Structuring Depth-First Search Algorithms in Haskell

David J. King

Department of Computing Science
University of Glasgow
Glasgow G12 8QQ, UK

gnik@dcs.gla.ac.uk

Abstract

Depth-first search is the key to a wide variety of graph al-
gorithms. In this paper we express depth-first search in a
lazy functional language, obtaining a linear-time implemen-
tation. Unlike traditional imperative presentations, we use
the structuring methods of functional languages to construct
algorithms from individual reusable components. This style
of algorithm construction turns out to be quite amenable to
formal proof, which we exemplify through a calculational-
style proof of a far from obvious strongly-connected compo-
nents algorithm.

1 Introduction

The importance of depth-first search (DFS) for graph al-
gorithms was established twenty years ago by Tarjan (1972)
and Hopcroft and Tarjan (1973) in their seminal work. They
demonstrated how depth-first search could be used to con-
struct a variety of efficient graph algorithms. In practice,
this is done by embedding code-fragments necessary for a
particular algorithm into a DF'S procedure skeleton in order
to compute relevant information while the search proceeds.
While this is quite elegant it has a number of drawbacks.
Firstly, the DFS code becomes intertwined with the code for
the particular algorithm, resulting in monolithic programs.
The code is not built by re-use, and there is no separation
between logically distinct phases. Secondly, in order to rea-
son about such DFS algorithms we have to reason about a
dynamic process—what happens and when—and such rea-
soning is complex.

Occasionally, the depth-first forestis introduced in order
to provide a static value to aid reasoning. We build on this
idea. If having an explicit depth-first forest is good for rea-
soning then, so long as the overheads are not unacceptable,
it is good for programming. In this paper, we present a
wide variety of DFS algorithms as combinations of standard
components, passing explicit intermediate values from one
to the other. The result is quite different from traditional
presentations of these algorithms, and we obtain a greater
degree of modularity than is usually seen.

To appear in The 22nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL’95), January 1995.

John Launchbury

Department of Computer Science and Engineering

Oregon Graduate Institute of Science & Technology

Beaverton, Oregon 97006-1999, USA
jl@cse.ogi.edu

Of course, the idea of splitting algorithms into many
separate phases connected by intermediate data structures
is not new. To some extent it occurs in all programming
paradigms, and is especially common in functional languages.
What is new, however, is applying the idea to graph algo-
rithms. The difficulty is always to find a sufficiently flexible
intermediate value which allows a wide variety of algorithms
to be expressed in terms of it.

There is another challenge here, however. Graph algo-
rithms have long been poorly handled in functional lan-
guages. It has not been at all clear how to express such
algorithms without using side effects to achieve efficiency,
and lazy languages by their nature have to prohibit side-
effects. So, for example, many texts provide implementa-
tions of search algorithms which are quadratic in the size of
the graph (see Paulson (1991), Holyer (1991), or Harrison
(1993)), compared with the standard linear implementations
given for imperative languages (see Manber (1989), or Cor-
man et al. (1990)).

In our work there is one place where we do need to use
destructive update in order to gain the same complexity
(within a constant factor) as imperative graph algorithms.
We make use of recent advances in lazy functional languages
which use monads to provide updatable state, as imple-
mented within the Glasgow Haskell compiler. The compiler
provides extensions to the language Haskell (Hudak et al.
1992) providing updatable arrays (Launchbury and Peyton
Jones 1994), and allows these state-based actions to be en-
capsulated so that their external behaviour is purely func-
tional. Consequently we obtain linear algorithms and yet
retain the ability to perform purely functional reasoning on
all but one fixed and reusable component.

Most of the methods in this paper apply equally to strict
and lazy languages. The exception is in the case when DFS
is being used for a true search rather than for a complete
traversal of the graph. In this case, the co-routining be-
haviour of lazy evaluation allows the search to abort early
without needing to add additional mechanisms like excep-
tions. We give an example of this in Section 6.

In summary the main contributions of this paper are:

o We provide implementations of DFS algorithms in lin-
ear time in Haskell. We are careful to provide real code
throughout, and avoid resorting to pseudo-code.

e We construct the algorithms using reusable compo-
nents, providing a greater level of modularity than is
typical in other presentations.

o We provide examples of correctness proofs. Again,
these are quite different from traditional proofs, largely
because they are not based upon reasoning about the
dynamic process of DFS, but rather about a static
value.

This paper is organised as follows. Section 2 introduces
a data type for graphs and some standard functions which
will be used in subsequent algorithms. Section 3 introduces
depth-first search. Section 4 describes the Haskell imple-
mentation of several algorithms that use depth-first search
which includes: topological sorting, strongly connected com-
ponents, as well as others. Section 5 describes the linear
implementation of depth-first search in Haskell. Section 6
describes some more complex algorithms that use depth-first
search, including edge classification and biconnected compo-
nents. Section 7 discusses the complexity of the algorithms.
Finally, Section 8 discusses related work.

2 Representing graphs

In order to meet our goal of not resorting to pseudo-code,
we need to begin with some boring details. There are many
ways to represent (directed) graphs. For our purposes, we
use an array of adjacency lists. The array is indexed by
vertices, and each component of the array is a list of those
vertices reachable along a single edge. This adjacency struc-
ture is linear in the size of the graph, that is, the sum of
the number of vertices and the number of edges. By us-
ing an indexed structure we are able to be explicit about
the sharing that occurs in the graph. Another alternative
would have been to use a recursive tree structure and rely
on cycles within the heap. However, the sharing of nodes in
the graph would then be implicit making a number of tasks
harder.

So we will just use a standard Haskell immutable array.
This gives constant time access (but not update—these ar-
rays may be shared arbitrarily).

