
QuickCheck:
A Lightweight Tool for Random Testing

of Haskell Programs

Koen Claessen
Chalmers University of Technology

koen@cs.chalmers.se

John Hughes
Chalmers University of Technology

rjmh@cs.chalmers.se

ABSTRACT
QuickCheck is a tool which aids the Haskell programmer in
formulating and testing properties of programs. Properties
are described as Haskell functions, and can be automati-
cally tested on random input, but it is also possible to de-
�ne custom test data generators. We present a number of
case studies, in whic hthe tool w as successfully used, and
also point out some pitfalls to avoid. Random testing is es-
pecially suitable for functional programs because properties
can be stated at a �ne grain. When a function is built from
separately tested components, then random testing su�ces
to obtain good coverage of the de�nition under test.

1. INTRODUCTION
T esting is by far the most commonly used approach to

ensuring softw are qualit y. It is also very labour intensive,
accoun tingfor up to 50% of the cost of software dev elop-
ment. Despite anecdotal evidence that functional programs
require somewhat less testing (`Once it type-c hecks, it usu-
ally works'), in practice it is still a major part of functional
program development.
The cost of testing motivates e�orts to automate it, wholly

or partly . Automatic testing tools enable the programmer
to complete testing in a shorter time, or to test more thor-
oughly in the available time, and they make it easy to repeat
tests after eac h modi�cation to a program. In this paper we
describe a tool, QuickCheck, whic hw ehave developed for
testing Haskell programs.
Functional programs are well suited to automatic testing.

It is generally accepted that pure functions are much easier
to test than side-e�ecting ones, because one need not be
concerned with a state before and after execution. In an
imperative language, even if whole programs are often pure
functions from input to output, the procedures from which
they are built are usually not. Thus relativ elylarge units
m ustbe tested at a time. In a functional language, pure
functions abound (in Haskell, only computations in the IO

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP ’00, Montreal, Canada.
Copyright 2000 ACM 1-58113-202-6/00/0009 ..$5.00

monad are hard to test), and so testing can be done at a
�ne grain.
A testing tool must be able to determine whether a test

is passed or failed; the human tester must supply an auto-
matically checkable criterionof doing so. We have chosen
to use formal speci�cations for this purpose. We have de-
signed a simple domain-speci�c language of testable speci�-
cations which the tester uses to de�ne expected properties
of the functions under test. QuickCheck then checks that the
properties hold in a large number of cases. The speci�ca-
tion language is embedded in Haskell using the class system.
Properties are normally written in the same module as the
functions they test, where they serve also as checkable doc-
umentation of the behaviour of the code.
A testing tool must also be able to generate test cases au-

tomatically. We have chosen the simplest method, random
testing [11], whic hcompetes surprisingly favourably with
systematic methods in practice. Ho wever, it is meaningless
to talk about random testing without discussing the distri-
bution of test data. Random testing is most e�ective when
the distribution of test data follows that of actual data, but
when testing reuseable code units as opposed to whole sys-
tems this is not possible, since the distribution of actual
data in all subsequent reuses is not known. A uniform dis-
tribution is often used instead, but for data drawn from
in�nite sets this is not even meaningful { how would one
choose a random closed �-term with a uniform distribution,
for example? We have chosen to put distribution under the
human tester's con trol, by de�ning a test data gener ation
language (also embedded in Haskell), and a way to observe
the distribution of test cases. By programming a suitable
generator, the tester can not only con trol the distribution
of test cases, but also ensure that they satisfy arbitrarily
complex invarian ts.
An important design goal was that QuickCheck should be

lightweight. Our implementation consists of a single pure
Haskell'98 module of about 300 lines, which is in practice
mainly used from the Hugs interpreter. We have also writ-
ten a small script to invok eit, whic hneeds to kno wvery
little about Haskell syn tax, and consequently supports the
full language and its extensions. It is not dependent on any
particular Haskell system. A cost that comes with this deci-
sion is that we can only test properties that are expressible
and observable within Haskell.
It is notoriously di�cult to say how e�ectiv e a testing

method is in detecting faults. However, we have usedQuick-

Check in a variety of applications, ranging from small exper-

268

IC FP’00, Montréal, Canada.
Copyright 2000 ACM 1-58113-202-6/00/0009…$5.00.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F351240.351266&domain=pdf&date_stamp=2000-09-01

iments to real systems, and we have found it to work well
in practice. We report on some of this experience in this
paper, and point out pitfalls to avoid.
The rest of this paper is structured as follows. Section

2 introduces the concept of writing properties and checking
them using QuickCheck. Section 3 shows how to de�ne test
data generators for user-de�ned types. Section 4 brie
y dis-
cusses the implementation. Section 5 presents a number of
case studies that show the usefulness of the tool. Section 6
concludes.

2. DEFINING PROPERTIES

2.1 A Simple Example
As a �rst example, we take the standard function reverse

which reverses a list. This satis�es a number of useful laws,
such as

reverse [x] = [x]

reverse (xs++ys) = reverse ys++reverse xs

reverse (reverse xs) = xs

In fact, the �rst two of these characterise reverse uniquely.
Note that these laws hold only for �nite, total values. In

this paper, unless speci�cally stated otherwise, we always
quantify over completely de�ned �nite values. This is to
make it more likely that the properties are computable.
In order to check these laws using QuickCheck, we repre-

sent them as Haskell functions. Thus we de�ne

prop_RevUnit x =
reverse [x] == [x]

prop_RevApp xs ys =
reverse (xs++ys) == reverse ys++reverse xs

prop_RevRev xs =
reverse (reverse xs) == xs

Now, if these functions return True for every possible argu-
ment, then the properties hold. We load them into the Hugs
interactive Haskell interpreter [14], and call for example

Main> quickCheck prop_RevApp

OK: passed 100 tests.

The function quickCheck takes a law as a parameter and ap-
plies it to a large number of randomly generated arguments
| in fact 1001 | reporting \OK" if the result is True in
every case.
If the law fails, then quickCheck reports the counter-

example. For example, if we mistakenly de�ne

prop_RevApp xs ys =
reverse (xs++ys) == reverse xs++reverse ys

then checking the law might produce

Main> quickCheck prop_RevApp

Falsifiable, after 1 tests:

[2]
[-2,1]

where the counter model can be extracted by taking [2] for
xs, and [-2,1] for ys.

1100 is a rather arbitrary number, so our library provides a
way to specify this as a parameter.

