Reinventing Haskell Backtracking

Sebastian Fischer
Christian-Albrechts University of Kiel, Germany
sebf @informatik.uni-kiel.de

Abstract: Almost ten years ago, Ralf Hinze has written a functional pearl on how
to derive backtracking functionality for the purely functional programming language
Haskell. In these notes, we show how to arrive at the efficient, two-continuation based
backtracking monad derived by Hinze starting from an intuitive inefficient implemen-
tation that we subsequently refine using well known program transformations.

It turns out that the technique can be used to build monads for non-determinism
from modular, independent parts which gives rise to various new implementations.
Specifically, we show how the presented approach can be applied to obtain new im-
plementations of breadth-first search and iterative deepening depth-first search.

1 Introduction

A conceptual divide tears apart two declarative paradigms: functional and logic program-
ming. Combining them has a long tradition. Dedicated languages for multi-paradigm
declarative programming show that the conceptual divide is not as big as one might ex-
pect [Han07], logic languages have incorporated support for directed, deterministic re-
lations [SHCO95], and lightweight support for logic features like backtracking has been
implemented in purely functional languages. In an influential pearl, Ralf Hinze has shown
how to derive lightweight backtracking for the functional programming language Haskell
from an equational specification [Hin00].

Logic programming functionality can be incorporated into Haskell by expressing non-
determinism explicitly as a computational effect modeled in the—today ubiquitous—
framework of monads [Wad95]. In Haskell, a monad is a parametrised type m that sup-
ports the following operations.

return ::a — m a
(>=) sma—(a—mb)—-mb

The operation return wraps an arbitrary value of type a as value of type m a and >=
(pronounced ’bind’) is used to apply monadic functions to monadically wrapped values.
Haskell provides syntactic sugar for using these operations. For example, the expression
a >= Az — return (z + 1) can be written more conveniently using do-notation.

doz «—a
return (z + 1)

Monads provide a common interface for a variety of computational effects. In these notes
we focus on non-determinism. Non-deterministic computations can be expressed monad-
ically using two additional monadic combinators for failure and choice.

mzero ::m a
mplus:sma%ma%ma

The shown monadic combinators can be interpreted in the context of non-determinism.

e mzero represents a failing computation, i.e., one without results;

e return x represents a computation with the single result x;

mplus a b represents a computation that yields either a result of the computation a
or one of the computation b; and

a >= f applies the non-deterministic operation f to any result of a and yields any
result of such an application.

We can use these combinators to define a function that yields an arbitrary element of a
given list.

anyof :: MonadPlus m = [a] — m a
anyof [] = mzero
anyof (z:xs) = anyof xs ‘mplus‘ return

The type signature specifies that the result of anyof can be expressed using a parametrised
type m that is an instance of the type class MonadPlus, i.e., that is a monad for non-
determinism that supports the operations that have just been introduced. The first rule of
anyof uses the failing computation mzero to indicate that no result can be returned if the
given list is empty. If it is nonempty, the second rule either returns a result of the recursive
call to the tail of the list or the first element.

In Section 2, we introduce different implementations of parametrised types m that can be
used to compute results of the non-deterministic operation anyof. Starting with an intu-
itive but inefficient implementation, we subsequently refine it using standard techniques.
Specifically, we use difference lists to improve the asymptotic complexity of list concate-
nation in Section 2.1 and transform computations to continuation-passing style—which
provides an implementation of monadic bind for free—in Section 2.2. In Section 2.3 we
show that we arrive at the efficient implementation of backtracking previously derived by
Hinze when combining these well-known techniques. We show in Section 3 how to use
the developed ideas to find novel implementations of breadth-first search (Section 3.1) and
iterative deepening depth-first search (Section 3.2). We compare different search strate-
gies experimentally in Section 4 and finally point to related work briefly and conclude in
Section 5.

