected value; the discriminators are thus type
tags. Had we written eval0 in a untyped metalanguage, the type tags would be
present, too, but hidden in the run-time representation of values. The typed
metalanguage gives more insight, forcing the hidden assumptions out.

Unlike the interpreters for the first-order languages in §2.1, eval is partial:
first, there is a inexhaustive pattern-match when evaluating the A el e2 form.
The inexhaustive pattern-match error its triggered when evaluating the term

tida = A (B True) (B False)

that tries to apply a boolean. There is also an inexhaustive pattern-match in
the lookp function, triggering an error when looking up an unbound variable. In
other words, we get stuck evaluating the open term ti2o

ti2o = A (L (V (VS VZ))) (B True)

in the empty initial environment: eval [] ti2o.

The object language being untyped, both sorts of errors may indeed occur
during evaluation. To prevent such errors, we impose a type system, turning
our language into simply typed lambda-calculus. One may imagine writing a
function

typecheck : Exp — Either ErrMsg Exp
type ErrMsg = String

implementing the standard type reconstruction and checking algorithm, taking a
term and returning a type-checked term or a type error message. The type system
will act then as an additional well-formedness constraint (per Curry); the func-
tion typecheck checks that constraint. If a term passes the check, the evaluation
of the term should not encounter any errors: well-typed terms “don’t go wrong.”
An attentive reader must have noticed the similarity with de-serialization in
§2.3. As we did in the latter section, we type check a term once and evaluate it
(potentially) many times:

\term — case typecheck term of
Left e — putStrLn $ "Type_error:.” H-e
Right x — do
print $ eval [] x
—— interpret again

Now eval [| x should always yield a value, without ever raising a run-time error.
When evaluating a type-checked term, the pattern-matches in lookp and eval are
effectively exhaustive. Yet they remain written as inexhaustive pattern-matches
and are treated as such by the Haskell system, with all the attendant, now
unnecessary, run-time type tag checking.

Pattern-matching on type tags in eval performs the dynamic checks that
should not be necessary if the input term is well-typed. However, eval has no
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way of knowing that its argument has been type checked. The function typecheck
takes an Exp value and produces, if successful, another value of the same type
Exp; the fact of the successful type checking is not reflected in types.

Thus the presence of the type tags like UB and UA and run-time tag checking
are symptoms of the problem of embedding typed object languages. Informally,
our embedding is not ‘tight’: the algebraic data type Exp contains more val-
ues than there are well-typed terms in the simply typed lambda-calculus with
booleans. The embedding failed to represent the well-formedness constraints im-
posed by the object language’s type system.

3.2 Tagless, initial and final embeddings

The problem thus is how to embed a typed object language without junk and take
advantage of the well-typedness when writing interpreters, avoiding unnecessary
checks and run-time errors. Hopefully we would also avoid the universal type U
and hence the type tags and their run-time overhead.

The evaluator in the previous section could get stuck because of two inexhaus-
tive pattern-matches; the one in the lookp function may raise a run-time error
when looking up a variable absent in the environment. To eliminate such, essen-
tially array bound errors, we may need dependent types [48]. A metalanguage
with dependent types such as Agda [29] indeed embeds simply typed lambda cal-
culus enforcing well-typedness constraints on embedded terms and implements
evaluator that does not get stuck.

In this section, we show that Haskell is sufficient to solve the problem of
embedding of typed languages and their tag-free interpretations. There are again
the initial and final approaches. Whereas the initial approach requires generalized
algebraic data types, the final approach is implementable in Haskell2010.

We start with the initial approach to embedding simply typed lambda calcu-
lus with booleans, the language of the previous section. As before, §2.1, the initial
approach represents terms of the embedded language as values of an algebraic
data type. The previous section showed that an ordinary algebraic data type is
unsuitable: it is too ‘large’. We need a tight embedding that represents all and
only typed object terms. We hence move from Curry’s view of types to Church’s
view: ill-typed terms ‘do not exist’ and should not be representable. To express
the well-typedness constraint we have to keep track of types when constructing
representations. To avoid getting stuck when encountering an unbound variable,
we have to parameterize the representation data type not only with the type of
the object term but also with the free variables in the term. Thus we need a
generalized algebraic data type (GADT) with two type parameters:

data Exp env t where
B : Bool — Exp env Bool
V : Var env t — Expenvt
L = Exp (a,env) b — Exp env (a— b)
A : Exp env (a— b) — Exp enva — Exp env b
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data Var env t where
VZ : Var (t,env) t
VS : Varenvt — Var (a,env) t

The data types Var and Exp are quite like those in §3.1, modulo two pa-
rameters, env and t, and the well-formedness constraint expressed in the types
of the data constructors. The first type parameter, env, is the type environ-
ment, modeled as a nested tuple, assigning types to free variables in a term. The
type parameter t is the object type of the embedded expression, which could
be boolean (represented by Haskell’s Bool) or a function type, represented by
Haskell’s arrow type. Object terms that do not have types cannot be embedded.

The constructor declarations express the type system of the calculus: for
example, the type signature of B says that boolean literals have the type Bool
in any environment. The signature of A states that applying a function of type
a— b to a term of type a gives a term of type b, all in the same environment
env. We may also read the Exp and Var declarations as the statements of the
axioms and inference rules of the implication fragment of minimal intuitionistic
logic: B is the axiom of booleans; V is the reference to a hypothesis denoted by
a variable; L is implication introduction and A is implication elimination. VZ is
the assumption axiom and VS is weakening.

The sample term, an application of the identity function to the boolean true,
looks exactly as in §3.1

til =A (L (VVZ)) (B True)
To evaluate it, we write the standard evaluator in the most straightforward way:

eval = env — Expenvt —t
eval env (V v) = lookp v env

eval env (Bb)=b

eval env (L e) =\x — eval (x,env) e

eval env (A el e2) = (eval env el) (eval env e2)

This is exactly the evaluator eval0 that we wanted to write in §3.1! It did not
type check then because all branches of a pattern-match on ordinary algebraic
data type must return the values of the same type. GADTs lift that restriction.
The type of eval states that the type parameter t of the Exp GADT is the type of
the evaluation result. The type of B says that B constructs Exp env Bool from a
boolean b. When checking the second clause of eval, the type checker assumes t to
be Bool and expects the clause to produce a boolean, which it does. Likewise, the
L data constructor builds Exp env (a— b) values. The type checker expects then
the third clause of eval to yield a value of the arrow type; a Haskell lambda-term
does indeed have the arrow type. The need for the union type U has disappeared,
and with it, the type tags.