In fact the programmer must provide a little more infor-
mation: the function quickCheck is actually overloaded, in
order to be able handle laws with a varying number of vari-
ables, and the overloading cannot be resolved if the law itself
has a polymorphic type, as in these examples. Thus the pro-
grammer must specify a �xed type at which the law is to be
tested. So we simply give a type signature for each law, for
example

prop_RevApp :: [Int] -> [Int] -> Bool

Of course, the property prop_RevApp holds polymorphically,
but we must specify which monomorphic instance to test
it at, so that we can generate test cases. This turns out
to be quite important in the case of overloaded functions.
For example, + is associative for the type Int, but not for
Double! In some cases, we can use parametricity [17] to
argue that a property holds polymorphically.

2.2 Functions
We are also able to formulate properties that quantify over

functions. To check for example that function composition
is associative, we �rst de�ne extensional equality (===) by
(f === g) x = f x == g x, and then write:

prop_CompAssoc :: (Int -> Int) -> (Int -> Int)
-> (Int -> Int) -> Int -> Bool

prop_CompAssoc f g h =
f . (g . h) === (f . g) . h

The only di�culty that function types cause is that, if a
counter-example is found (for example if we try to check
that function composition is commutative), then the func-
tion values are printed just as \<<function>>". In this case
we discover that the `law' we are checking is false, but not
why.

2.3 Conditional Laws
Laws which are simple equations are conveniently repre-

sented by boolean function as we have seen, but in general
many laws hold only under certain conditions. QuickCheck

provides an implication combinator to represent such condi-
tional laws. For example, the law

x <= y =) max x y == y

can be represented by the de�nition

prop_MaxLe :: Int -> Int -> Property
prop_MaxLe x y = x <= y ==> max x y == y

Likewise, the insertion function into ordered lists satis�es
the law

prop_Insert :: Int -> [Int] -> Property
prop_Insert x xs =

ordered xs ==> ordered (insert x xs)

Note that the result type of the property is changed from
Bool to Property. This is because the testing semantics
is di�erent for conditional laws. Instead of checking the
property for 100 random test cases, we try checking it for
100 test cases satisfying the condition. If a candidate test
case does not satify the condition, it is discarded, and a new
test case is tried.
Checking the laws prop_MaxLe and prop_Insert succeed

as usual, but sometimes, checking a conditional law produces
the output

269

Arguments exhausted after 64 tests.

If the precondition of a law is seldom satis�ed, then we might
generate many test cases without �nding any where it holds.
In such cases it is hopeless to search for 100 cases in which
the precondition holds. Rather than allow test case gener-
ation to run forever, we generate only a limited number of
candidate test cases (the default is 1000). If we do not �nd
100 valid test cases among those candidates, then we sim-
ply report the number of successful tests we were able to
perform.
In the example, we know that the law passed the test in 64

cases. It is then up to the programmer to decide whether this
is enough, or whether it should be tested more thoroughly.

2.4 Monitoring Test Data
Perhaps it seems that we have tested the law for insert

thoroughly enough to establish its credibility. However, we
must be careful. Let us modify prop_Insert as follows2

prop_Insert :: Int -> [Int] -> Property
prop_Insert x xs =

ordered xs ==>
classify (null xs) "trivial" $
ordered (insert x xs)

Checking the law now produces the message

OK, passed 100 tests (43% trivial).

The classify combinator does not change the meaning of a
law, but it classi�es some of the test cases, in this case those
where xs is the empty list were classi�ed as \trivial". Thus
we see that a large proportion of the test cases only tested
insertion into an empty list.
We can get more information than just labelling some test

cases. The combinator collect will gather all values that
are passed to it, and print out a histogram of these values.
For example, if we write:

prop_Insert :: Int -> [Int] -> Property
prop_Insert x xs =
ordered xs ==>

collect (length xs) $
ordered (insert x xs)

we might get as a result:

OK, passed 100 tests.
49% 0.

32% 1.
12% 2.
4% 3.
2% 4.
1% 5.

So we see that only 19 cases tested insertion into a list with
more than one element. While this is enough to provide
fairly strong evidence that the law holds, it is worrying that
very short lists dominate the test cases so strongly. After
all, it is easy to de�ne an erroneous version of insert which
nevertheless works for lists with at most one element.
The reason for this behaviour, of course, is that the pre-

condition ordered xs skews the distribution of test cases
towards short lists. Every generated list of length 0 or 1
is ordered, but only 50% of the lists of length 2 are. Thus
test cases with longer lists are more likely to be rejected by

2$ is Haskell's in�x function application.

the precondition. There is a risk of this kind of problem ev-
ery time we use conditional laws, so it is always important
to investigate the proportion of trivial cases among those
actually tested.
The best solution, though, is to replace the condition with

a custom test data generator for ordered lists. We write

prop_Insert :: Int -> Property
prop_Insert x =
forAll orderedList $ \xs ->
ordered (insert x xs)

which speci�es that values for xs should be generated by
the test data generator orderedList. Checking the law now
gives \OK: passed 100 tests", as we would expect.

QuickCheck provides support for the programmer to de�ne
his or her own test data generators, with control over the
distribution of test data, which we will look at in the next
section.

2.5 Infinite Structures
The Haskell function cycle takes a non-empty list, and

returns a list that repeats the contents of that list in�nitely.
Now, take a look at the following law, formulated in Quick-

Check as3:

prop_DoubleCycle :: [Int] -> Property

prop_DoubleCycle xs =
not (null xs) ==>

cycle xs == cycle (xs ++ xs)

Although intuitively the law is true, it cannot be checked
since we are comparing two in�nite lists using computable
equality ==, which does not terminate. Instead, we can refor-
mulate the property as a logically equivalent one, by using
the fact that two in�nite lists are equal if all �nite initial
segments are equal.

prop_DoubleCycle :: [Int] -> Int -> Property
prop_DoubleCycle xs n =
not (null xs) && n >= 0 ==>

take n (cycle xs) == take n (cycle (xs ++ xs))

Another issue related to in�nite structures is quanti�cation
over them. We will later see how to deal with properties
that for example hold for all in�nite lists, but in general it
is not clear how to formulate and execute properties about
structures containing bottom.

3. DEFINING GENERATORS

3.1 Arbitrary
The way we generate random test data of course depends

on the type. Therefore, we have introduced a type class
Arbitrary, of which a type is an instance if we can generate
arbitrary elements in it.

class Arbitrary a where
arbitrary :: Gen a

Gen a is an abstract type representing a generator for type
a. The programmer can either use the generators built in
to QuickCheck as instances of this class, or supply a custom
generator using the forAll combinator, which we saw in the
previous section. For now, we de�ne the type Gen as

3Note that leaving the condition not (null xs) out results
in an error, because cycle is not de�ned for empty lists.