2 Monadic Backtracking

The most intuitive implementation of the MonadPlus type class uses lists of successes
to represent results of non-deterministic computations. The four monadic operations are
implemented on lists as follows. The failing computation is represented as empty list.

mzero :: [a]
mzero = []

A deterministic computation with result z is represented as list with a single element x.

return :: a — [a]
return © = [x]

To choose from the results of two non-deterministic computations, the results of both are
concatenated using the append function .

mplus :: [a] — [a] — [a]
mplus zs ys = xs H ys

Non-deterministic operations can be applied to any result of a given computation, e.g., by
using a list comprehension.

(>=) :[a] = (a — [b]) — [D]
zs>=f=[y|z—uaxs,y —fz]

As Haskell lists implement the interface of the MonadPlus type class, we can use lists to
compute results of the non-deterministic operation anyof. For example, we can apply it
to a list of numbers in order to get another list of the numbers that are contained in the list.

> anyof [1..10] :: [Int]
[10,9,8,7,6,5,4,3,2,1]

We provide an explicit type annotation in the call above which specifies that we want to use
the list monad to compute the results. The resulting list does indeed contain each number
of the given list but in reverse order. As different results of non-deterministic computa-
tions are independent their order is irrelevant, at least from a declarative point of view. We
should expect different search strategies to enumerate results of non-deterministic compu-
tations in different orders.

If we compute results of anyof for long lists, we recognise that the list monad scales
badly on this example. This is because of the specific implementation of anyof that uses
a recursive call in the left argument of mplus. Actually, if we use the list monad then the
implementation of anyof is the naive reverse function and, thus, has quadratic run time.
We could change the implementation of anyof to avoid left recursion by swapping the
arguments of mplus. However, we refrain from doing so and rather strive for a monad that
can handle it gracefully.

2.1 Difference lists

The reason why the list monad scales so badly in case of left associative use of mplus is
that the function H- for list concatenation used for implementing mplus has linear run time
in the length of its first argument. The standard technique to avoid this complexity is to
use so called difference lists. A difference list is a function which takes a list as argument
and yields a possibly longer list that ends with the given list. We can define the type of
difference lists using Haskell’s record syntax as follows.

newtype DiffList a = DiffList { @ :: [a] — [a]}
This declaration automatically generates a selector function
@8 :: DiffList a — [a] — [a]

that can be used to append an ordinary list to a difference list. As an interface to difference
lists, we need a function to construct the empty difference list;

empty :: DiffList a
empty = DiffList {@H) = id}

a function to construct a difference list with a single element;

singleton :: a — DiffList a
singleton © = DiffList { @) = (z:)}

and a function to concatenate two difference lists.

(++) == DiffList a — DiffList a — DiffList a
a ++ b = DiffList { @) = (a3 o (b3H) }

The function ++- is implemented via the function composition operator o and has, thus,
constant run time, which is the critical advantage compared to ordinary lists. The disad-
vantage of this representation is that we cannot perform pattern matching on difference
lists without converting them back to ordinary lists. Such conversion can be performed by
using3+to stick the empty list at the end of a difference list.

toList :: DiffList a — [a]
toList a = a3+[]

The three functions empty, singleton, and +H correspond exactly to the monadic combi-
nators mzero, return, and mplus respectively. If we inline their definitions in the defini-
tion of anyof we obtain the following definition of reverse.

reverse :: [a] — [a] — [a]
reverse [] =id
reverse (x : xs) = reverse xs o (z:)

This is the well-known linear-time implementation of the reverse function which uses an
accumulating parameter to avoid repeated list concatenation. Unfortunately, we cannot
instantiate the type parameter m of anyof with the type DiffList which is no instance of
MonadPlus. In order to make the type of difference lists a monad for non-determinism,
we would need to implement the bind operator. Unfortunately, this is only possible by
converting back and forth between difference and ordinary lists' which is unsatisfactory.
We insist on a more elegant solution.

2.2 Continuation-passing style

To achieve a more elegant solution we need another well-known technique, viz. conti-
nuation-passing style. A function in continuation-passing style does not yield its result
to the caller but is called with an additional function—a so called continuation—that ex-
pects the computed result as argument. For example, we could define integer addition in
continuation-passing style as follows.

plusCPS :: Int — Int — (Int — a) — a
plusCPS mn ¢c=c(m+n)

In general, if the result type of an ordinary function is a then the result type of the same
function in continuation-passing style is (a — b) — b. The result type of the continuation
is polymorphic. For example, we can pass print as a continuation to plusCPS to print the
computed result on the standard output.