We are yet to implement lookp to look up a variable in the environment env,
which we have decided to model as a nested tuple.

lookp = Varenvt — env — t
lookp VZ (x,-) = x
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lookp (VS v) (-, env) = lookp v env

The code is similar to lookp of §3.1, with the heterogeneous list (nested tuple)
in place of a homogeneous, ordinary Haskell list. More interesting is the type of
lookp, claiming that if we have a variable that has type t in the environment env,
the environment certainly has the corresponding value of the type t and we can
retrieve it. The code proves the claim. The function lookp is now total: it cannot
receive a VS VZ value and the empty environment because VS VZ has the type
Var (a,env) t for some a, env and t. (Although the pattern-match in lookp is
exhaustive as we have just shown, GHC currently cannot do such reasoning and
flags the pattern-match as inexhaustive. Therefore, GHC has to compile in a
test and the code to raise the pattern-match exception.)

We evaluate the sample term, eval () til, and obtain True, a genuine Haskell
boolean with no type tags. The problematic term ti2a from §3.1 applying a
boolean cannot be built: GHC rejects the constructor expression A (B True)
(B False) as ill-typed. Indeed, only well-typed terms can be represented. Open
terms like ti2o from §3.1 are representable. The inferred type Exp (b, env) b
tells that the term is open; therefore, an attempt to evaluate it in the empty
environment, eval () ti2o, is rejected by the type checker.

We have thus solved the problem of representing a typed object language,
simply typed lambda-calculus, in a typed metalanguage in the tight encoding.
We wrote a tagless interpreter, which does no dynamic tag checking and does
not get stuck. The well-formedness constraints imposed by the type system of
the object language are expressed through the types of the metalanguage. As
a bonus, the Haskell compiler checks the object types and even infers them,
relieving us from writing our own type checker.

The initial approach solution has relied on GADTs. One may hear claims that
dependent types or at least their lightweight version, GADTSs, are essential for
tagless embeddings of typed languages. Let us look however at the final tagless
encoding.

Recall that the final approach represents a term of an embedded language by
its value (in the appropriate semantic domain), or by a Haskell expression that
computes that value. That expression is build compositionally from functions
that compute the meaning of primitive expressions. Our sample language has
five primitive expressions: boolean literals, abstraction, application, zero-index
variable reference and the de Bruijn index increment. Assuming the functions b,
[, a, vz and vs to compute the meaning of these primitive expressions, we write
a complex expression as follows:

tfl =a (I vz) (b True)

This Haskell expression represents an embedded language term applying the
identity function to the boolean true. The expression looks exactly like the initial
encoding til of the same term, with all data ‘constructors’ in lower case.

We have not yet defined the functions a, b, etc. If we are interested in the
value of an expression, we choose the semantic domain to be a map from the
environment to the Haskell value representing the result of the expression — the
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textbook semantic domain for the standard denotational semantics of simply
typed lambda calculus. We define the value of each primitive expression in that
domain:

vz (vc, ) =vc
vs vp (-, envr) = vp envr

bbvenv =bv
| e env =\x — e (x,env)
a el e2 env = (el env) (e2 env)

Booleans are interpreted as Haskell booleans, variable references are interpreted
by whatever the environment associates with them. Supplying the initial empty
environment, e.g., tfl (), gives us the value of the represented term, True.

These five lines are the entire final interpreter. It clearly has no type tags. It
is typed; the inferred types are

b:t —env—t
I = ((tl, env) —t) —env—tl —t
a:(env—1tl —t) — (env—>1tl) —env—t

The interpreter is expressed in the Hindley-Milner subset of Haskell 2010. No
fancy types are thus needed for a tagless embedding of a typed object language.
The final interpreter we have shown is the evaluator; the evaluator, one may
say, was wired into the representation. To permit multiple interpretations of an
embedded language term we have to abstract over the interpretation, as we did
in §2.1. That is, we abstract from the term such as tfl the primitive expression
denotations, the functions a, b, etc. MLL modules or Haskell type classes provide
exactly the right abstraction mechanism.

3.3 Tagless final embedding with de Bruijn indices

This section describes the abstraction over the primitive interpreters, introducing
the typed tagless final approach in full, along the lines of [6]. Our example is still
simply typed lambda calculus with constants; we replace boolean literals with
integer ones and include addition, to write more interesting examples. We also
rename our primitive form interpreters to match [6].

We introduce, in the file TTFdB.hs, the type class with methods to interpret
the primitive forms of the embedded language.

class Symantics repr where
int = Int — repr h Int
add = repr h Int — repr h Int — repr h Int

z =z repr (a,h) a

s :repr ha — repr (any,h) a

lam = repr (a,h) b — repr h (a— b)

app = repr h (a—b) —reprha —repr hb
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We may read this declaration as the BNF grammar for the language: the integer
literals int and the zero-index variable z are the terminals; if el and e2 are
expressions of the language (that is, have the type repr - -), so is app el e2. The
Symantics declaration thus defines the syntax of the object language (the type
class instances will define semantics, hence the type class name).