270

newtype Gen a = Gen (Rand -> a)

Here Rand is a random number seed; a generator is just a
function which can manufacture an a in a pseudo random
way. But we will treat Gen as an abstract type, so we de�ne
a primitive generator

choose :: (Int, Int) -> Gen Int

to choose a random number in an interval, and we program
other generators in terms of it.
We also need combinators to build complex generators

from simpler ones; to do so, we declare Gen to be an instance
of Haskell's class Monad. This involves implementing the
methods of the Monad class

return :: a -> Gen a
(>>=) :: Gen a -> (a -> Gen b) -> Gen b

the �rst one of which contructs a constant generator, and
the second one being the monadic sequencing operator which
generates an a, and passes it to its second argument to gen-
erate a b. The de�nition of (>>=) needs to pass indepen-
dent random number seeds to its two arguments, and is only
passed one seed, but luckily the Haskell random number li-
brary provides an operation to split one seed into two.
De�ning generators for many types is now straightfor-

ward. As examples, we give generators for integers and
pairs:

instance Arbitrary Int where
arbitrary = choose (-20, 20)

instance (Arbitrary a, Arbitrary b) =>

Arbitrary (a,b) where
arbitrary = liftM2 (,) arbitrary arbitrary

In the second case we use a standard monadic function,
liftM2, which is de�ned in terms of return and (>>=), to
make a generator that applies the pairing operator (,) to
the results of two other generators. QuickCheck contains
such declarations for most of Haskell's prede�ned types.

3.2 Generators for User-Defined Types
Since we de�ne test data generation via an instance of

class Arbitrary for each type, then we must rely on the user
to provide instances for user-de�ned types. In principle we
could try to generate these automatically, in a pre-processor
or via polytypic programming [2], but we have chosen in-
stead to leave this task to the user. This is partly because
we want QuickCheck to be a lightweight tool, easy to imple-
ment and easy to use in a standard programming environ-
ment; we don't want to oblige users to run their programs
through a pre-processor between editing them and testing
them. But another strong reason is that it seems to be very
hard to construct a generator for a type, without knowing
something about the desired distribution of test cases.
Instead of producing generators automatically, we pro-

vide combinators to enable a programmer to de�ne his own
generators easily. The simplest, called oneof, just makes a
choice among a list of alternative generators with a uniform
distribution. for example, if the type Colour is de�ned by

data Colour = Red | Blue | Green

then a suitable generator can be de�ned by

instance Arbitrary Colour where
arbitrary = oneof

[return Red, return Blue, return Green]

As another example, we could generate arbitrary lists using

instance Arbitrary a => Arbitrary [a] where
arbitrary = oneof
[return [], liftM2 (:) arbitrary arbitrary]

where we use liftM2 to apply the cons operator (:) to an
arbitrary head and tail. However, this de�nition is not really
satisfactory, since it produces lists with an average length
of one element. We can adjust the average length of list
produced by using frequency instead, which allows us to
specify the frequency with which each alternative is chosen.
We de�ne

instance Arbitrary a => Arbitrary [a] where

arbitrary = frequency
[(1, return [])
, (4, liftM2 (:) arbitrary arbitrary)]

to choose the cons case four times as often as the nil case,
leading to an average list length of four elements.
However, for more general data types, it turns out that

we need even �ner control over the distribution of generated
values. Suppose we de�ne a type of binary trees, and a
generator:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = frequency

[(1, liftM Leaf arbitrary)
, (2, liftM2 Branch arbitrary arbitrary)]

We want to avoid choosing a Leaf too often, hence the use
of frequency.
However, this de�nition only has a 50% chance of termi-

nating! The reason is that for the generation of a Branch to
terminate, two recursive generations must terminate. If the
�rst few recursions choose Branches, then generation termi-
nates only if very many recursive generations all terminate,
and the chance of this is small. Even when generation ter-
minates, the generated test data is sometimes very large.
We want to avoid this: since we perform a large number of
tests, we want each test to be small and quick.
Our solution is to limit the size of generated test data.

But the notion of a size is hard even to de�ne in general for
an arbitrary recursive datatype (which may include func-
tion types anywhere). We therefore give the responsibility
for limiting sizes to the programmer de�ning the test data
generator. We change the representation of generators to

newtype Gen a = Gen (Int -> Rand -> a)

where the new parameter is to be interpreted as some kind
of size bound. We de�ne a new combinator

sized :: (Int -> Gen a) -> Gen a

which the programmer can use to access the size bound:
sized generates an a by passing the current size bound to
its parameter. It is then up to the programmer to inter-
pret the size bound in some reasonable way during test data
generation. For example, we might generate binary trees
using

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = sized arbTree

arbTree 0 = liftM Leaf arbitrary

271

arbTree n = frequency

[(1, liftM Leaf arbitrary)
, (4, liftM2 Branch (arbTree (n `div` 2))

(arbtree (n `div` 2)))]

With this de�nition, the size bound limits the number of
nodes in the generated trees, which is quite reasonable.
Now that we have introduced the notion of a size bound,

we can use it sensibly in the generators for other types such
as integers and lists (so that the absolute value respective
length is bounded by the size). So the de�nitions we pre-
sented earlier need to be modi�ed accordingly.
We stress that the size bound is simply an extra, global

parameter which every test data generator may access; ev-
ery use of sized sees the same bound4. We do not attempt
to `divide the size bound among the generators', so that for
example a longer generated list would have smaller elements,
keeping the overall size of the structure the same. The rea-
son is that we wish to avoid correlations between the sizes
of di�erent parts of the test data, which might distort the
test results.
We do vary the size between di�erent test cases: we begin

testing each property on small test cases, and then grad-
ually increase the size bound as testing progresses. This
makes for a greater variety of test cases, which both makes
testing more e�ective, and improves our chances of �nding
enough test cases satisfying the precondition of conditional
properties. It also makes it more likely that we will �nd a
small counter example to a property, if there is one.

3.3 Generating Functions
If we are to check properties involving function valued

variables, then we must be able to generate arbitrary func-
tions. Rather surprisingly, we are able to do so. To un-
derstand how, notice that a function generator of type Gen

(a->b) is represented by a function of type Int -> Rand ->
a -> b. By reordering parameters, this is equivalent to the
type a -> Int -> Rand -> b, which represents a -> Gen b.
We can thus de�ne

promote :: (a -> Gen b) -> Gen (a->b)

and use it to produce a generator for a function type, pro-
vided we can construct a generator for the result type which
somehow depends on the argument value. We take care of
this dependence by de�ning a new class,

class Coarbitrary a where

coarbitrary :: a -> Gen b -> Gen b

whose method coarbitrary modi�es a generator in a way
depending on its �rst parameter. We will think of coarbitrary
as producing a generator transformer from its �rst argu-
ment. Given this class, we can de�ne

instance (Coarbitrary a, Arbitrary b) =>
Arbitrary (a->b) where

arbitrary =
promote (\a -> coarbitrary a arbitrary)

which generates an arbitary function that uses its argument
to modify the generation of its result.
In order to de�ne instances of Coarbitrary we need a way

to construct generator transformers. We therefore de�ne the
function

4Unless the programmer explicitly changes it using the
resize combinator.