> plusCPS 17 4 print
21

2.2.1 CPS computations

We want to combine continuation-passing style with different effects modeled by a pa-
rametrised type that represents computations. For this purpose, it turns out beneficial to
restrict the result type of continuations to use some parametrised type c. The type of so
restricted computations in continuation-passing style is defined as follows.

newtype CPS ¢ a = CPS {(>—) :=:Vb.(a = cb) —cb}

The CPS type uses so called rank-2 polymorphism to introduce the type variable b used
in the result type of the continuation. We use Haskell’s record syntax again to get the
following selector function.

(>)u:CPSca—(a—cb)—ch

A value of type CPS ¢ a can be converted into a value of type ¢ a by passing it a
continuation of type a — ¢ a using >—. We define a type class Computation for

Yos = f = DiffList {@) = ([y | © « toList s,y « toList (f ©)]+)}

parametrised types that can represent computations and support an operation yield that
resembles the monadic operation return.

class Computation ¢ where
yield ::a — c a

We can now pass the operation yield as continuation using >— to run C'PS values.

runCPS :: Computation ¢ = CPS ca — ca
runCPS a = a >— yield

2.2.2 CPS monads for non-determinism

The gist of these notes is that CPS c¢ is a monad for any parametrised type c. We get
implementations of monadic operations for free.

instance Monad (CPS ¢) where
return x = CPS {(>—) =Xc — cz}
a>=f =CPS{(>)=Xc—a> Xzt —fa>c}

The last definition looks very clever. Fortunately, we do not need to invent it ourselves. It
is the standard definition of monadic bind for continuation monads.

Monads for non-determinism need to support the additional operations mzero and mplus.
We define another type class for parametrised types, this time to model computations that
support failure and choice.

class Nondet n where
failure ::n a
choice :na—>na—na

This type class is similar to the MonadPlus type class; failure resembles mzero and
choice resembles mplus. However, the class Nondet does not require the parametrised
type n to implement monadic bind, which the MonadPlus type class does. As we get
monadic bind for free from the C'PS type, we don’t need to require it for types that repre-
sent non-deterministic computations.

CPS c is not only a monad for any c. If n is an instance of Nondet then CPS n is an
instance of MonadPlus.

instance Nondet n = MonadPlus (CPS n) where
mzero = CPS {(>—) = A_ — failure}
mplus a b = CPS {(>—) = A¢ — choice (a>—¢) (b>—¢)}

In order to implement the operations for failure and choice we can simply dispatch to the
corresponding operations of the Nondet class.

2.3 Efficient backtracking

Now we combine difference lists and continuation-passing style. We use the type DiffList
for difference lists and wrap it inside CPS to get an efficient implementation of the
MonadPlus type class. Note that we do not need to implement >= on difference lists
in order to obtain a monad on top of DiffList. We only need to implement the functions
failure, yield, and choice that correspond to the monadic operations mzero, return, and
mplus respectively. In order to be able to unwrap the DiffList type from CPS, we need to
provide an instance of Computation for DiffList and to make CPS DiffList an instance
of MonadPlus, we need to provide an instance of Nondet. Both instance declarations
reuse operations for difference lists defined in Section 2.1.

instance Computation DiffList where
yield = singleton

instance Nondet DiffList where
failure = empty
choice = (+#)

We can now define efficient backtracking for non-deterministic computations.

backtrack :: CPS DiffList a — [a]
backtrack = toList o runCPS

If we inline the newtype declarations DiffList and CPS, we can see that the type
CPS DiffList a is the same as the following type.

CPS DiffList a =~ Vb.(a — [b] — [b]) — [b] — [b]

This type is the well-known type used for two-continuation-based depth-first search. The
first argument of type a — [b] — [b] is called success continuation and the second
argument of type [b] is the so called failure continuation. If we inline the monadic
operations, we can see that they resemble the operations derived by Hinze. The operation
mzero yields the failure continuation.

mzero succ fail = fail

The return function passes the given argument to the success continuation and also passes
the failure continuation for backtracking.

return x succ fail = succ z fail

The operation mplus passes the success continuation to both computations given as argu-
ments and uses the results of the second computation as failure continuation of the first
computation.

mplus a b succ fail = a succ (b succ fail)

The bind operation builds a success continuation that passes the result of the first compu-
tation to the given function.