The type class Symantics is quite like GADT Exp from §3.2. Symantics is
also similar to the type class ExpSYM seen in the first-order unityped case,
§2.1. The type class parameter repr is now a type constructor (with higher kind,
* — % — x ). The declaration of the class Symantics defines not just the syntax
of the object language, but also its type system. A (non-bottom) Haskell value
of the type repr h t represents an embedded language expression — or, witnesses
its grammar derivation. The same value also witnesses the type judgment that
the represented expression has the type t in the type environment h. The types
of Symantics methods read as the specification of the axioms and inference rules
of the type system: the type of z says that a zero-index variable z in the type
environment modeled as the nested pair (a,h) has the type a. The type of lam
specifies that if e has the type b in the environment (a,h) then lam e has the type
a— b in the environment h. We may also read these types as stating the axioms
and inference rules of the minimal logic: z is the assumption axiom (assuming
A we may derive A) and lam is the implication introduction (if we may derive
B assuming A, we may derive A— B). We have thus demonstrated specifying
the type system of the simply typed lambda calculus in Haskell 2010, with no
need for dependent types. (We point to the specification of more complex type
systems in §§4.2, 4.3)

Here are a few sample embedded terms; the first one represents the addition
of 1 and 2:

tdl = add (int 1) (int 2)
—— td1 : (Symantics repr) = repr h Int

td20 = lam (add z (s z))
—— td20 = (Symantics repr) = repr (Int, h) (Int — Int)

td3 = lam (add (app z (int 1)) (int 2))
—— td3 : (Symantics repr) = repr h ((Int — Int) — Int)

GHC infers the types for us, shown in the comments underneath the term. GHC
also infers the most general environment in which the term is typed: td1 is typed
in any environment, whereas td2o is typed only in the environment whose first
assumption is Int: td2o is an open term. Only well-typed terms are representable.
Furthermore, GHC gives a good error message when rejecting an ill-typed term,
such as the self-application:

* TTFdB> lam (app z z)
Occurs check: cannot construct the infinite type: a =a —b
Expected type: repr (a — b, h) a
Inferred type: repr (a, h) a
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In the second argument of ‘app’, namely ‘z’
In the first argument of ‘lam’, namely ‘(app z z)’

As in the unityped case §2.1, interpreters of the embedded language are the
instances of Symantics. Our first interpreter is the evaluator. Since terms may be
open, we interpret them as functions from the environment (a nested tuple carry-
ing the values associated with free variables) to Haskell values, implementing the
standard denotational (or, natural) semantics of simply typed lambda-calculus.

newtype R h a = R{unR : h — a}

instance Symantics R where
int x =R $ const x
add el €2 =R $ \h — (unR el h) + (unR €2 h)

z =R$ \(x,.) — x

sv =R$\(,h) = unRvh

lame = R $ \h — \x — unR e (x,h)

appel €2 =R $ \h — (unR el h) (unR e2 h)

The type constructor R is the interpreter’s name, or the selector from many
possible interpretations of an embedded term. In §2.1 we used the type of the
desired result, the semantic type, as the selector. There may be several inter-
preters with the same semantic type, however; we turn to user-defined names like
R to disambiguate. We stress that R is not a type tag: pattern-matching on R is
always exhaustive, the function unR is total. Furthermore, since R is declared as a
newtype, it has no run-time representation; the function unR is operationally the
identity. R interprets the object-language addition as the Haskell addition; the
object-level application as the Haskell one. Since these Haskell operations do not
raise run-time errors and R has no inexhaustive pattern-matching, R never gets
stuck (and is in fact total). Well-typed (object) terms indeed “don’t go wrong.”
One may view R as a constructive proof of the type soundness for the object
language: R does not get stuck, and interpreting an object expression of the type
t in the environment h indeed gives a value of the type h— t. We are sure of the
latter claim because the instance Symantics R has been accepted by the Haskell
type checker, which verified that the right-hand side for, say, add el e2 indeed
has the claimed type R h Int, isomorphic to h— Int. Our subset of Haskell 2010
is sound. We thus reduced the type soundness of the object language to the type
soundness of the metalanguage.

To evaluate a closed object term, we R-interpret it in the empty environment.

eval e =unRe ()

For example, our sample term tdl evaluates to the Haskell integer 3; eval td3
gives the Haskell value of the type (Int — Int) — Int, which is a regular Haskell
function, which we can apply to an Int — Int argument (e.g., (eval td3) (4 2)
evaluates to 5). The term td2o is open, therefore, eval td2o is ill-typed.

The typed tagless final approach lets the programmer define new interpreters
for existing terms. As an example, we show a pretty-printing interpreter:
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newtype S h a = S{unS : Int — String}

instance Symantics S where
int x =S $ const $ show x
addele2 =S$ \h —
"(" HunSelhH"+" HunSe2h H#")"

z =S$ \h —"x" + show (h—1)
sv =S8$\h—-unSv(h-1)
lame =S $ \h —
let x ="x" 4 show h
in "(\\" #+x+H"-— . HunSe(h+1)#")
appele2 =S¢ \h —
"(" HunSelhH"." HunSe2h H")

view = S () a — String
view e = unS e 0

For the sample term td3, view-ing it gives the string " (\\x0.— ((x0.1)+ 2))".
The semantic domain now is functions from the nesting depth of lambda-abstractions
to text strings. The most notable difference between the R and the S interpreters
is the interpretation for lam. In either case however the interpreters express a
typed fold over a typed term — which is the essence of the typed tagless final
approach.

We are yet to demonstrate a different sort of extensibility, enriching the
language with more expression forms. As we make the language more interesting
and examples more complex, we quickly realize that variable names are much
better for humans than indices. Therefore, we first solve the problem of naming
the variables, introducing an alternative typed tagless final embedding.

3.4 Tagless final embedding with higher-order abstract syntax

We now let the programmers write embedded terms using names for the vari-
ables rather than obscure indices. This alternative typed tagless final embedding
shares most of the properties with the de Bruijn-index—based approach of §3.3.
Only typed terms are representable; GHC checks and infers the types and prints
descriptive messages for ill-formed or ill-typed terms. New is the guarantee that
all terms are closed, since open terms become inexpressible (that is, open object
terms cannot be represented as repr values). The improved convenience of writ-
ing embedded terms gives us a better opportunity to demonstrate enriching the
language. The result of the enrichments is PCF [33], the simply typed lambda-
calculus with integer and boolean operations, the conditional, and the fixpoint.
The language is an extension of the one used in [47] to introduce GADTs. We
will be using Haskell 2010, with no GADTs.