We can use the same mechanism to represent undirected
graphs as well, simply by ensuring that we have edges in
both directions. An undirected graph is a symmetric di-
rected graph. We could also represent multi-edged graphs
by a simple extension, but will not consider them here.

Graphs, therefore, may be thought of as a table indexed
by vertices.

type Table a = Array Vertex a
type Graph Table [Vertex]

The type Vertex may be any type belonging to the Haskell
index class Ix, which includes Int, Char, tuples of indices,
and more. Haskell arrays come with indexing (!) and the
functions indices (returning alist of the indices) and bounds
(returning a pair of the least and greatest indices). We pro-
vide vertices as an alternative for indices, which returns
a list of all the vertices in a graph.

vertices :: Graph -> [Vertex]
vertices = indices

Sometimes 1t 1s convenient to extract a list of edges from
the graph, this is done with the function edges. An edge is
a pair of vertices.

type Edge = (Vertex,Vertex)

edges :: Graph -> [Edgel
edges g = [(v,w) | v <~ vertices g, w <- g!v]

To manipulate tables (including graphs) we provide a generic
function mapT which applies its function argument to every
table index/entry pair, and builds a new table.

mapT :: (Vertex -> a -> b) -> Table a -> Table b
mapT £ t = array (bounds t)
[(v, £ v (t£'v)) | v<-indices t]

The Haskell function array takes low and high bounds and
a list of index/value pairs', and builds the corresponding
array in linear time. Because we are using an array-based
implementation we often need to provide a pair of vertices
as array bounds. So for convenience we define,

type Bounds = (Vertex,Vertex)
Using mapT we could define,

outdegree :: Graph -> Table Int
outdegree g = mapT numEdges g
where numEdges v ws = length ws

which builds a table detailing the number of edges leaving
each vertex.
To build up a graph from a list of edges we define buildgG.

buildG :: Bounds -> [Edge] -> Graph
buildG bnds es = accumArray (flip (:)) [] bnds es

Like array the Haskell function accumArray builds an ar-
ray from a list of index/value pairs, with the difference that
accumArray accepts possibly many values for each indexed
location, which are combined using the function provided as
accumArray’s first argument. Here we simply build lists of
all the values associated with each index. Again, construct-
ing the array takes linear time with respect to the length of
the adjacency list. So in linear time, we can convert a graph
defined in terms of edges to the vertex table based graph.
For example,

graph = buildG (’a’,’j’)
[Ca’,’57),Ca?,7g"), (b7,28%),
(b2,7a%), Cc’ R0, e, ve),
(e?,7§7), e, h), (e, 0d),
C£7,°1),0g,7£7), g7, b7)]

will produce the array representation for the graph shown
in Figure 1.

Then, to find the immediate successors to ’e’, say, we
compute:

graph ! ’e’

which returns [’d’, ’h’, ’j’].

Combining the functions edges and buildG gives us a
way to reverse all the edges in a graph giving the transpose
of the graph:

transposeG :: Graph -> Graph
transposeG g = buildG (bounds g) (reverseE g)

reverseE :: Graph -> [Edgel
reverseE g = [(w,v) | (v,w) <- edges gl

We extract the edges from the original graph, reverse their
direction, and rebuild a graph with the new edges. Then,
for example,

1Actually Haskell uses the Assoc type, which is equivalent, but
introduces an unnecessary new notation.

ANV
VAV

Figure 1: A directed graph.

(transposeG graph) ! ’e’

will return [’¢’]. Now by using transposeG we can imme-
diately define an indegree table for vertices:

indegree :: Graph -> Table Int
indegree g = outdegree (transposeG g)

This example gives a first feel for the approach we advocate
in this paper. Rather than defining indegree from scratch
by, for example, building an array incrementally as we tra-
verse the graph, we simply reuse previously defined func-
tions, combining them in a fresh way. The result is shorter
and clearer, though potentially more expensive (an inter-
mediate array is constructed). There are two things to say
about this additional cost. Firstly, the additional cost only
introduces a constant factor into the complexity measure, so
the essence of the algorithm is preserved. Secondly, recent
work in the automatic removal of intermediate structures
(deforestation) comes a long way to removing this problem.

3 Depth-first search

The traditional view of depth-first search is as a process
which may loosely be described as follows. Initially, all the
vertices of the graph are deemed “unvisited”, so we choose
one and explore an edge leading to a new vertex. Now we
start at this vertex and explore an edge leading to another
new vertex. We continue in this fashion until we reach a
vertex which has no edges leading to unvisited vertices. At
this point we backtrack, and continue from the latest vertex
which does lead to new unvisited vertices.

Eventually we will reach a point where every vertex reach-
able from the initial vertex has been visited. If there are any
unvisited vertices left, we choose one and begin the search
again, until finally every vertex has been visited once, and
every edge has been examined.

In this paper we will concentrate on depth first search
as a specification for a value, namely the spanning forest
defined by a depth-first traversal of a graph. Such a for-
est for the graph in Figure 1 is depicted in Figure 2. The
(solid) tree edges are those graph edges which lead to un-
visited vertices. The remaining graph edges are also shown,
but in dashed lines. These edges are classified according
to their relationship with the tree, namely, forward edges
(which connect ancestors in the tree to descendants), back
edges (the reverse), and cross edges (which connect nodes
across the forest, but always from right to left). This stan-
dard classification is useful for thinking about a number of

_>a c

/// \ \\
B \
/ \

J

g
/ \\ F
'// \ \C___,e \
b !
/7
7
// i ¥

ile__-0C" d h

Figure 2: A depth-first forest of the graph.

algorithms and later, in Section 6, we give an algorithm for
classifying edges in this way.