variant :: Int -> Gen a -> Gen a

where variant n g constructs a generator which transforms
the random number seed it is passed in a way depending on
n, before passing it to g. This function must be de�ned very
carefully, so that all the generators we construct using it are
independent. Given any list of integers [n1,n2,...nk], we
can construct a generator transformer

variant n1 . variant n2 variant nk

We de�ne variant so that di�erent lists of integers give
rise to independent generator transformers (with a very high
probability).
Now we can de�ne instances of coarbitrary that choose

between generator transformers depending on the argument
value. For example, the boolean instance

instance Coarbitrary Bool where
coarbitrary b =

if b then variant 0 else variant 1

transforms a generator in independent ways for True and for
False; the generators coarbitrary True g and coarbitrary
False g will be independent. In a similar way, we can de-
�ne suitable instances for many other types. For example,
the integer instance just converts its integer argument into
a sequence of bits, which are then used as generator trans-
formers in turn.
Instances of Coarbitrary for recursive datatypes can be

de�ned according to a standard pattern. For example, the
list instance is just

instance Coarbitrary a => Coarbitrary [a] where
coarbitrary [] = variant 0
coarbitrary (x:xs) =
variant 1 . coarbitrary x . coarbitrary xs

The goal is that di�erent lists should be mapped to inde-
pendent generator transformers; we achieve this by map-
ping each constructor to an independent transformer, and
composing these with transformers derived from each com-
ponent. Other recursive datatypes can be treated in the
same way. Since the programmer is responsible for making
these de�nitions for user-de�ned types, it is important that
they be straightforward.
Finally, we can even interpret functions as generator trans-

formers, with an instance of the form

instance (Arbitrary a, Coarbitrary b) =>
Coarbitrary (a->b) where

coarbitrary f gen =
arbitrary >>= \a -> coarbitrary (f a) gen

The idea is that we apply the given function to an arbitrary
argument, and use the result to transform the given gener-
ator. In this way, two functions which are di�erent will give
rise to di�erent generator transformers.
Note that, if we had tried to avoid needing to split random

number seeds by de�ning the Gen monad as a state trans-
former on the random seed, rather than a state reader, then
we would not have been able to de�ne the promote func-
tion, and we would not have been able to generate random
functions.

4. IMPLEMENTING QUICKCHECK
As we have seen, the function quickCheck can handle

properties with a varying number of arguments and di�er-
ent result types. To implement this, we introduce the type
Property, and we create the type class Testable.

272

class Testable a where

property :: a -> Property

The Property type represents predicates that can be checked
by testing. This means that it needs to be able to gener-
ate random input, and �nally product a test result. So, a
Property is a computation in the Gen monad, ending in an
abstract type Result, which keeps track of the boolean re-
sult of the testing, the classi�cations of test data, and the
arguments used in the test case.

newtype Property = Prop (Gen Result)

Let us take a look at some instances of Testable. An easy
type to check is of course Bool. Further, functions for which
we can generate arbitrary arguments can be tested. And
lastly, even the property type itself is an instance, so that
we can nest property combinators.

instance Testable Bool where
property b = Prop (return (resultBool b))

instance (Arbitrary a, Show a, Testable b) =>
Testable (a->b) where

property f = forAll arbitrary f

instance Testable Property where
property p = p

Using the function property, it becomes easy to de�ne the
function quickCheck. Its type is:

quickCheck :: Testable a => a -> IO ()

More details of the implementation can be found in the ap-
pendix.

5. SOME CASE STUDIES

5.1 Unification
As a �rst (and rather pathological) case study, we dis-

cuss a un�cation algorithm which we have developed along
with a QuickCheck speci�cation. This was quite revealing,
both as regards the impact that QuickCheck has on program-
ming, and the pitfalls that must be avoided. It is too large
to present in detail, so we will just discuss the lessons we
learned.

5.1.1 Impact on Type Definitions
First of all, the use of QuickCheck had an impact on the

design of the types in the program. We de�ned the type of
terms to be uni�ed as

data Term = Var Var | Constr Name [Term]
newtype Var = Variable Nat

newtype Name = Name String

rather than the equivalent

data Term = Var Int | Constr String [Term]

which we would probably have chosen otherwise. The type
we used distinguishes between a string used as a constructor
name, and a string used in other contexts, and between a
natural number used as a variable name, and an integer used
in other contexts.
The reason we chose to make these distinctions in the

type is that it enabled us to de�ne a di�erent test data
generator for Names for example, than for strings. Had we

generated terms using the default test data generator for
strings, then it is very unlikely that we would ever generate
uni�able terms, since it is unlikely we would generate the
same constructor name twice. Instead, we chose to generate
constructor names using

instance Arbitrary Name where
arbitrary = sized $ \n -> oneof

[return (Name ("v" ++ show i))
| i <- [1..log n+1]]

which gives us a good chance that generated terms will be
at least partially uni�able. Likewise, we limited uni�cation
variables in test data to a small set.
Of course, we could have used the second Term type above

and speci�ed a custom test data generator with an explicit
forAll in each property. But it is more convenient to let test
data be automatically generated using arbitrary, so one is
encouraged to make distinctions explicit in types. There
are other advantages to doing so also: it permits the type
checker to detect more errors. So, using QuickCheck changes
the balance of convenience in the question of introducing
new types in programs.

5.1.2 Checking Functional Properties
A uni�er needs to manage the current substitution, and

also the possibility of failures in recursive calls. A convenient
way to do so is to use a monad. We de�ned a uni�cation
monad M, represented by a function, with operations

setV :: Var -> Term -> M ()
getV :: Var -> M Term

to read and write variables, among others. We were able
to de�ne an `extensional equality' operator eqM on monadic
values, and check both the monad laws and properties such
as

prop_SetGet v t = (do setV v t; getV v)
`eqM` (do setV v t; return t)

5.1.3 Errors Found
It would be nice to be able to report that QuickCheck

found a large number of errors in this example. In fact, no
errors at all were found in the uni�er itself. This is probably
more a re
ection on the number of times the authors have
programmed uni�ers previously, than on the e�ectiveness of
QuickCheck | we know how to do it, quite simply.
On the other hand, we did �nd errors in the speci�cation.