We start with the small embedded language of the previous section, sim-
ply typed lambda calculus with integer literals and addition. We will now model
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bindings in the object language with Haskell bindings, similar to the way Church
[7] used metalanguage bindings (lambda-abstractions) to model quantification.
This, so-called higher-order abstract syntax [28, 32|, represents object language
abstractions as Haskell abstractions and object variables as Haskell, named vari-
ables. The object-level binder lam becomes a higher-order Haskell constant, sim-
ilar to the quantifiers ¥ and 3 in Church’s Simple Theory of Types [7]. The type
class Symantics from the previous section becomes as follows

class Symantics repr where
int = Int — repr Int
add : repr Int — repr Int — repr Int

lam = (repr a — repr b) — repr (a— b)
app = repr (a—b) — repra — repr b

Embedded expressions of the type t are represented as Haskell values of the
type Symantics repr = repr t. We no longer keep track of bindings and the
environment since Haskell does that for us. The types of Symantics methods do
read like the axioms and inference rules of the minimal logic in Gentzen-style
natural deduction. The duality of implication introduction, lam, and implication
elimination, app, has become clear.

Here are the sample embedded terms and their inferred types

thl = add (int 1) (int 2)
—— thl = (Symantics repr) = repr Int

th2 = lam (\x — add x x)
—— th2 : (Symantics repr) = repr (Int — Int)

th3 = lam (\x — add (app x (int 1)) (int 2))
—— th3 : (Symantics repr) = repr ((Int — Int) — Int)

The terms use variable names like x rather than indices: compare th3 with td3
from §3.3. Open terms like td2o from the previous section cannot be expressed at
all at the top-level: since object variables are now Haskell variables, open object
terms are open Haskell terms, not allowed at the top level.

Haskell’s taking over of the tracking of binders and the maintenance of the

binding environment simplifies the interpreters. The evaluator R from §3.3 now
reads

newtype R a = R{unR : a}
instance Symantics R where

int x =Rx
addel e2 =R $ unR el +unR e2

lam f =R$ unRofoR
appel €2 =R $ (unRel) (unR e2)
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Since R (which is the name for the interpreter, not a type tag) is a newtype, at
run-time, R x is indistinguishable from x. It becomes obvious that the interpreter
R is meta-circular: object-language integers are the Haskell integers themselves;
object-language addition is Haskell addition and object-language application s
Haskell application. It is even more obvious that R never gets stuck. The eval
function, as that in §2.1, is operationally the identity

——eval:Ra— a
eval e = unR e

Only its type matters, selecting the interpretation named R from other interpre-
tations of a term. Evaluating thl gives 3; eval th3 is a Haskell function, which
we cannot show but can apply: eval th3 (+ 2) is 5.

The pretty-printing interpreter S, which does let us see object terms including
abstractions, has scarcely changed compared to the previous section; in both
cases we have to convert the variable names or indices into character strings and
S0 maintain a counter to generate fresh names.

type VarCounter = Int
newtype S a = S{unS: VarCounter — String}

instance Symantics S where
int x =S $ const $ show x
addele2 =S$ \h —
”(" +HunSelh+H"+" HunSe2h + ")”

lame =S$ \h —
let x ="x" + show h
in "(\\" #x+H"— . H
unS (e (S $ const x)) (succ h) + )"
appele2 =S¢ \h —
"(" HunSelhH"" HunSe2h H")

view e = unSe0

Although embedded language abstractions are represented as Haskell abstrac-
tions, we can show them: view th3 gives " (\\x0.— _((x0_1)+ 2))".

An object language term of the type Int is represented as a Haskell value of
the type Symantics repr = repr Int, which can be specialized either as R Int or
S Int. The former is essentially an Int; the latter is VarCounter — String regard-
less of the object type. Different interpretations of a term may indeed vary quite
a lot. This variety is hidden behind the opaque repr in Symantics repr = repr t.
The typed tagless final encoding may be called translucent: it hides concrete rep-
resentations yet exposes enough of the type information to type check the encod-
ing of an object term without knowing its concrete representation. The checked
term is then well-typed in any interpreter, for any instantiation of repr. The
higher-order polymorphism, quantifying over type variables like repr of higher
kind, is essential.



Typed Tagless Final Interpreters 31

We finally demonstrate the promised extensibility, enriching the language
with multiplication, boolean literals, integer comparison, the conditional, and
the fixpoint. The language extensions can be introduced independently and sep-
arately. We group them in three classes

class MulSYM repr where
mul = repr Int — repr Int — repr Int

class BoolSYM repr where
bool : Bool — repr Bool
leq = repr Int — repr Int — repr Bool
if_ = repr Bool — repr a — repr a — repr a

class FixSYM repr where
fix = (repr a — repr a) — repr a

The extension method is quite like the one in §2.2; new is the parametrizing of
repr by the object type. We write more interesting sample terms, such as the
power function tpow, its partial application tpow7 and the saturated application
tpow72, representing the object term that computes 27.

tpow = lam (\x — fix (\self — lam (\n —
if— (leqg n (int 0)) (int 1)
(mul x (app self (add n (int (—1))))))))
—— tpow = (Symantics repr, BoolSYM repr, MulSYM repr, FixSYM repr)
—— = repr (Int — Int — Int)

tpow7 = lam (\x — (tpow ‘app’ x) ‘app’ int 7)

tpow72 = app tpow7 (int 2)

—— tpow72 = (Symantics repr, BoolSYM repr, MulSYM repr, FixSYM repr)
—— = repr Int

The inferred types, shown in the comments underneath the corresponding terms,
enumerate the language features used by the term. The expression tpow looks
like Scheme code; we could have defined infix operators however for arithmetic
expressions, or used the infix notation as in tpow7. The convenience of variable
names becomes apparent: writing tpow with de Bruijn indices is frightening.