3.1 Specification of depth-first search

As the approach to DFS algorithms which we explore in
this paper is to manipulate the depth-first forest explicitly,
the first step, therefore, is to construct the depth-first forest
from a graph. To do this we need an appropriate definition
of trees and forests.

A forest 1s a list of trees, and a tree is a node containing
some value, together with a forest of sub-trees. Both trees
and forests are polymorphic in the type of data they may
contain.

data Tree a = Node a (Forest a)
type Forest a = [Tree al

A depth-first search of a graph takes a graph and an initial
ordering of vertices. All graph vertices in the initial ordering
will be in the returned forest.

dfs :: Graph -> [Vertex] -> Forest Vertex

This function is the pivot of this paper. For now we re-
strict ourselves to considering its properties, and will leave
its Haskell implementation until Section 5.

Sometimes the initial ordering of vertices is not impor-
tant. When this is the case we use the related function

dff :: Graph -> Forest Vertex
dff g = dfs g (vertices g)

What are the properties of depth-first forests? They can be
completely characterised by the following two conditions.

(i) The depth-first forest of a graph is a spanning sub-
graph, that is, it has the same vertex set, but the edge
set is a subset of the graph edge set.

(ii) The graph contains no left-right cross-edges with re-
spect to the forest.

Later on in the paper, we find it convenient to talk in
terms of paths rather than single edges: a path being made
up of zero or more edges joined end to end. We will write
v —g w to mean that there is a path from v to w in the
graph g. Where there will be no confusion we will drop the
graph subscript.

The ban on left-right cross edges translates into paths.
At the top level, it implies that there is no path from any

vertex in one tree to any vertex in a tree that occurs later
in the forest. Thus?,

Property 1
If (ts++us=dff g), then Vo €ts . Yw €us . v -5 w a

Deeper within each tree of the forest, there can be paths
which traverse a tree from left to right, but the absence of
any graph paths which cross the tree structure from left to
right implies that the path has to follow the tree structure.
That is:

Property 2
If the tree (Node x (ts++us)) is a subtree occurring any-
where within dff g, then

VvEts . Vw€us . v —ww=v—=zx

[}

So the only way to get from v to w is via (an ancestor of)
z, the point at which the forests that contain v and w are
combined (otherwise there would be a left-right cross edge).
Thus there is also a path from » to z.

The last property we pick out focusses on dfs, and pro-
vides a relationship between the initial order, and the struc-
ture of the forest”.

Property 3

Liet @ and b be any two vertices. Write — for paths in
the graph g, and < for the ordering induced by the list of
vertices vs. Then

dtcdfs gvs.a€tNbEL
& de.c—a AN c—bA
Vd.d—a VvV d—b = c<d)

This Property says that:

(=) given two vertices that occur within a single depth-first
tree (taken from the forest), then there is a predecessor
of both (with respect to —) which occurs earlier in
vs than any other predecessor of either. (If this were
not the case, then a and b would end up in different
trees).

(<) if the earliest predecessor of either a or b is a prede-
cessor of them both, then they will end up in the same
tree (rooted by this predecessor).

These three properties are certainly true of DFS span-
ning forests, but we make no claim about their completeness.
There are other useful properties not derivable from these.

2We use the notation ts++4us to indicate any division of the list of
trees in the forest, such that the order of the trees is preserved. Note
that either ts or us could be empty. Also, we use € to indicate forest
membership and not purely for set membership.

3We further overload the € notation, to mean that both a and &
occur within the tree ¢.

4 Depth-first search algorithms

Algorithm 1. Depth-first search numbering

Having specified DFS (at least partly) we turn to consider
how it may be used. The first algorithm is straightforward.
We wish to assign to each vertex a number which indicates
where that vertex came in the search. A number of other
algorithms make use of this depth-first search number, in-
cluding the biconnected components algorithm that appears
later, for example.

We can express depth-first ordering of a graph g most
simply by flattening the depth-first forest in preorder. Pre-
order on trees and forests places ancestors before descen-
dants and left subtrees before right subtrees®:

preorder :: Tree a -> [a]
preorder (Node a ts) = [a] ++ preorderF ts
preorderF :: Forest a -> [a]

preorderF ts = concat (map preorder ts)
Now obtaining a list of vertices in depth-first order is easy:

prelrd :: Graph -> [Vertex]
preOrd g = preorderF (dff g)

However, it is often convenient to translate such an ordered
list into actual numbers. For this we could use the function
tabulate:

tabulate :: Bounds -> [Vertex] -> Table Int
tabulate bnds vs = array bnds (zip vs [1..])

which zips the vertices together with the positive integers
1, 2, 3,..., and (in linear time) builds an array of these
numbers, indexed by the vertices.

We can package these up into a function as follows:

preArr :: Bounds -> Forest Vertex -> Table Int
preArr bnds ts = tabulate bnds (preorderF ts)

(it turns out to be convenient for later algorithms if such
functions take the depth-first forest as an argument, rather
than construct the forest themselves.)

Algorithm 2. Topological sorting

The dual to preorder is postorder, and unsurprisingly this
turns out to be useful in its own right. Postorder places
descendants before ancestors and left subtrees before right
subtrees:

postorder :: Tree a -> [a]
postorder (Node a ts) = postorderF ts ++ [a]

postorderF :: Forest a -> [a]
postorderF ts = concat (map postorder ts)

So, like with preorder, we define,

postOrd :: Graph -> [Vertex]
postOrd g = postorderF (dff g)

4The use of repeated appends (++) caused by concat introduces
an extra logarithmic factor here, but this is easily removed using
standard transformations.