For example, we de�ned a substitution function which re-
peatedly substitutes until no variables in the domain of the
substitution remain, and stated the obvious property

prop_SubstIdempotent s t =
subst s (subst s t) == subst s t

QuickCheck revealed this property to be false: it holds only
for acyclic substitutions (otherwise an in�nite term is gen-
erated, and the equality test loops). This error was found
using the function verboseCheck, which prints out the ar-
guments to every test case before it checks it.
We were obliged to correct the speci�cation to

prop_SubstIdempotent s t =
acyclic s ==> subst s (subst s t) == subst s t

Thus QuickCheckmade us think harder about the properties
of our code, and document them correctly.

273

On the downside, formulating the speci�cation correctly
turned out to be quite a lot of work, perhaps more than
writing the implementation. This was partly because pred-
icates such as acyclic are non-trivial to de�ne; a good set
theory library would have helped here.

5.1.4 A False Sense of Security
The most serious pitfall we uncovered with this experi-

ment was the false sense of security that can be engendered
when one's program passes a large number of tests in trivial
cases. We have already referred to this problem when we
discussed conditional properties; in this example, it bit us
hard.
Many properties of uni�cation apply to the case when

uni�cation succeeds. They can be stated conveniently in
the form

prop_Unify t1 t2 = s /= Nothing ==> : : :

where s = unifier t1 t2

since our uni�er returns Nothing when it fails. With a lit-
tle re
ection, we see that two randomly chosen terms are
fairly likely to be uni�able, since variables occur quite often,
and if either term is a variable then uni�cation will almost
certainly succeed. On the other hand, if neither term is a
variable then the probability that they will unify is small.
Thus the case where one term is a variable is heavily over-
represented among the test cases that satisfy the precondi-
tion | we found that over 95% of test cases had this prop-
erty. Although QuickCheck succeeded in `verifying' every
property, we can hardly consider that they were thoroughly
tested.
The solution was to use a custom test data generator

prop_Unify =

forAll probablyUnifiablePair $ \(t1,t2) ->
s /= Nothing ==> : : :

where s = unifier t1 t2

We generated `probably uni�able pairs' by generating one
random term, and replacing random subterms by variables
in two di�erent ways. This usually generates uni�able terms,
although may fail to when variables are used inconsistently
in the two terms. With this modi�cation, the proportion of
trivial cases fell to a reasonable 20{25%.
This experience underlines the importance of investigating

the distribution of actual test cases, whenever conditional
properties are used.

5.2 Circuit Properties

5.2.1 Lava in a Nutshell
Lava [3, 7] is a tool to describe, simulate and formally ver-

ify hardware. Lava is a so-called embedded language, which
means that the circuit descriptions and properties are all
expressed in an existing programming language, in this case
Haskell.
The idea is to view a hardware circuit as a function from

signals of inputs to signals of outputs. The Lava system
provides primitive circuits, such as and2, xor2, and delay.
More complicated circuits are de�ned by combining these.
Circuits de�ned in Lava can be simulated as follows: one
provides inputs and the outputs are calculated.

Main> simulate and2 (high, low)

high

Furthermore, the Lava system de�nes combinators for cir-
cuits, such as sequential composition (>->), parallel com-
position (<|>), and column, which takes one circuit and
replicates it in a column of circuits, connecting the vertical
wires.

5.2.2 Properties in Lava
Properties of circuits can be de�ned in a similar way. For

example, to de�ne the property that a certain circuit is com-
mutative, we say:

prop_Commutative circ (a, b) =

circ (a, b) <==> circ (b, a)

where <==> is logical equivalence lifted to arbitrary types
containing signals, in this case a pair.
Properties can be formally veri�ed. We do this by provid-

ing symbolic inputs to the circuit or property, and calculat-
ing a concrete expression in a Haskell datatype, representing
the circuit.
We can then write this expression to a �le and call an

external theorem prover. All this is done by the overloaded
Lava function verify. Here is how we can use it to verify
that a so-called half adder component is commutative:

Main> verify (prop_Commutative halfAdd)

Proving: ... Valid.

The Lava system provides a number of functions and combi-
nators to conveniently express properties and formally verify
them.

5.2.3 QuickCheck in Lava
Though we are able to verify properties about circuits in

Lava, we greatly bene�t from extending it with a testing
tool like QuickCheck. There are two main reasons for that.
The �rst one is that calling an external theorem prover

is a very heavyweight process. When verifying, say, a 32-
bit multiplier, the formulas that we generate for external
theorem proving are quite big and we often have to wait for
a long time to get an answer.
So, a typical development cycle is to write down the spec-

i�cation of the circuit �rst, then make an implementation,
QuickCheck it for obvious bugs, and lastly, call the external
theorem prover for verifying the correctness.
Here is an example of how to use QuickCheck in Lava:

Main> quickCheck (prop_Commutative halfAdd)

OK: passed 100 tests.

Adding this testing methodology to Lava turned out to be
quite straightforward, because Lava already had a notion of
properties. Testing can be done for all circuit types, even
sequential circuits (containing latches). We simply check the
circuit property for a sequence of inputs.

5.2.4 Higher Order Testing
The second reason for using testing in Lava is simply that

we can test more properties than we can formally verify!
The external theorem provers that are connected to Lava
can only deal with at most �rst-order logics, and the Lava
system is only able to generate formulas of that type.
Sometimes, we would like to verify properties about com-

binators. For example, proving that column distributes over
(>->):

prop_ComposeSeqColumn circ1 circ2 inp =
column (circ1 >-> circ2) inp

<==> (column circ1 >-> column circ2) inp

274

is very hard to verify in Lava for all circ1 and circ2. In
fact, such properties are hard to verify automatically in gen-
eral (we can do it for small �xed sizes however). But since
we can randomly generate functions, we can at least test
these kind of properties for arbitrary circuits.
A drawback is that we have to �x the types of these cir-

cuits, whereas the combinators themselves, and thus the
properties about them, are polymorphic in the circuits' in-
put and output types.

5.2.5 Errors Found
The authors used the QuickCheck library while developing

a collection of arithmetic circuits. Previously, testing was
already used in the development process, but only in a very
limited and ad-hoc way. Now, much more thorough testing
was possible.
The errors we found in these particular circuits were of

two kinds. Firstly, we found errors that our formal veri�ca-
tion method would have found as well: logical errors in the
circuits. But secondly, we also found errors due to the fact
that random input also means random input size. For ex-
ample, for an n-bit � m-bit adder, we only use and formally
verify the circuit for speci�c input sizes. Random testing
checks many more combinations, and it often turned out
that we had forgotten to de�ne one of these cases!