Having extended the language, we extend its interpreters, re-using rather
than breaking the interpreters for the base language. The extensions are inde-
pendent and separate:

instance MulSYM R where
mul el €2 = R $ unR el * unR e2

instance BoolSYM R where
bool b =Rb
leq el €2 =R $ unR el <unR e2
if_ beet ee =R $ if unR be then unR et else unR ee
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instance FixSYM R where
fix f =R $ fx (unRofoR)where fx f = f (fx f)

Evaluating tpow72 as eval tpow72 gives 128. The interpreter R inherits the eval-
uation strategy from the metalanguage; R is thus non-strict. We did not notice it
before because our object language was strongly normalizing. The introduction
of the fixpoint combinator lets us distinguish call-by-value and call-by-name. For
example, eval (lam (\x — int 5) ‘app’ (fix id)) returns 5; the call-by-value
evaluation would diverge. We can write call-by-value evaluators too, and even
call-by-need (see §4.4).

We likewise extend the S interpreter. We show the most interesting case, for
fix:

instance FixSYM S where
fix e=S$ \h—
let self = "self” -+ show h
in "(fix . Hself # " #
unS (e (S $ const self)) (succh) #+")"

Pretty-printing a term with fix, unlike evaluating it, requires no recursion. The
extended S interpreter clearly remains total. Pretty-printing tpow gives

" (\\x0O— (fix_self1 .
ceo(\\Xx2o— _(ifo(x2<0)_then_1_else _(x0% (selfl_(x2_+ -—1)))))))"

One may write more interpreters, to compute the size of a term by counting
the number of constructors, to partially evaluate a term or transform it into
continuation-passing style. We may also add more language features, for exam-
ple, state or reference cells; see [6] for details. No type tags, no GADTs, no
dependent types, no intensional type analysis are involved. The type system of
the metalanguage assures that all interpretations preserve object types. Since
the code of the interpreters use no partial operations, the interpreters manifestly
do not get stuck. The interpreters thus provide a constructive proof of type
soundness of the object language.

We have thus demonstrated a family of interpreters for a typed higher-order
object language in a typed metalanguage, solving the problem of tagless type-
preserving interpretation, without fancy.

3.5 Relating initial and final typed tagless encodings

We have described two tagless embeddings of a typed higher-order language
into the typed metalanguage, Haskell. Both embeddings are tight, in that only
well-typed object terms are representable. The tightness of embedding lets us
write interpreters without resorting to type tags. The final encoding uses no
fancy types (in particular, no GADTs) whereas the initial encoding does. The
similarities of the two approaches raise the question of their deeper relationship,
which may give insight into the fancy types. We have compared the initial and the
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final approaches for first-order, unityped object languages in §2.4 and found them
related by bijection; furthermore, the non-extensible final encoding is equivalent
to the Church/Béhm/Berarducci encoding of the data type representing the
embedded language. This section shows that the bijection between the initial
and final embeddings holds also for higher-order typed languages, for which
Church/Bohm/Berarducci encoding does not apply.

We have described the initial typed tagless encoding in §3.2, with the de
Bruijn-index representation of variables. We briefly revisit the initial encoding,
using this time a richer language and higher-order abstract syntax, for the ease of
comparison with the tagless final encoding of §3.4. Our revisited initial encoding
is a generalization of the one presented in [47] as the motivation for GADTs (for
brevity we elide the fixpoint combinator below; see TTIF.hs for the complete
example, of the full PCF.)

The embedded language is simply typed lambda calculus with integer literals
and addition. The tagless initial encoding represents expressions of the language
as values of the following GADT:

data IR h t where
INT =z Int — IR hlInt
Add : IRhiInt - IRhInt — IR h Int

Var = ht - IRht
Lam : (IRhtl — IR ht2) = IR h (t1— t2)
App = IRh (t1—-t2) - IRhtl — IR ht2

The Var form, like HOASLIft of [47], ‘lifts’ any value from the metalanguage into
the object language. Unlike HOASLIft, Var is parametrized by the representation
of the lifted values, h. One may view h as modeling the binding environment: h t
is the type of an environment cell holding a value of the type t. The type of the
constructor Lam contains the contra-variant occurrence of IR h. Therefore, IR h t
is not an inductive data type and is not representable as a fix-point of a functor.
Such generally recursive data types are not in the domain of Béhm/Berarducci
encoding.

The sample embedded terms thl, th2, th3 of §3.4 have the following form and
types in the initial encoding. The only difference between the initial and final
encodings is the capitalization of the constructors.

til = Add (INT 1) (INT 2)
—— tilz IR h Int

ti2 = Lam (\x — Add x x)
—— ti2: IR h (Int — Int)

ti3 = Lam (\x — Add (App x (INT 1)) (INT 2))
——ti3:z IR h ((Int — Int) — Int)

The evaluator of the embedded language looks almost the same as the one
in §3.2 and is standard
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evall = IRRt —t

evall (INT n) =n

evall (Add el e2) = evall el + evall €2

evall (Varv) =unRv

evall (Lam b) = \x — evall (boVaroR $ x)
evall (App el e2) = (evall el) (evall e2)

The evaluator does no environment look-up to obtain the value associated with
a bound object variable; the value is available directly (see the Var x clause,
keeping in mind that operationally R x is the same as x since R is a newtype,
§3.4). The reliance on Haskell’s environment for variable bindings relieves us from
maintaining our own (compare with eval in §3.2). Like the tagless final evaluator
R, this initial evaluator is also tagless and free from pattern-match errors. As
in the final approaches, we may add more interpreters, see see TTIF.hs for the
initial pretty-printer. Unlike the final approach however, enriching the language
breaks existing interpreters.

The initial and final tagless typed approaches are related by bijection, as they
were in the first-order unityped case, §2.4. The bijection is witnessed by the total
interpreter of finally-encoded terms producing the initial IR representation of the
same terms

instance Symantics (IR h) where

int = INT
add = Add
lam = Lam
app = App

f2i :IRht - IRht
f2i =id

and by the inverse, total interpreter, returning finally-encoded terms

i2f = Symantics repr = IR repr t — repr t

i2f (INT x) = int x

i2f (Add el e2) = add (i2f el) (i2f e2)
i2f (Varv) =v

i2f (Lam e) = lam(\x — i2f (e (Var x)))

i2f (App el e2) = app (i2f el) (i2f e2)

The interpreters follow the pattern seen in §2.4: f2i is a glorified identity and i2f
is a fold. The file TTIF.hs shows on many examples that the composition of f2i
and i2f is the identity.