The lack of left-right cross edges in DFS forests leads to
a pleasant property when a DFS forest is flattened in pos-
torder. To express this we need a definition.

Definition
A linear ordering < on vertices i1s a post-ordering with re-
spect to a graph g exactly when,

v<w AN v—w = Ju.vé—u AN wlu

[}

(where v +— u means v — uw and u — v). In words, this
definition states that, if from some vertex v there is a path
to a vertex later in the ordering, then there is also a vertex
u which occurs no earlier than w and which, like w is also
reachable by a path from v. In addition, however, there is
also a path from u to v.

This property is so-named because post order flattening
of depth first forests have this property.

Theorem 4
If ve=postOrd g, then the order in which the vertices appear
in vs is a post-ordering with respect to g.

Proof

If v comes before w in a post order flattening of a forest,
then either w is an ancestor of v, or w is to the right of v
in the forest. In the first case, take w as u. For the second,
note that as v — w, by Property 1, v and w cannot be in
different trees of the forest. Then by Property 2, the lowest
common ancestor of v and w will do. a

We can apply all this to topological sorting. A topologi-
cal sort is an arrangement of the vertices of a directed acyclic
graph into a linear sequence vy, ..., v, such that there are
no edges from v; to v; where ¢ <j. This problem arises
quite frequently, where a set of tasks need to be scheduled,
such that every task can only be performed after the tasks
it depends on are performed.

We define,

topSort :: Graph -> [Vertex]
topSort g = reverse (postOrd g)

Why is this correct? If w comes before v in the result of
topSort g, then v comes before w in the result of postOrd g.
Thus, by Theorem 4, there exists a vertex u no earlier than
w which 1s in a cycle with v. But, by assumption, the graph
is acyclic, so no such path v — w exists.

Algorithm 3. Connected components

Two vertices in an undirected graph are connected if there
is a path from the one to the other. In a directed graph,
two vertices are connected if they would be connected in
the graph made by viewing each edge as undirected. Fi-
nally, with an undirected graph, each tree in the depth-first
spanning forest will contain exactly those vertices which con-
stitute a single component.

We can translate this directly into a program. The func-
tion components takes a graph and produces a forest, where
each tree represents a connected component.

components :: Graph -> Forest Vertex
components g = dff (undirected g)

where a graph is made undirected by:

undirected :: Graph -> Graph
undirected g = buildG (bounds g)
(edges g ++ reverseE g)

The undirected graph we actually search may have dupli-
cate edges, but this has no effect on the structure of the
components.

Algorithm 4. Strongly connected components

Two vertices in a directed graph are said to be strongly con-
nected if each is reachable from the other. A strongly con-
nected component is a maximal subgraph, where all the ver-
tices are strongly connected with each other. This problem
is well known to compiler writers as the dependency analysis
problem—separating procedures/functions into mutually re-
cursive groups. We implement the double depth-first search
algorithm of Kosaraju (unpublished), and Sharir (1981).

scc :: Graph -> Forest Vertex
scc g = dfs (transposeG g) (reverse (postOrd g))

The vertices of a graph are ordered using postOrd. The
reverse of this ordering is used as the initial vertex order
for a depth-first traversal on the transpose of the graph.
The result is a forest, where each tree constitutes a single
strongly connected component.

The algorithm is simply stated, but its correctness is not
at all obvious. However, it may be proved as follows.

Theorem 5
Let @ and b be any two vertices of g. Then

(Jtesccg.actAbet) & a+—b

Proof

The proof proceeds by calculation. We write gT for the
transpose of g. Paths — in g will be paths «— in g7T.
Further, let < be the post-ordering defined by postOrd g.
Then its reversal induces the ordering >. Now,

dtesccg.actAnbet
< { Definition of scc }
3t € dfs g* (reverse (postOrd g))
< { By Property 3 }
de.cé—a AN cé—bA
Vd.d«—a V d«—b = c>d)
& dc.a—c ANb—cA
Vd.a—d VvV b—d= d<c¢)

.a,bet

From here on we construct a loop of implications.

de.a—c AN b—cA
Vd.a—d VvV b—d = d<o)
= {Considerd=aandd=1% }
de.a—c AN a<c Ab—cAb<cA
Vd.a—d VvV b—d = d<o)
= { <is a post-ordering }
de.(Ge.a+—e A c<e)A
3f . be—=f AN <A
Vd.a—d VvV b—d = d<o)
= {e=cand f=cusing (Vd...) }
de.a+—c Abe—c
= { Transitivity }
a<—b

which gives us one direction. But to complete the loop:

a<—b

= { There is a latest vertex reachable from « or b }
a+—b Adc.(a—cV b—c)A
Vd.a—d VvV b—d = d<c¢)

= { Transitivity of — }
dc.a—c Ab—cA
Vd.a—d VvV b—d = d<c¢)

as required, and so the theorem is proved. a

To the best of our knowledge, this is the first calcula-
tional proof of this algorithm. Traditional proofs (see Cor-
man et al. (1990), for example) typically take many pages
of wordy argument. In contrast, because we are reusing an
earlier algorithm, we are able to reuse its properties also,
and so obtain a compact proof. Similarly, we believe that it
is because we are using the DFS forest as the basis of our
program that our proofs are simplified as they are proofs
about values rather than about processes.

A minor variation on this algorithm is to reverse the roles
of the original and transposed graphs:

scc’ :: Graph -> Forest Vertex
scc’ g = dfs g (reverse (postOrd (transposeG g)))

The advantage now is that not only does the result ex-
press the strongly connected components, but it is also a
valid depth-first forest for the original graph (rather than
for the transposed graph). This alternative works as the
strongly connected components in a graph are the same as
the strongly connected components in the transpose of the
graph.