5.3 Propositional Theorem Proving
For teaching purposes, we implemented two di�erent well-

known methods of checking if a set of propositional logic
clauses is contradictory. One of these methods was the
Davis-Putnam method [8], which uses backtracking to gen-
erate a list of all models. The other one was St�almarck's
method [16], which is an incomplete method and uses a
variant on the dilemma proof system to gather information
about the literals in the clause set.

type Clause = [Lit] -- disjunction

type Model = [Lit] -- conjunction

davisPutnam :: [Clause] -> [Model]
st�almarck :: Int -> [Clause] -> Maybe Model

The st�almarck function takes an extra argument, an Int,
which is the so-called \saturation level", a parameter which
limits the depth of the proofs, and usually lies between 0 and
3. If the result of st�almarck is Nothing, it means that there
was a contradiction. If the result is Just m, it means that
every model of the clause set should have m as a sub-model.
Since davisPutnam is much more straight-forward to im-

plement than st�almarck, we wanted to check the latter
against the �rst. Here is how we formulate the informal
property stated above:

prop_St�almarck_vs_DP :: Property
prop_St�almarck_vs_DP =

forAll clauses $ \cs ->
forAll (choose (0,3)) $ \sat ->

case st�almarck sat cs of
Nothing ->

collect "contradiction" $
davisPutnam cs == []

Just m ->
not (null m) ==>

collect (length m) $

all (m `subModel`) (davisPutnam cs)

Note that we collect some statistics information: \contra-
diction" when the result was Nothing, and the size of m in
the case of Just m. We also expressed that we disqualify a
test case when st�almarck returns Just [].
With the help of this property, QuickCheck found 3 bugs!

These bugs were due to implicit unjusti�ed assumptions we
had about the input. The implementations of both algo-
rithms assumed that no clauses in the input could contain
the same literal twice, and the st�almarck function assumed
that none of the input clauses was empty.
The data generator clauses is de�ned using the same

techniques as in section 5.1.1. Testing the property took
about 30 seconds, and from the output we could see that
the distribution of Nothing vs. Just m was about 50/50.

5.4 Pretty Printing
Andy Gill reported an interesting story about using Quick-

Check to us. He used it in developing a variant of Wadler's
pretty printing combinator library [18] in Java. First, he
implemented his variant functionally, using Haskell. Then,
still using Haskell, he used a state monad with exceptions to
develop an imperative implementation of the same library.
The idea was that the second implementation models what
goes on in a Java implementation.
Then, he expressed the relationship between the two dif-

ferent implementations using QuickCheck properties. He
writes: \This quickly points out where my reasoning is faulty,
and provides great tests to catch the corners of the implemen-
tation. Three problems were found, the third of which showed
that I had merged two concepts in my implementation that
I should not have."
Furthermore, he made an improvement in the way Quick-

Check reports counter examples. Sometimes, the counter
examples found are very large, and it is di�cult to go back
to the property and understand why it is a counter example.
However, when the counter example is an element of a tree-
shaped datatype, the problem can often be located in one of
the sub-trees of the counter example found. Gill extended
the Arbitrary class with a new method

smaller :: a -> [a]

which is intended to return a list of smaller, but similar
values to its argument { for example, direct subtrees. He
adapted the quickCheck function so that when a counter
example is found, it tries to �nd a smaller one using this
function. In some cases much smaller counterexamples were
found, greatly reducing the time to understand the bug
found.
The last step Gill made in developing his Java pretty

printing library was porting the state and exception monad
model in Haskell to Java. He then used QuickCheck to gen-
erate a large number of test inputs for the Java code, in
order to check that the Java implementation was equivalent
to the two Haskell models.

5.5 Edison
Chris Okasaki's Edison is a library of e�cient data struc-

tures suitable for implementation and use in functional pro-
gramming languages. He has used QuickCheck to state and
test properties of the library. Every data structure in the
library has been made an instance of Arbitrary, and he
has included several extra modules especially for formulating
properties about these data structures. He reports: \My ex-
perience has mostly been that of a very satis�ed user. Quick-

275

Check lets me test Edison with probably 25% (maybe less!)
of the e�ort of my previous test suite, and does a much better
job to boot."
Okasaki also mentions a drawback, having to do with the

Haskell module system. He often uses one speci�cation of
a data structure together with di�erent implementations.
A natural way to do this is to place the speci�cation in one
module, and each implementation in a seperate module. But
since the speci�cation refers to the implementation, then the
speci�cation module must import the implementation one
currently under test. Okasaki was obliged to edit the spec-
i�cation module by hand before each test, so as to import
the right implementation! Much preferable would be to pa-
rameterise the speci�cation on an implementation module;
ML-style functors would be really helpful here!

6. DISCUSSION

6.1 On Random Testing
At �rst sight, random selection of test cases may seem

a very naive approach. Systematic methods are often pre-
ferred: in general, a test adequacy criterion is de�ned, and
testing proceeds by generating test cases which meet the
adequacy criterion. For example, a simple criterion is that
every reachable statement should be executed in at least
one test, a more complex one that every feasible control-

ow path (with exceptions for loops) be followed in at least
one test. A wide variety of adequacy critera have been pro-
posed; a recent survey is [19].
We have chosen not to base QuickCheck on such an ade-

quacy criterion. In part, this is because many criteria would
need reinterpretation before they could be applied to Haskell
programs { it is much less clear, for example, what a control-

ow path is in a language with higher-order functions and
lazy evaluation. In part, such a criterion would force us to
use much more heavyweight methods { even measuring path
coverage, for example, would require compiler modi�cations
and thus tie QuickCheck to a particular implementation of
Haskell (namely the one we modi�ed to collect path infor-
mation). Generating test data to exercise a particular path
requires constraint solving: one must �nd input values which
make the series of tests along the given path produce spec-
i�ed results. While such constraint solving may be feasible
for arithmetic data, for the rich symbolic datatypes found
in Haskell programs it is a di�cult research problem in its
own right.
However, apart from the di�culty of automating system-

atic testing methods for Haskell, there is no clear reason to
believe that doing so would yield better results. In 1984,
Duran and Ntafos compared the fault detection probability
of random testing with partition testing, and discovered that
the di�erences in e�ectiveness were small [9]. Hamlet and
Taylor repeated their study more extensively, and corrobo-
rated the original results [12]. Although partition testing is
slightly more e�ective at exposing faults, to quote Hamlet's
excellent survey [11], \By taking 20% more points in a ran-
dom test, any advantage a partition test might have had is
wiped out."
For small programs in particular, it is likely that random

test cases will indeed exercise all paths, for example, so that
test coverage is likely to be good by any measure. Using
QuickCheck, we apply random testing at a �ne grain: we
check properties of individual functions, but the functions

they call are tested independently. So even when QuickCheck

is used to test a large program, we always test a small part
at a time. Therefore we may expect random testing to work
particularly well.
Given this, together with the much greater di�culty of

automating systematic testing for Haskell, our choice of ran-
dom testing is clear.