(a>=f) succ fail = a (A\z fail — f z succ fail) fail

These definitions have been devised from scratch earlier. We have obtained them by com-
bining difference lists with continuation-passing style.

Using backtrack to enumerate the results of calling anyof produces the same order of
results as using the list monad.

> backtrack (anyof [1..10])
[10,9,8,7,6,5,4,3,2,1]

However, the resulting list is computed more efficiently. The function backtrack o anyof is
a linear-time implementation of the reverse function. We can inline the monadic operations
into the definition of anyof to verify this observation.

reverse’ :: [a] — (a — [b] — [b]) — [b] — [D]
reverse’ [] suce fail = fail
reverse’ (x: xs) succ fail = reverse’ zs succ (succ x fail)

If we specialise this definition for succ = (:) then we obtain again the implementation
of the reverse function that uses an accumulating parameter to achieve linear run time.
The advantage of CPS DiffList over DiffList is that it has a natural implementation of
monadic bind and can, hence, be used to execute monadic computations.

3 Different Search Strategies

In Section 2 we have seen how to reinvent an existing implementation of monadic back-
tracking. In this section we develop implementations of breadth-first search and iterative
deepening depth-first search that we have not been aware of previously. Both implemen-
tations shown here are available in a Haskell package on Hackage [Fis09].

3.1 Breadth-first search

Backtracking can be trapped if the search space is infinite. If we apply anyof to an infinite
list then the function backtrack diverges without producing a result. Breadth-first search
enumerates the search space in level order which results in a fair enumeration of all results.

newtype Levels n a = Levels {levels :: [n a]}
If the parameter 7 is an instance of Nondet we can merge the levels of a search space.

runLevels :: Nondet n = Levels n a — n a
runLevels = foldr choice failure o levels

We could later use lists to represent individual levels but we use difference lists to benefit
from more efficient concatenation. Thus, we define breadth-first search as follows.

levelSearch :: CPS (Levels DiffList) a — [a]
levelSearch = toList o runLevels o runCPS

We only need to provide instances of the type classes Computation and Nondet such that
levelSearch can be applied to non-deterministic monadic computations. The definition of
yield creates a single level that contains the given argument wrapped in the type n.

instance Computation n = Computation (Levels n) where
yield © = Levels {levels = [yield z]}

The function failure is implemented as an empty list of levels and choice creates a new
empty level (using the failure operation of the underlying parametrised type n) in front of
the merged levels of the given computations.

instance Nondet n = Nondet (Levels n) where
failure = Levels {levels =[]}
choice a b = Levels {levels = failure : merge (levels a) (levels b) }

The use of failure in the implementation of choice is crucial to achieve breadth-first search
because it delays the results at deeper levels which are combined using merge.

merge :: Nondet n = [n a] — [n a] — [n a]
merge [] ys = ys

merge s [] =158

merge (z:xzs) (y: ys) = choice x y : merge xs ys

We might feel inclined to generalise the type Levels to use an arbitrary parametrised type
instead of lists to represent the collection of levels. Such a type would need to provide a
zip operation to implement merge which we could require using another type class, e.g.,
Zipable. We refrain from such a generalisation in favour of a simpler description.

3.2 Iterative deepening depth-first search

Breadth-first search has an advantage when compared with depth-first search—it is fair.
However, there is also a disadvantage. It needs a huge amount of memory to store complete
levels of the search space. We can trade memory requirements for run time by using depth-
first search to enumerate all results of the search space that are reachable within a certain
depth limit and incrementally repeat the search with increasing depth limits.

We can define a type for depth-bounded search as a function that takes a depth limit and
yields results that can be found within the given limit.

newtype Bounded n a = Bounded {(!):: Int —> n a}

The type parameter n is later required to be an instance of Computation and Nondet and
holds the results of depth-bounded search. We use ordinary lists but omit corresponding
instances for the list type.