5 Implementing depth-first search

In order to translate a graph into a depth-first spanning
tree we make use of a technique common in lazy functional
programming: generate then prune. Given a graph and a
list of vertices (a root set), we first generate a (potentially
infinite) forest consisting of all the vertices and edges in the
graph, and then prune this forest in order to remove repeats.
The choice of pruning pattern determines whether the forest
ends up being depth-first (traverse in a left-most, top-most
fashion) or breadth-first (top-most, left-most), or perhaps
some combination of the two.

5.1 Generating

We define a function generate which, given a graph g and a
vertex v builds a tree rooted at v containing all the vertices
in g reachable from v.

generate :: Graph -> Vertex -> Tree Vertex
generate g v = Node v (map (generate g) (g'v))

Unless g happens to be a tree anyway, the generated tree
will contain repeated subtrees. Further, if g is cyclic, the
generated tree will be infinite (though rational).

Of course, as the tree is generated on demand, only a
finite portion will be generated. The parts that prune dis-
cards will never be constructed.

5.2 Pruning

The goal of pruning the (infinite) forest is to discard sub-
trees whose roots have occurred previously. Thus we need to
maintain a set of vertices (traditionally called “marks”) of
those vertices to be discarded. The set-operations we require
are initialisation (the empty set), membership test, and ad-
dition of a singleton. While we are prepared to spend linear
time in generating the empty set (as it is only done once),
it is essential that the other operations may be performed
in constant time.

The easiest way to achieve this is to make use of state
transformers, and mimic the imperative technique of main-
taining an array of booleans, indexed by the set elements.
This is what we do. We provide an explanation of state-
transformers in the Appendix, but as they have already
been described in a number of papers (Moggi 1989, Wadler
1990, Peyton Jones and Wadler 1993, Launchbury 1993,
Launchbury and Peyton Jones 1994), and already been im-
plemented in more than one Haskell variant, we avoid clut-
tering the main text.

The implementation of vertex sets is easy:

type Set s = MutArr s Vertex Bool

mkEmpty :: Bounds -> ST s (Set s)
mkEmpty bnds = newArr bnds False

contains :: Set s —-> Vertex —-> ST s Bool
contains m v = readArr m v

include :: Set s -> Vertex -> ST s ()
include m v = writeArr m v True

Using these, we define prune as follows.

prune :: Bounds -> Forest Vertex -> Forest Vertex
prune bnds ts
= runST (mkEmpty bnds ‘thenST‘ \m ->
chop n ts)

The prune function begins by introducing a fresh state thread,
then generates an empty set within that thread and calls
chop. The final result of prune is the value generated by
chop, the final state being discarded.

chop::Set ¢ -> Forest Vertex-> ST s (Forest Vertex)
chop m [] = returnST []
chop m (Node v ts : us)
= contains m v ‘thenST‘ \visited ->
if visited then
chop m us

else
include m v ‘thenST‘ _ ->
chop nm ts ‘thenST* \as ->

chop m us ‘thenST* \bs ->
returnST ((Node v as) : bs)

When chopping a list of trees, the root of the first is exam-
ined. If it has occurred before, the whole tree is discarded.
If not, the vertex is added to the set represented by m, and
two further calls to chop are made in sequence.

The first, namely, chop m ts, prunes the forest of de-
scendants of v, adding all these to the set of marked ver-
tices. Once this is complete, the pruned subforest is named
as, and the remainder of the original forest is chopped. The

result of this is, in turn, named bs, and the resulting forest
is constructed from the two.

All this is done lazily, on demand. The state combina-
tors force the computation to follow a predetermined linear
sequence, but exactly where in that sequence the compu-
tation is, is determined by external demand. Thus if only
the top-most left-most vertex were demanded then that is
all that would be produced. On the other hand, if only the
final tree of the forest is demanded, then because the set
of marks is single-threaded, all the previous trees will be
produced. However, this is demanded by the very nature
of DFS anyway, so it is not as restrictive as it may at first
seem.

At this point one may wonder whether any benefit has
been gained by using a functional language. After all, the
code looks fairly imperative. To some extent such a com-
ment would be justified, but it is important to note that
this is the only place in the development that destructive
operations have to be used to gain efficiency. We have the
flexibility to gain the best of both worlds: where destruc-
tive update is vital we use it, where it is not vital we use
the powerful modularity options provided by lazy functional
languages.

5.3 DFS

The components of generate and prune are combined to pro-

vide the definition of DFS.
dfs g vs = prune (bounds g) (map (generate g) vs)

The argument vs is a list of vertices, so the generate func-
tion is mapped across this (having been given the graph g).
The resulting forest is pruned in a left-most top-most fashion
by prune.

If paying an extra logarithmic factor is acceptable, then
it is possible to dispense completely with the imperative
features used in prune, and to use an implementation of
sets based upon balanced trees, for example.

6 More algorithms

Algorithm 5. Classifying edges

We have already seen the value of classifying the graph edges
with respect to a given depth-first search. Here we codify
the idea by building subgraphs of the original containing all
the same vertices, but only a particular kind of edge.

Tree edges are easiest, these are just the edges that ap-
pear explicitly in the spanning forest. The other edges may
be distinguished by comparing preorder and/or postorder
numbers of the vertices of an edge. We can summarise the
situation in the following diagram:

preorder: Vererieeriieeeeennenn, W......

postorder: Vieeerieeiiieeeneeaenn W......