6.2 Correctness Criteria
The problem of determining whether a test is passed or

not is known as the oracle problem. One solution is to com-
pare program output with that of another version of the pro-
gram, perhaps an older one, or perhaps a simpler, slower,
but `obviously correct' version. Alternatively, an executable
speci�cation might play the same rôle. This kind of oracle
can easily be expressed as a QuickCheck property, although
our properties are much more general.
However, often one can check that a program's output is

correct much more e�ciently than one can compute the out-
put. Blum and Kannan exploit this in their work on result-
checking [4]: a program checker is de�ned to be another
program which classi�es the program's output as correct or
buggy, with a high probability of classifying correctly, and
does so with strictly lower complexity. They distinguish pro-
gram checking from program testing: their proposal is that
programs should always check their output, and indeed in
further work Blum et al. showed how programs which usu-
ally produce correct answers can even correct wrong output
[5] (in particular domains). Of course, result checkers can
also be expressed as QuickCheck properties, although we use
them for testing rather than as a part of the �nal program.

QuickCheck's property language is however more general
than result checking. Via conditional properties or speci�c
test data generators, we can express properties which hold
only for a subset of all possible inputs. Thus we avoid testing
functions in cases which lead to run-time errors, or cases in
which we do not care about the result. For example, we do
not test insertion into an unordered list | there is no point
in doing so. Yet a result checker must verify that a program
produces the `correct' output in all cases, even those which
are uninteresting. Moreover, QuickCheck properties are not
limited to checking the result of an individual function call
| the property that an operator is associative, for example,
cannot really be said to check the result of any individual use
of the operator, but still expresses a useful `global' property
that can be checked by testing.
The idea of testing the properties in a speci�cation di-

rectly was used in the DAISTS system [10] for testing ab-
stract data types, which compiled equational properties into
testing code, although test cases had to be supplied by the
user. Lacking automatic test case generation, DAISTS did
not need equivalents of our conditional and quanti�ed prop-
erties. Although the language used was imperative, abstract
data type operations had to be forbidden to side-e�ect their
arguments, thus the programs to be tested were essentially
restricted to be functional. Later work aims to relax this
restriction: Antoy and Hamlet describe a technique for test-
ing C++ classes against an algebraic speci�cation, which is
animated in order to predict the correct result [1]. How-
ever, the speci�cation language must be restricted in order
to guarantee that speci�cations can be animated.
There seems to be no published work on automatic test-

ing of functional programs against speci�cations. We simply

276

observe that functional programs and property based speci-
�cations are a very good match: we can use the given prop-
erties directly for testing. Moreover, embedding the speci�-
cation language in Haskell permits us to write very powerful
and
exible properties, with a minimum of learning e�ort
required.

6.3 Test Data Generation
Commercial random testing tools generate test data in

limited domains, with the goal of matching the distribution
of actual data for the system under test { the so-called oper-
ational pro�le. In this case, statistical inferences about the
mean time between system failures can be drawn from the
test results.
In order to generate more complex data, it is necessary

to provide a description of the data's structure. A popu-
lar approach to doing so uses grammars. However, it was
realised very early that context-free grammars cannot ex-
press all the desired properties of test data { for example,
that a generated random program contains no undeclared
identi�ers. Therefore the grammars were enhanced with ac-
tions [6], or extended to attribute grammars. This approach
has been most used for testing compilers, although Maurer
argues for its use in many contexts [15].
Grammars have been used for systematic testing, where

for example the generated test data is required to exercise
each production at least once. Such an adequacy crite-
rion maybe be particularly appropriate for compiler test-
ing. Maurer also used grammars for random testing [15],
and noted the termination problem for recursive grammars.
His solution, though, was just to increase the probabilities of
generating leaves so that eventual termination is guaranteed.
Our experience is that this results in far too high a propor-
tion of trivial test cases, and therefore ine�cient testing {
more tests must be run to exercise the program properly.
We believe our method of controlling sizes is much superior.
It seems that the need to learn a complex language of ex-

tended grammars has hindered the adoption of these meth-
ods in practice. By embedding a test generator language
in Haskell, we provide (at least) the same capabilities, but
spare the programmer the need to learn more than a few new
operators. At the same time we provide all the power and

exibility needed to generate test data satisfying complex in-
variants, in a language the programmer already knows. By
linking generators to types via Haskell's class system, we re-
lieve the programmer of the need to specify generators at all
in many cases, and where they must be speci�ed, the pro-
grammer's work is usually limited to specifying generators
for his or her own new types.

6.4 On Randomness
We have encountered some interesting problems in reason-

ing about programs which use random number generation.
In particular, the Gen monad which QuickCheck is based on
is not a monad at all! Consider the �rst monad law:

return x >>= f = f x

Since our implementation of bind splits its random number
seed to yield the seeds passed to each operand, then f is
passed di�erent seeds on the two sides of the equation, and
may therefore produce di�erent results. So the law simply
does not hold. Morally, however, we consider the law to be
true, because the two sides produce the same distribution of
results, even if the results di�er for any particular seed.

But what, precisely, do we mean by `morally'? We cannot
�x the problem just by reinterpreting equality for the Gen
type, claiming the two sides are just di�erent representations
of the same abstract generator. This isn't good enough,
because we can actually observe the di�erence at other types
by supplying a random number seed - something we have to
be able to do if the Gen type is to be useful. Instead we have
to reinterpret what we mean by program equivalence in the
presence of random number generation.
We note that this di�culty is by no means con�ned to

Haskell: the imperative program

a := random(); b := random(); c := a - b;

is morally equivalent to the same program with the assign-
ments reversed in the same sense, but of course produces a
di�erent result. There is some interesting semantic theory
to be done here.

6.5 On Lazy Evaluation
We have argued in the past that lazy evaluation is an in-

valuable programming tool, that radically changes the way
programs can be structured [13]. Yet QuickCheck is (of
course) only able to test computable properties. Is there
a con
ict here?
In fact, the con
ict is much less than one might imag-

ine. As we have shown above, we can perfectly well use
in�nite structures in speci�cations, provided the properties
we actually test are computable { for example, we can test
that arbitrarily long pre�xes of in�nite lists are equal, rather
than comparing the lists themselves. Our Gen monad has a
lazy bind operation (because we split the random number
seed, rather than threading it through �rst one operand,
then the other), and so we can freely de�ne generators that
produce in�nite results. What we cannot do is observe non-
termination in a test result. So we cannot test, for example,
the property

reverse (xs++undefined) == undefined

On the other hand, in a sense a human tester cannot ob-
serve non-termination either, and if we have been able to
test lazy programs satisfactorily by hand so far, then we are
not in a worse position if we use QuickCheck. Yet a human
tester can observe that reverse (xs++undefined) produces
an error message (from the evaluation of undefined) without
producing any other output �rst, and can thus infer that the
property above holds. The problem is that the Haskell stan-
dard provides no way for a program to make the same ob-
servation. Yet there are various extensions of Haskell which
do indeed make this possible. Some work done by Andy Gill
has shown that, given such extensions, we could formulate
and check properties such as the one above using QuickCheck

also.