The tagless final encoding for typed object languages may be regarded as the
generalization of Church/B6hm/Berarducci encoding to generalized, generally
recursive algebraic data types. If it were not for the Lam constructor (and the
corresponding constructor function lam), the tagless final encoding is closely
connected to a generalized Church encoding [22] for the GADT IR h t (The
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category-theoretical treatment in the paper [22] assumes a number of implicit
type isomorphisms, which have to be worked out to connect tagless final and
generalized Church encodings.) However, with the Lam constructor, the GADT
IR h t is not covariant and is out of scope of Johann and Ghani [22]. Weirich
[43, 45] has described early encodings, of some GADTs, in System F and System
F,.

4 Real fun

The attraction of the typed tagless final approach is in its applications beyond
the embedding of the simply typed lambda calculus. This section gives a taste
of these fun applications: extensibility as in adding more evaluation strategies
including call-by-need, §4.4; embedding of languages with more interesting type
systems such as effect typing, §4.2, and of the linear lambda calculus, §4.3;
embedded language transformations like the optimal continuation-passing—style
(CPS) transform, §4.5, and the type-directed partial evaluation, §4.6. Save for
typed formatting §4.2, we will give only a brief overview pointing to the well-
commented online code for further details.

4.1 Typed compilation

We start by revisiting the de-serialization problem described in §2.3: the problem
becomes much more frustrating, exhilarating, time consuming and addictive in
the general case of higher-order typed embedded languages. The problem is to
read an embedded language expression from a file, parse it and ‘compile’ it; the
result should be the same as if we entered the expression as its representing
Haskell code, compiled and ran the code. In either case, the result fits for any
existing and future interpreter of the embedded language. The aim is to parse
an expression only once and interpret it many times; parsing errors should be
reported once, before any interpretation is attempted. If the embedded language
is typed, we not only have to parse embedded terms but also type check them.
We no longer can rely on the Haskell compiler for type checking, type inference,
and type error reporting. Our goal is still to type check an expression once,
during de-serialization, and interpret the result many times.

Since our type checker has to represent types and reason about type equality,
we first develop type representations, comparison and the type safe cast, see the
file Typ.hs. We regard the language of types, too, as a typed, first-order object
language, which we embed in Haskell in the typed tagless final style and for
which we solve the de-serialization problem. The file Typ.hs is the tagless final
version of the standard Data.Typeable, implemented however above-the-board,
with no internal GHC operations, no questionable extensions, or even a hint of
unsafe operations.

The type checker itself is in the file TypeCheck.hs. The code is quite similar
to Baars and Swierstra’s “Typing Dynamic Typing” [4] . The main difference
is open interpretation: the result of our type checking is interpretable with any
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existing or future interpreter of the embedded language. Furthermore, our code
is written to expose more properties of the type checker for verification by the
Haskell type checker; for example, if we successfully de-serialized a term in the
empty initial environment, the result is the assuredly closed final term. In the
initial approach, Weirich wrote a similar type checker [44] that produces initial
encodings of embedded terms and extensively relies on GADTs.

4.2 Typed formatting

We turn to the embedding of languages with interesting type systems. This
section describes the language of formatting patterns and its two interpreters,
sprintf for formatted printing and sscanf for parsing. To ensure that the formatted
IO is type-safe, that is, the types and the number of arguments to sprintf and
sscanf functions match the formatting pattern, the language of patterns has in
essence a type-and-effect system.

The typed formatting problem is to write type-safe versions of the familiar
C functions printf and scanf. (Formatted IO existed already in FORTRAN.)
The polyvariadic function sprintf should take the formatting specification (the
formatting pattern) and the values to format, and return the formatted string.
The types and the number of sprintf’s arguments have to match the formatting
specification. The typed sscanf takes the input string, the format specification
and the consumer function. It parses data from the string according to the
formatting specification, passing them to the consumer. The number and the
types of the arguments to the consumer function have to match the formatting
specification. Since parsing is necessarily partial, sscanf should return the result
of the consumer function in the Maybe monad. Here are a few examples of
formatting and parsing; the comment underneath an expression shows its result:

tpl = sprintf $ lit "Hello_world”

—— "Hello world”

tsl = sscanf "Hello_world” (lit "Hello_world”) ()
—— Just ()

tp2 = sprintf (lit "Hello.” " lit "world” ~ char) 'V

—— "Hello world!”

ts2 = sscanf "Hello_world!” (lit "Hello.” " lit "world” ~ char) id
—— Just I’

A formatting specification is built by connecting the primitive specifications
lit "string ", int, and char with (*). Here is a more elaborate example demon-
strating that sprintf and sscanf may use exactly the same formatting specification,
which is a first-class value, fmt3

fmt3 () = lit "The_value_of.” * char ~ lit ".is." " int
tp3 = sprintf (fmt3 ()) 'x" 3
—— "The value of x is 3"
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ts3 = sscanf " The.value_of x.is 3" (fmt3 ()) (\¢c i — (c,i))
—— Just ('x",3)

(The () in the fmt3 definition keeps the type of fmt3 polymorphic and avoids the
monomorphism restriction.) The formatting specification is typed: whereas

sprintf  $ lit "Hello_world”
has the type String,
sprintf  $ lit "The_value_of.” ™ char " lit ".is." " int

has the type Char — Int — String.

The typed sprintf problem has been investigated extensively: the first solu-
tion was shown by Danvy [8], with more proposed by Hinze [18] and Asai [1].
The typed sscanf problem received significantly less attention, if any. The imple-
mentation of the typed sprintf and sscanf sharing the same formatting pattern
specification is new.