The above diagram expresses the relationship between
the four types of edge (tree edges (T), forward edges (F),
back edges (B), and cross edges (C)) and the preorder and
postorder numbers. Only back edges go from lower pos-
torder numbers to higher, whereas only cross edges go from
higher to lower in both orderings. Forward edges, which are
the composition of tree edges, cannot be distinguished from
tree edges by this means—both tree edges and forward edges
go from lower preorder numbers to higher (and conversely
in postorder)—but as we can already determine which are
tree edges there is no problem. The implementation of these
principles is now immediate and presented in Figure 3.

To classify an edge we generate the depth-first spanning
forest, and use this to produce preorder and postorder num-
bers. We then have all the information required to construct
the appropriate subgraph.

Algorithm 6. Finding reachable vertices

Finding all the vertices that are reachable from a single ver-
tex v demonstrates that the dfs doesn’t have to take all the
vertices as its second argument. Commencing a search at v
will construct a tree containing all of v’s reachable vertices.
We then flatten this with preorder to produce the desired
list.

reachable :: Graph -> Vertex -> [Vertex]
reachable g v = preorderF (dfs g [v])

One application of this algorithm is to test for the existence
of a path between two vertices:

path :: Graph -> Vertex -> Vertex -> Bool
path g v w = w ‘elem‘ (reachable g v)

The elem test is lazy: it returns True as soon as a match
is found. Thus the result of reachable is demanded lazily,
and so only produced lazily. As soon as the required ver-
tex 1s found the generation of the DFS forest ceases. Thus
dfs implements a true search and not merely a complete
traversal.

Algorithm 7. Biconnected components

We end by programming a more complex algorithm—finding
biconnected components. An undirected graph is biconnected
if the removal of any vertex leaves the remaining subgraph
connected. This has a bearing in the problem of reliabilityin
communication networks. For example, if you want to avoid
driving through a particular town, is there an alternative
route?

If a graph is not biconnected the vertices whose removal
disconnects the graph are known as articulation points. Lo-
cating articulation points allows a graph to be partitioned
into biconnected components (actually a partition of the
edges). In Figure 4 vertices that are articulation points are
marked with an asterisk. The naive, brute force method
requires O(V(V 4 E)) time (where the problem graph has
V vertices and E edges). A more efficient algorithm is de-
scribed by Tarjan (1972), where biconnected components are
found during the course of a depth-first search in O(V + E)
time. Here we apply the same theory as Tarjan, but express
it via explicit intermediate values.

Tarjan’s method is based on the following theorem:

tree :: Bounds -> Forest Vertex -> Graph
tree bnds ts = buildG bnds (concat (map flat ts))
where

flat (Node v ts) = [(v,w) | Node w us <- ts] ++ concat (map flat ts)

back :: Graph -> Table Int -> Graph
back g post = mapT select g

where select vws = [w | w <~ ws, post!v<post!w]

cross :: Graph -> Table Int -> Table Int -> Graph
cross g pre post = mapT select g

where select vws = [w | w <~ ws, post!v>post!w, pre!v>pre!w]

forward :: Graph -> Graph -> Table Int -> Graph
forward g tree pre = mapT select g

where select vws = [w | w <- ws, pre!v<pre!w] \\ tree!'v

Figure 3: Classification of graph edges.

d e* h

Figure 4: An undirected graph.

Theorem 6

Given a depth-first spanning forest of a graph, v is an ar-
ticulation point in the graph if and only if: (i) v is a root
with more than one child; or (ii) v is not a root, and for all
proper descendants w of v there are no edges to any proper
ancestors of v.

We apply this theorem by associating a low point number
with every vertex. The low point number of v is the smallest
DFS numbered vertex that can be reached by following zero
or more tree edges, and then along a single graph edge.

We calculate low point numbers by traversing the DFS
trees bottom-up, and associating each vertex with its low
point number. The function label (see Figure 6) annotates
a tree with both depth-first numbers and low-point numbers.
At any vertex, the low point number is the minimum of:

(i) the DFS number of the vertex;

(ii) the DFS numbers of the vertices reached by a single
edge; and

(ii) the low point numbers of the vertex’s descendants in
the tree.

For example, the result of running label on the DFS
spanning tree produced from the graph in Figure 4, gives
the annotated tree depicted in Figure 5.

A(1,1) < < _
/ A
N
N
_~>bu _ > (5,1 \\
g 7 / \
/ / / \
// €(3,2) // Js5) hs,1) \\
/ / \
I / I \ |
d42) 9(7,5) 1(9,1)

Figure 5: The depth-first forest for the undirected graph.

Dashed lines are the important back edges used for cal-
culating low points. Tree nodes are triples, for instance,
€(5,1), represents the triple (e, 5, 1), where 5 is the depth-
first number and 7 the low point number of vertex e.

Now that we have low points for vertices we can calculate
articulation points. By part (ii) of Theorem 6 if the depth-
first number of v is less than or equal to the low point of w
then v 1s an articulation point.

The function collect coalesces each DF'S tree into a bi-
connected tree, that is, a tree where the node elements are
biconnected components. At each node the DFS number is
compared with the low-point number of all the children. If
the child’s low-point number is strictly less than the node’s
DFS number, then the component involving that vertex is
not completed. On the other hand, if the node’s DFS num-
ber is less than or equal to the child’s low-point number,
then that component is completed once the node is included.
The function bicomps handles the special case of the root.
Finally, bce ties all the other functions together.

Coalescing the tree from Figure 5 will produce the fol-
lowing forest containing two trees.