We can define an instance of Nondet for Bounded n as follows. The implementation of
failure uses the failure operation of the underlying type n.

instance Nondet n = Nondet (Bounded n) where
failure = Bounded {(!) = A_ — failure}
choice a b = Bounded {(!) = Ad — if d = 0 then failure
else choice (a!(d—1)) (b!(d—1))}

The choice operation fails if the depth limit is exhausted. Otherwise, it calls the underlying
choice operation on the given arguments with a decreased depth limit, reflecting that a
choice descends one level in the search space.

Iteratively increasing the depth limit of a depth-bounded computation yields a list of levels.

levellter :: (Computation n, Nondet n) =
Int — CPS (Bounded n) a — Levels n a
levellter step a = Levels {levels = [(a >— yieldB) ! d | d « [0, step..]]}
where
yieldB x = Bounded {(!) = Ad — if d < step then yield z else failure }

Between different searches the depth limit is incremented by step. If step equals one then
the returned levels are really the levels of the search space. If it is greater then multiple
levels of the search space are collected in a single level of the result.

Instead of runCPS (which is defined as (>—yield)) we use a custom function yieldB and
pass it as continuation to the given computation. This allows us to yield only those results
where the remaining depth limit is small enough, i.e., that have not been enumerated in
a previous search. We merge the different levels of iterative deepening search using an
arbitrary instance of Nondet—using lists results in iterative deepening depth-first search.

iterDepth :: (Computation n, Nondet n) = Int — CPS (Bounded n) a — n a
iterDepth step = foldr choice failure o levels o levellter step

This implementation of iterative deepening depth-first search is novel because it does not
require the depth limit to be returned by depth-bound computations. If we wanted to
implement >= directly on the type Bounded n we would need an updated depth limit
as result of executing the first argument (see Spivey’s implementation [Spi06]). We don’t
need to thread the depth limit explicitly when using the bind operation of the C'PS type.

Both levelSearch and iterDepth can enumerate arbitrary infinite search spaces lazily.

> take 10 (levelSearch (anyof [1..])) = take 10 (iterDepth 1 (anyof [1..]))
True

In fact, when using lists for the results, ¢terDepth 1 always returns them in the same order
as levelSearch because it enumerates one level after the other from left to right.

4 Variations on a Theme

Using the types developed in the previous sections we can build numerous variants of
the presented search strategies. In this section we compare experimentally three different
versions of depth-first search and two versions of both breadth-first and iterative deepening
depth-first search. All presented implementations can be built from the types developed
in the previous sections: the parametrised types [], CPS [], and CPS DiffList are all
instances of MonadPlus that implement depth-first search. The types CPS (Levels [])
and CPS (Levels DiffList) implement breadth-first search and using CPS (Bounded [])
or CPS (Bounded DiffList) results in iterative deepening depth-first search.

What if we keep following this pattern further? We can also build the types CPS (z (y z))
with z,y € {Levels, Bounded} and z € {[], DiffList}. We can stack arbitrarily many
layers of Levels and Bounded between CPS and [] or DiffList. If we define instances
Computation (CPS c¢) and Nondet ¢ = Nondet (CPS c¢) similar to the Monad and
MonadPlus instances for CPS then we can also include multiple layers of CPS between
Lewvels and Bounded. The inclined reader may investigate these types and the performance
properties of the resulting strategies. We include some of them in our comparison.

4.1 Pythagorean triples

We measure run time and memory requirements of the different non-determinism monads
using the anyof function and a slightly more complex action that returns Pythagorean
triples non-deterministically. A Pythagorean triple is a strictly increasing sequence of
three positive numbers a, b, and c such that a® + b2 = 2.

pytriple :: MonadPlus m = m (Int, Int, Int)

pytriple = do a «— anyof [1..];b — anyof [a+1..];¢ — anyof [b+1..]
guard (a*xa+bxb=cxc)
return (a, b, ¢)

The predefined function guard :: MonadPlus m = Bool — m () fails if its argument is
False and we use it to filter Pythagorean triples from arbitrary strictly increasing sequences
of three positive numbers.