We solve the problem by regarding the format specification as a domain-
specific language and embedding it in Haskell 2010, see the file PrintScanF.hs.
The language has to be typed. We get the idea of the type system from the types
of sample sprintf and sscanf expressions:

sprintf  (lit  "xxx") : String
sprintf int : Int — String
sprintf  (char " int)  : Char — Int — String

sscanf inp (lit "xxx') = x — Maybe x
sscanf inp int : (Int — x) — Maybe x
sscanf inp (char " int) = (Char — Int — x) — Maybe x

The occurrence of int in the formatting pattern matches Int  — in the types of
the sprintf and sscanf expressions. A formatting specification hence corresponds
to a type function, or a functor [18]. The composition of the specifications corre-
sponds to the composition of the functors. One may view the specification int as
having an “effect” of formatting or parsing an integer; the effect is reflected in
expression’s type. The connection between typed formatting and effects (specif-
ically, delimited control effects) has been well explained in [1].

Until recently Haskell has not directly supported type functions. Therefore
Hinze [18] represented functors indirectly, by associating them with ordinary
types, their ‘codes’:

AT T data Id

AT — T data From x

AT f1(far) data C f1 2
The application of a functor is likewise indirect, requiring the interpretation
of functor’s code; the interpreter was written as a multi-parameter type class
with functional dependencies. We show a more direct representation of functors,
expressible already in Haskell 2010, taking inspiration from the well-known en-
coding of linear lambda terms in Prolog. Uninstantiated logic variables are used
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for lambda-bound variables; a lambda-abstraction is represented as a pair of the
logic variable and abstraction’s body. Substitution for a lambda-bound variable
is done by unifying the corresponding logic variable with the replacement term.
The same trick applies to Haskell bearing in mind that type variables act like
logic variables, with the type checker doing unifications. Assuming a binary type
constructor F, we represent the identity functor by a Haskell term of type F t t
and the functor A7. Int — 7 by a term of type F t (Int — t). The composition
operation then is represented by the term of type Fbc — Fa b — Fa c. We
come to the following typed tagless final embedding of the language of formatting
patterns:

class FormattingSpec repr where
lit = String — repr a a
int =z repr a (Int — a)
char : repr a (Char — a)
(") =repr bc —repr ab —repr ac
infixl 57
The typed sprintf interprets the formatting specification as a function that
receives the values to format and produces a string. The existing solutions to
the typed sprintf problem can be written, it turns out, as such interpreters, or
the instances of FormattingSpec. We pick Asai’s [1] accumulator-less variant of
Danvy’s functional unparsing, which corresponds to interpreting repr as FPr:

newtype FPr a b = FPr ((String — a) — b)

The type on the right-hand-side should look familiar, reminding us of the right
Kan extension explained in Hinze’s course at the school. .

instance FormattingSpec FPr where
lit str =FPr$ \k — kstr
int = FPr$ \k — \x — k (show x)
char  =FPr$ \k — \x — k [X]
(FPra) ® (FPrb) =FPr$ \k —a (\sa — b (\sb — k (sa H sb)))

sprintf = FPr String b — b
sprintf  (FPr fmt) = fmt id

The signature of sprintf demonstrates the application of the functor associated
with fmt to String. The resulting type becomes the type of sprintf fmt.
The interpreter for sscanf is somewhat dual:

newtype FSc a b = FSc (String — b — Maybe (a,String))

instance FormattingSpec FSc where
lit str = ..
char  =FSc$ \inp f — case inp of
(c:inp) — Just (f c,inp)
— Nothing
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int = ...
(FSca) * (FScb) = FSc $ \inp f —
maybe Nothing (\(vb,inp’) — b inp’ vb) $ ainp f

sscanf = String — FSca b — b — Maybe a
sscanf inp (FSc fmt) f = fmap fst $ fmt inp f

We have seen sample applications of these sprintf and sscanf at the beginning of
the section. See the complete code PrintScanF.hs for detail and more examples.

We may write other interpreters of FormattingSpec, for example, to store the
formatting result to or take the input string from a file or a communication
channel, or to convert the formatting pattern to a C-style formatting string.
We may also enrich our language with primitive specifications for field width,
precision, padding, etc. — without breaking the existing interpreters.

4.3 Linear and affine lambda-calculi

The second example of a typed tagless final embedding of a language with a non-
Hindley-Milner type system deals with the typed linear lambda calculus, which
requires each bound variable be referenced exactly once in an abstraction’s body.
Haskell will statically reject as ill-typed the attempts to represent abstractions
whose bound variable is referenced several times — or, as in the K combinator,
never.

We build on the embedding of simply typed lambda calculus with de Bruijn
indices, §3.3. Recall that an object term of the type t was represented as a value
of the type Symantics repr = repr h t where h stands for the type environment
assigning types to free variables (‘hypotheses’) of a term. Linear lambda cal-
culus regards bound variables as representing resources; referencing a variable
consumes the resource. We use the type environment for tracking the state of
resources: available or consumed. The type environment becomes ‘type state’.
The file LinearLC.hs defines the embedded calculus and its two interpreters, to
evaluate and to show linear lambda terms. The code demonstrates extensions
relaxing linearity.

4.4 Call-by-name, call-by-value, call-by-need

Among the different interpreters of the embedded language may also be differ-
ent evaluators. Each evaluator maps a term to its Haskell value, each evaluator
is type-preserving, neither gets stuck. The evaluators may differ in evaluation
strategies. Evaluating the same term with different strategies helps us compare
them and assess their efficiency. (If the object language has effects, different
strategies differ not only in efficiency but also in results.) Our evaluators so
far have been call-by-name, inheriting the evaluation strategy from the meta-
language. We now show call-by-value and call-by-need (or, lazy) evaluators. The
latter does fit within the typed tagless final framework. The three evaluators are
quite alike, sharing most of the code. The only difference among them is the
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interpretation for lam, the denotation assigned to object language abstractions.
For that reason, lam is moved to a separate class

class SymLam repr where
lam = (repr a — repr b) — repr (repr a — repr b)