While this algorithm is complex, again it is made up of
individual components whose correctness may (potentially
at least) be established independently of the other compo-
nents. This is quite unlike typical imperative presentations
where the bones of the recursive DFS procedure are filled
out with the other components of the algorithm, resulting
in a single monolithic procedure.

bce :: Graph -> Forest [Vertex]
bcc g = (concat . map bicomps .

where forest = dff g
dnum = preArr (bounds g) forest

label ::
label g dnum (Node v ts) = Node (v,dnum'v,1lv) us
where us = map (label g dnum) ts

lv = minimum ([dnum!v]++[dnum'w | w <- g'v]

map (label g dnum)) forest

Graph -> Table Int -> Tree Vertex -> Tree (Vertex,Int,Int)

++[1lu | Node (u,dw,lu) xs <- usl)

bicomps ::
bicomps (Node (v,dv,lv) ts)

Tree (Vertex,Int,Int) -> Forest [Vertex]

= [Node (v:vs) us | (1, Node vs us) <- map collect ts]

collect ::
collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs)

Tree (Vertex,Int,Int) -> (Int, Tree [Vertex])

where collected = map collect ts
vs = concat [ws | (lw, Node ws us) <- collected, lw<dv]
cs = concat [if lw<dv then us else [Node (v:ws) us]
| (lw, Node ws us) <- collected]
Figure 6: Biconnected components algorithm.
[a, b] [a, e, h, 1]
Seconds
[b7 d7 C] [67 f7 g] 30

Figure 7: The biconnected trees.

7 Analysis of depth-first search

7.1 Complexity

Models for complexity analysis of imperative languages have
been established for many years, and verified with respect to
reality across many implementations. Using these models it
is possible to show that traditional implementations of the
various DFS algorithms are linear in the size of the graph
(that is, run in O(V + E) time).

Corresponding models for lazy functional languages have
not been developed to the same level, and where they have
been developed there has not yet been the same extensive
verification. Using these models, (see for example Sands
(1993)) we believe our implementation of the DFS algo-
rithms to be linear, but because these models have not been
fully tested, we also ran empirical tests ourselves.

We took measurements on the strongly connected com-
ponents algorithm, which uses two depth-first searches. The
results of our experiment are in Figure 8. Timings were
taken on randomly generated graphs (with differing numbers
of vertices and edges) and are accurate to approximately 1%.

The results are quite clear. The plotted points clearly all
lie on a plane, indicating the linearity of the algorithm.

We were also curious as to the constant factor that we
are paying over an imperative language. We coded up Tar-
jan’s biconnected components algorithm in C, and compared
with our Haskell implementation. For the graphs we tested
Haskell was between 10 and 20 times slower than C. This

25
20
15
10

5000
4500

500
1000
1500 5499

00 3500

30
Vertices 4000 4500

5000

Figure 8 Measurements taken on the strongly connected
components algorithm.

was better than we expected as the Haskell implementation
is multi-pass whereas the C implementation was the mono-
lithic single-pass algorithm.

8 Related work

Kashiwagi and Wise (1991) also express their graph algo-
rithms in Haskell. They express a graph problem in terms
of a set of recursive equations, and the algorithm is the fixed
point of these equations. The graphs are represented by
lists, so the algorithms have poor complexity, but are suit-
able for parallel evaluation. Unfortunately, many of their
algorithm implementations are long and unreadable, giving
little insight into the structure of the problem. For example,
their strongly connected components algorithm is a page of
intricate Haskell.

Barth et al. (1991) describe M-structures in the paral-
lel functional language Id which are well suited for state
based computation. For instance, an M-structure array can
be used for holding marks to express whether a vertex has
been visited before or not during a traversal. The strength
of M-structures is that they are designed to support parallel
evaluation: their drawback is that referential transparency
is lost. With regard to depth-first search, Reif (1985) gives
strong evidence that it i1s inherently sequential; its computa-
tional complexity cannot be improved upon by parallel com-
putation. So while M-structures provide a valuable method
for general graph searching in parallel, they provide little
help for the particular case of depth-first search.

The Graph Exploration Language (GEL) of Erwig (1992)
provides explicit extensions to a lazy functional language.
These are exploration operators, which give a concise way of
expressing many graph algorithms. However, not all graph
problems can be expressed in terms of a given set of prede-
fined high-level operations, and it seems less than ideal to
add new language concepts for every new class of problem
that 1s tackled.

Burton and Yang (1990) experimented with multi-linked
structures. They use arrays which are implemented using
balanced trees to represent heaps. They give many exam-
ples of using multi-linked structures using heaps, one exam-
ple is an arbitrary depth-first search function. A drawback
with their approach is that heaps have to be passed to and
returned from each function. Another is that, by using bal-
anced trees a logarithmic factor is incurred, so their depth-
first search function is not linear in the size of the graph.

9 Acknowledgements

We would like to thank Kieran Clenaghan and Simon Peyton
Jones for the helpful comments they gave on a preliminary
draft of this paper. We are also very grateful to Richard
Bird for suggesting that DFS can be expressed using the
generate/prune paradigm, and to him, Geraint Jones and
Theo Norvell for inspiring the correctness proofs. The work
was partly supported by the UK Engineering and Physical
Sciences Research Council.

References

Barth, P. S., Nikhil, R. S. and Arvind (1991), M-structures:
Extending a parallel, non-strict, functional language
with state, in J. Hughes, ed., ‘Conference on Func-
tional Programming Languages and Computer Archi-
tecture’, LNCS 523, Springer-Verlag, Cambridge, Mas-
sachusetts, pp. 538-568.

Burton, F. W. and Yang, H.-K. (1990), ‘Manipulating mul-
tilinked data structures in a pure functional language’,
Software— Practice and Fxpertence 20, 1167-1185.

Corman, T. H., Leiserson, C. E. and Rivest, R. L. (1990), In-
troduction to Algorithms, The MIT Press, Cambridge,
Massachusetts.