That is a concise declarative specification of Pythagorean triples but can we execute it
efficiently? It turns out that (unbounded) depth-first search is trapped in infinite branches
of the search space and diverges without returning a result. We need a complete search
strategy like breadth-first search or iterative deepening search to execute pytriple. In order
to be able to compare those strategies with unbounded depth-first search, we use a variant
pytriple_leq :: MonadPlus m = Int — m (Int, Int, Int) that computes Pythagorean
triples where all components are less or equal a given number. For this task the search
space is finite and can also be explored using incomplete strategies.

anyof pytriple pytriple_leq

[]1] 179s/ 9MB —— 44s/ 2MB

CPS [] | 196s/11MB —/— 4s/ 2MB

CPS DiffList 0Os/ 6MB —/— 10s/ 2MB

CPS (Levels []) Os/ 1IMB 21s/ 966MB 12s/ 966MB

CPS (Levels DiffList) Os/ 1MB 23s/ 966MB 13s/ 966MB

CPS (Bounded []) | 223s/17MB 38s/ 2MB 16s/ 2MB

CPS (Bounded DiffList) 7s/ 14MB 54s/ 2MB 25s/ 2MB

CPS (Bounded (CPS [])) | 200s/ 19MB 47s/ 2MB 20s/ 2MB
CPS (Levels (Levels DiffList)) Os/ IMB 1206s/2041MB 24s/1929MB

Table 1: Performance of different search strategies

4.2 Experimental results

The run time and memory requirements of the different strategies are depicted in Table 1.

anyof executes the call anyof [1..50000] and enumerates the results w.r.t. to the strate-
gies depicted in the leftmost column of the table.

pytriple enumerates 500 Pythagorean triples without an upper bound for their compo-
nents. This benchmark can only be executed using complete strategies, there are no
results for unbounded depth-first search.

pytriple_leq enumerates all 386 Pythagorean triples with an upper bound of 500 using all
search strategies.

All benchmarks were executed on an Apple MacBook 2.2 GHz Intel Core 2 Duo with 4 GB
RAM using a single core. We have used the Glasgow Haskell Compiler (GHC, version
6.10.3) with optimisations (-O -fno-full-laziness) to compile the code. When executing
breadth-first search, we have provided an initial heap of 1 GB (+RTS -H1G). We have
increased the depth-limit of iterative deepening search by 100 between different searches.

The anyof benchmark demonstrates the quadratic complexity of depth-first search strate-
gies based on list concatenation. The corresponding search space is degenerated as it is
a narrow but deep tree. Hence, there is noticeable overhead when performing iterative
deepening search. The search space for enumerating Pythagorean triples is more realis-
tic. With and without an upper limit, breadth-first search is faster than iterative deepening
depth-first search but uses significantly more memory. Using difference lists instead of
ordinary lists does not improve the performance of breadth-first search in our benchmarks.
We have observed the memory requirements of iterative deepening depth-first search to be
constant only when we disabled let floating by turning off the full-laziness optimisation of
GHC. This optimisation increases sharing in a way that defeats the purpose of iteratively
exploring the search space by recomputing it on purpose. Iterative deepening depth-first
search incurs noticeable overhead compared to ordinary depth-first search which, however,
can only be applied if the search space is finite.

Finally, we have tested two esoteric strategies, viz., CPS (Bounded (CPS [])) and
CPS (Lewvels (Levels DiffList)). The former demonstrates that even wrapping the list
type under multiple layers of CPS does not improve on the quadratic complexity of the
mplus operation when nested left associatively. Moreover, the extra CPS layer causes
moderate overhead compared to ordinary iterative-deepening depth-first search. Using
two layers of Levels for breadth-first search blows up the memory requirements even more.
Although we have run this specific benchmark with 2 GB initial heap, the memory require-
ments are so huge that reclaiming memory is sometimes a significant performance penalty.
The large difference in run time between the pytriple and the pytriple_leq benchmarks is
suspicious. Probably, the slowdown is caused by limiting memory by the option -M2G.