Evaluators instantiate repr to be S | m:
newtype S I ma =S {unS :ma } deriving (Monad, MonadlO)

where m is a MonadlO and | is the label for the evaluation strategy: Name,
Value, or Lazy. We use 10 solely to print the evaluation trace, to clearly see the
differences in the evaluation order. The three instances of SymLam, for the three
evaluation strategies, are as follows:

instance Monad m = SymLam (S Name m) where
lam body = return (\x — body x)

instance Monad m = SymLam (S Value m) where
lam body = return (\x — (body o return) =< x)

instance MonadlO m = SymLam (S Lazy m) where
lam body = return (\x — body =<< share x)

The call-by-name lam substitutes its argument expression, unevaluated, into
the body. The call-by-value lam evaluates the argument expression first and
substitutes its result. The call-by-need lam substitutes the memoized argument
expression: the expression will be evaluated on first reference and the result re-
membered for further references. The memoization is performed by the function
share : MonadlO m == m a — m (m a), similar to the one described by Fischer
et al. [12]. The complete code with several examples demonstrating the differ-
ence in efficiency among the strategies is in the file CBAny.hs. (There is also a
file with the Haskell 2010 version of the code.)

4.5 Typed ordinary and one-pass CPS transforms

We turn from evaluators and pretty-printers to transformers. Transformers take
an embedded language term and return another term, that is, the Haskell value
representing the term in the typed tagless final approach. We must be able to
interpret the result multiple times, with any existing and future interpreter of
the language. In particular, the result can be transformed again.

The result of transforming a well-typed term ought to be well-typed. The
typed tagless final approach clearly fulfills that requirement: after all, only well-
typed terms are expressible. We impose therefore a more stringent requirement
that the transformation be total. In particular, the fact that the transformation
handles all cases of source terms must be patently, syntactically clear. The com-
plete coverage must be so clear that the metalanguage compiler should be able
to see that, without the aid of extra tools. The new requirement is also easy
to fulfill in the typed tagless final approach: term transformers are expressed as
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interpreters (after all, interpretation is all we can do with embedded terms in
the final approach) and typed tagless final interpreters do not get stuck.

We picked as an example typed call-by-value Continuation Passing Style
(CPS) transform, which is profound, fascinating, and complex — especially for
a typed higher-order language since the source and the result of the transform
have different types and the transformation on types does not commute with the
arrow type constructor. Our transformer is typing- (rather than type-) preserving
and is patently total.

The ordinary (Fischer or Plotkin) CPS transform introduces many admin-
istrative redices, which make the result too hard to read. Danvy and Filinski
[10] proposed a one-pass CPS transform, which relies on the metalanguage to
get rid of the administrative redices. (See Washburn and Weirich [42] for the
Haskell implementation. Like the original one-pass transform, it deals with un-
typed lambda-calculus.) The one-pass CPS transform can be regarded as an
example of normalization-by-evaluation.

The complete, commented source code for the ordinary and one-pass typed
transforms is in the file CPS.hs. The code has many examples, in particular,
demonstrating that a CPS-transformed term can be interpreted by the CPS
transformer again, yielding 2-CPS terms, etc. CPS transformers are composable,
as expected. The initial approach to typed CPS is described in [15].

4.6 Type-directed partial evaluation

We started the fun section with a producer of embedded language terms, the
de-serializer /type-checker in §4.1. We end on a similar note, with a producer
of object terms of type t from Haskell values of type t. The type of the pro-
ducer makes it look like an inverse of an object language evaluator, which is
bewildering. The magic is explained in detail in Danvy’s lecture notes on type-
directed partial evaluation [9] and, in brief, in the comments in the source code.
It helps that the type t of the values to un-evaluate must be polymorphic,
and that the un-evaluator, called reify, is a family of functions, indexed by t.
For example, for the type a— a where a is any base type, the reify function
has the type Symantics repr = (a — a) — repr (a — a). It converts a Haskell
a— a function (which is an opaque value that we cannot print) to a Haskell
value repr (a— a) representing an embedded language term, which we can print.
Curtly, reify converts from a denotation to notation, hence the name.

Danvy’s original 1996 presentation of the technique, expounded in [9], used
an untyped target language represented as an algebraic data type. Type preser-
vation was not apparent and had to be proved. The typed tagless final presenta-
tion makes type preservation patent, verified by the Haskell type checker. In the
tagless-final presentation, reification and its dual reflection appear particularly
symmetric, elegant and insightful.

The file TDPE.hs contains the source code and the comments explaining the
derivation of reify and reflect. The imported ToTDPE.hs defines a few sample
functions to reify. Compiling this module makes for a nicer example, demon-
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strating that we can reify and hence pretty-print Haskell functions that have
been compiled into machine code and for which we have no source.

5 Conclusions and Lessons

It has been argued and repeatedly agreed that domain-specific languages (DSLs)
are well-worth dedicating several conference series to. Embedding DSLs in a host
language is a good way of implementing them [20]. Typed tagless final approach
is a good way of embedding typed DSLs and writing their interpreters. The in-
terpreters are patently type preserving, efficient, and do not get stuck. The final
approach can express pattern-matching and seemingly non-compositional pro-
cessing. The strength of the final approach is in its extensibility, letting the pro-
grammer add new interpreters for the language and new forms to the language,
without breaking, or even re-compiling, the existing code. The final approach
lets us define a DSL and make use of it incrementally.

We have learned to appreciate type-constructor polymorphism as a mecha-
nism for translucent abstractions. The parameterization over the type construc-
tor repr lets just enough information out, to type-check an embedded term,
but hides the representation details, thus permitting many and varied interpre-
tations. We have confirmed the old insight from denotational semantics that
making context explicit turns seemingly non-compositional operations compo-
sitional. We have also learned that the typed tagless final approach often leads
to simpler-typed DSL embeddings, requiring a less sophisticated type system of
the metalanguage, compared to the initial approach.

The typed tagless final approach, compiled and polished in [6], has been
further illustrated, developed, exposed and refined in a number of recent pub-
lications [2, 3, 19, 26, 39]. The rich history of the approach has been reviewed
in detail in [6]. The very similar insight has been independently developed in
linguistics under the name of Abstract Categorial Grammars (ACG) [34].
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