Erwig, M. (1992), Graph algorithms = iteration + data
structures? The structure of graph algorithms and
a style of programming, in E. Mayr, ed., ‘Graph-
Theoretic Concepts in Computer Science’, LNCS 657,
Springer-Verlag, pp. 277-292.

10

Harrison, R. (1993), Abstract data types in Standard ML,
John Wiley and Sons.

Holyer, 1. (1991), Functional programming with Miranda,
Pitman, London.

Hopcroft, J. E. and Tarjan, R. E. (1973), ‘Algorithm 447:
Efficient algorithms for graph manipulation’, Commu-
nications of the ACM 16(6), 372-378.

Hudak, P., Peyton Jones, S. L., Wadler, P., Arvind, Boutel,
B., Fairbairn, J., Fasel, J., Guzman, M. M., Hammond,
K., Hughes, J., Johnsson, T., Kieburtz, R., Nikhil,
R. S., Partain, W. and Peterson, J. (1992), ‘Report on
the functional programming language Haskell, Version

1.2, ACM SIGPLAN Notices 27(5).

Kashiwagi, Y. and Wise, D. S. (1991), Graph algorithms in
a lazy functional programming language, in ‘Proceed-
ings of the 4’th International Symposium on Lucid and
Intensional Programming’, pp. 35-46. Also available as
Technical Report Number 330, Computer Science De-
partment, Indiana University.

Launchbury, J. (1993), Lazy imperative programming, in
‘Workshop on State in Programming Languages’, ACM
SIGPLAN, Copenhagen, Denmark, pp. 46-56.

Launchbury, J. and Peyton Jones, S. L. (1994), Lazy func-
tional state threads, in ‘Conference on Programming

Language Design and Implementation’, ACM SIG-
PLAN, Orlando, Florida.

Manber, U. (1989), Introduction to Algorithms—A Creative
Approach, Addison-Wesley, Reading, Massachusetts.

Moggi, E. (1989), Computational lambda-calculus and mon-
ads, in ‘Symposium on Logic in Computer Science’,

IEEE, Asilomar, California.

Paulson, L. C. (1991), ML for the working programmer,
Cambridge University Press, Cambridge.

Peyton Jones, S. L. and Wadler, P. (1993), Imperative func-
tional programming, in ‘20’th Symposium on Principles
of Programming Languages’, ACM, Charleston, North
Carolina.

Reif, J. H. (1985), ‘Depth-first search is inherently sequen-
tial’, Information Processing Letters 20, 229-234.

Sands, D. (1993), A naive time analysis and its theory of cost
equivalence, TOPPS report D-173, DIKU, University of
Copenhagen, Denmark.

Sharir, M. (1981), ‘A strong-connectivity algorithm and
its applications in data flow analysis’, Computers and
mathematics with applications 7(1), 67-72.

Tarjan, R. E. (1972), ‘Depth-first search and linear graph
algorithms’, SIAM Journal of Computing 1(2), 146—
160.

Wadler, P. (1990), Comprehending monads, in ‘Conference
on Lisp and Functional Programming’, ACM, Nice,
France, pp. 61-78.

Appendix

Imperative features were initially introduced into the Glas-
gow Haskell compiler to perform input and output, see Pey-
ton Jones and Wadler (1993). The approach is based on
monads (Moggi 1989, Wadler 1990), and can easily be ex-
tended to achieve in-situ array updates. Launchbury (1993)
showed how the original model could be extended to allow
the imperative actions to be delayed until their results are
required. This is the model we use.

We will use the monad of state-transformers with type
constructor ST which is defined:

type ST s a = s -> (a,s)

So elements of type ST s Int, say, are functions which,
when applied to the state, return a pair of an integer to-
gether with a new state. As usual we have the unit returnST
and the sequencing combinator thenST:

returnST :: a -> 83T s a
returnST a s = (a,s)

thenST :: STs a -> (a->S8Tsb) ->S8Tsb
(m ‘thenST‘ k) s =k a t where (a,t) =m s

The ST monad provides three basic array operations:

newArr ::Ix i=> (i,i) -> a ->ST s (MutArr s i a)
readArr ::Ix i=> MutArr s i a -> 1 -> ST s a
writeArr::Ix i=> MutArr s i a -=> i => a ->ST s ()

The first, newArr, takes a pair of index bounds (the type a
must lie in the index class Ix) together with an initial value,
and returns a reference to an initialised array. The time
this operation takes is linear with respect to the number of
elements in the array. The other two provide for reading and
writing to an element of the array, and both take constant
time.

Finally, the ST monad comes equipped with a function
runsST.

runST :: (Vs . ST s a) -> a

This takes a state-transformer function, applies it to an ini-
tial state, extracts the final value and discards the final
state. The type of runST is not Hindley-Milner because of
the nested quantifier, so it must be built-in to Haskell. The
universal quantifier ensures that in a state thread variables
from other state threads are not referenced. For details of
this see Launchbury and Peyton Jones (1994).
So, for example,

runST (newArr (1,8) 0 ‘thenST¢ (\nums ->
writeArr nums 5 42 ‘thenST¢ (_ ->
readArr nums 5 ‘thenST¢ (\v ->

returnsST v))))

will return 42. This can be read as follows: run a new state
thread extracting the final value when finished; create a new
array indexed from 1 to 8 with components all 0; then bind
this array to nums; write to array nums at index 5 the value
42: then read the component in nums at index 5 and bind
this value to v; finally return value v. Note that the final
expression returnST v is unnecessary as readArr returns a
value. The parentheses immediately after ‘thenST¢ are also
unnecessary, as Haskell’s grammar binds lambda expressions
tighter than infix functions.

11