The experiments suggest to use the monad CPS DiffList if the search space is known to
be finite and CPS (Bounded DiffList) if it is not. Although there is a moderate overhead
of difference list compared to usual lists, the latter perform much worse in case of left
associative uses of mplus. The memory requirements of breadth-first search prohibit its
use in algorithms that require extensive search.

5 Final Notes

We have employed a continuation monad transformer to implement monads for non-
determinism based on types that do not (need to) support monadic bind. Combining this
approach with difference lists leads to the well-known two-continuation-based backtrack-
ing monad. Hinze has derived similar backtracking as monad transformer that adds back-
tracking functionality to an arbitrary base monad [Hin00]. Using different base types in
our approach, we have found novel implementations of breadth-first search and iterative
deepening depth-first search.

The latter strategies have also been implemented in Haskell by Spivey [Spi06] but not as
instances of the MonadPlus type class. Spivey uses a slightly different interface with an
operation & for non-deterministic choice and an additional operation wrap to increase the
search depth by one level. Our implementations of breadth-first search and depth-bounded
search use a single operation choice that could be expressed as combination of & and
wrap in Spivey’s framework and allows us to implement both strategies in the MonadPlus
framework. Both implementations differ from the corresponding implementations given
by Spivey due to the use of a continuation monad. Unlike Spivey’s implementation, we
can use difference list to represent levels for breadth-first search and don’t need to return
updated depth limits in depth-bounded search.

Similar to the asymptotic improvement of the mplus operation provided by the DiffList
type, monadic bind as defined for the C'PS type improves the complexity of calls to >=
nested to the left. While some monads incur run-time quadratic in the number >>= calls
nested to the left, the continuation-based implementation is linear [Voi08]. We have com-
pared variations of the presented search strategies experimentally and found that the two-
continuation-based backtracking monad outperforms the other strategies. Iterative deep-
ening search, which requires only constant space, is also suitable for infinite search spaces.

Monads for non-determinism are usually expected to satisfy certain laws. Instances of
MonadPlus derived with the presented approach satisfy the monad laws [Com09a] by
construction because the implementations of return and >>= are always those of the con-
tinuation monad. Whether the derived instances satisfy laws for MonadPlus [Com09b]
depends on the employed instance of Nondet. The strategies presented in Section 3 do
not satisfy the monoid laws of the mzero and mplus operations. However, manipulating a
non-deterministic program w.r.t. these laws has no effect on which results are computed—
it only affects their order.

Acknowledgements

Frank Huch proposed to implement depth-bounded search without returning updated depth
limits and Janis Voigtldnder provided valuable comments on a first draft of this paper.

References

[Com09a] The Haskell Community. http://haskell.org/haskellwiki/Monad-Laws,
2009.

[Com09b] The Haskell Community. http://haskell.org/haskellwiki/MonadPlus,
20009.

[Fis09] Sebastian Fischer. http://hackage.haskell.org/cgi-bin/hackage-
scripts/package/level-monad, 2009.

[Han07] Michael Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007), pages 45-75. Springer LNCS
4670, 2007.

[Hin00] Ralf Hinze. Deriving backtracking monad transformers. In ICFP ’00: Proceedings of
the fifth ACM SIGPLAN international conference on Functional programming, pages
186-197, New York, NY, USA, 2000. ACM.

[SHCY95] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury, an Efficient Purely
Declarative Logic Programming Language. In In Proceedings of the Australian Com-
puter Science Conference, pages 499-512, 1995.

[Spi06] Michael Spivey. Algebras for combinatorial search. In Workshop on Mathematically
Structured Functional Programming, 2006.

[Voi08] Janis Voigtldnder. Asymptotic Improvement of Computations over Free Monads. In
Christine Paulin-Mohring and Philippe Audebaud, editors, Mathematics of Program
Construction, Marseille, France, Proceedings, volume 5133 of LNCS, pages 388—403.
Springer-Verlag, July 2008.

[Wad95] Philip Wadler. Monads for Functional Programming. In Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Programming
Techniques-Tutorial Text, pages 24-52, London, UK, 1995. Springer-Verlag.