6.6 Some Reflections
We are convinced that one of the major advantages of

using QuickCheck is that it encourages us to formulate for-
mal speci�cations, thus improving our understanding of our
programs. While it is open to the programmer to do this
anyway, few really do, perhaps because there is little short
term payo�, and perhaps because a speci�cation is of less
value if there is no check at all that it corresponds to the
implemented program. QuickCheck addresses both these is-
sues: it gives us a short-term payo� via automated testing,

277

and some reason to believe that properties stated in a mod-
ule actually hold.
We have observed that the errors we �nd are divided

roughly evenly between errors in test data generators, er-
rors in the speci�cation, and errors in the program. The
�rst category is useless to discover (except insofar as it helps
with further testing) { it tells us nothing about the actual
program. The third category is obviously useful { in a sense
these are the errors we test in order to �nd. But the second
category is also important: even if they do not reveal a mis-
take in the code, they do reveal a misunderstanding about
what it does. Correcting such misunderstandings improves
our ability to make use of the tested code correctly later.
When formulating speci�cations one rapidly discovers the

need for a library of functions that implement commonmath-
ematical abstractions. We are developing an implementa-
tion of �nite set theory for use with QuickCheck; many of
the abstractions in it are too ine�cient to be of much use in
programs, but in speci�cations, where the object is to state
properties as clearly and simply as possible, they come into
their own. Because of this di�erence in purpose, there is a
need for libraries speci�cally targeted at speci�cations.
The major limitation of QuickCheck is that there is no

measurement of test coverage: it is up to the user to in-
vestigate the distribution of test data and decide whether
su�ciently many tests have been run. Although we provide
ways to collect this information, we cannot compel the pro-
grammer to use them. A programmer who does not risks
gaining a false sense of security from a large number of in-
adequate tests. Perhaps we could de�ne adequacy measures
just on the generated test data, and thus warn the user at
least in this kind of situation.

7. CONCLUSIONS
We have taken two relatively old ideas, namely speci�ca-

tions as oracles and random testing, and found ways to make
them easily available to Haskell programmers. Firstly, we
provide an embedded language for writing properties, giv-
ing expressiveness without the learning cost. The language
contains convenient features, such as quanti�ers, condition-
als and test data monitors. Secondly, we provide type-based
default random test data generators, including random func-
tions, greatly reducing the e�ort of specifying them. Thirdly,
we provide an embedded language for specifying custom test
data generators, which can be based on the default genera-
tors, giving a �ner control over test data distribution. We
also introduce a novel way of controlling size when generat-
ing random elements of recursive data types.
Further, we demonstrate that the combination of these

old techniques works extremely well for Haskell. The func-
tional nature allows for local and �ne-grained properties,
since all dependencies of a function are explicit. And pre-
cisely random testing is known to work very well for small,
�ne-grained programs, and is e�ective in �nding faults.
Lastly, the tool is lightweight and easy to use, and pro-

vides a short-term payo� for explicitly stating properties of
functions in a program, which greatly increases the under-
standing of the program, for the programmer as well as for
documentation purposes.
Acknowledgements: We would like to thank Andy Gill,

Chris Okasaki, and the anonymous referees for their useful
comments on this paper.

8. REFERENCES

[1] S. Antoy and R. Hamlet. Automatically checking an
implementation against its formal speci�cation. In
Irvine Software Symposium, pages 29{48, March 1992.

[2] Roland Backhouse, Patrik Jansson, Johan Jeuring,
and Lambert Meertens. Generic Programming - An
Introduction. In Lecture notes in Computer Science,
volume 1608, 1999.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh.
Lava: Hardware Design in Haskell. In International
Conference on Functional Programming, Baltimore,
1998. ACM.

[4] M. Blum and S. Kannan. Designing programs that
check their work. In Proc. 21st Symposium on the
Theory of Computing, pages 86{97. ACM, May 1989.

[5] M. Blum, M. Luby, and R. Rubinfeld.
Self-testing/correcting with applications to numerical
problems. In Proc. 22nd Symposium on the Theory of
Computing, pages 73{83. ACM, May 1990.

[6] A. Celentano, S. C. Reghizzi, P. Della Vigna, and
C. Ghezzi. Compiler testing using a sentence
generator. Software { Practice & Experience,
10:897{918, 1980.

[7] K. Claessen and D. Sands. Observable Sharing for
Functional Circuit Description. In Asian Computer
Science Conference, Phuket, Thailand, 1999. ACM
Sigplan.

[8] M. Davis and H. Putnam. A computing procedure for
quanti�cation theory. Journal of the Association for
Computing Machinery, 7(3):201{215, 1960.

[9] J. Duran and S. Ntafos. An evaluation of random
testing. Transactions on Software Engineering,
10(4):438{444, July 1984.

[10] J. Gannon, R. Hamlet, and P. McMullin. Data
abstraction implementation, speci�cation, and testing.
Trans. Prog. Lang. and Systems, (3):211{223, 1981.

[11] D. Hamlet. Random testing. In J. Marciniak, editor,
Encyclopedia of Software Engineering, pages 970{978.
Wiley, 1994.

[12] R. Hamlet and R. Taylor. Partition testing does not
inspire con�dence. Transactions on Software
Engineering, 16(12):1402{1411, December 1990.

[13] J. Hughes. Why Functional Programming Matters. In
D. Turner, editor, Research Topics in Functional
Programming. Addison Wesley, 1990.

[14] M. P. Jones. The Hugs distribution. Currently
available from http://haskell.org/hugs, 1999.

[15] P. M. Maurer. Generating test data with enhanced
context-free grammars. IEEE Software, 7(4):50{56,
1990.

[16] Gunnar St�almarck. A System for Determining
Propositional Logic Theorems by Applying Values and
Rules to Triplets that are Generated from a Formula,
1989. Swedish Patent No. 467 076 (approved 1992),
U.S. Patent No. 5 276 897 (1994), European Patent
No. 0403 454 (1995).

[17] Philip Wadler. Theorems for free! In International
Conference on Functional Programming and Computer
Architecture, London, September 1989.

[18] Philip Wadler. A prettier printer, March 1998. Draft
paper.

278

[19] H. Zhu, P. Hall, and J. May. Software unit test
coverage and adequacy. Computing Surveys,
29(4):366{427, December 1997.

Appendix: Implementation
Here, we show the implementation of the QuickCheck library,
except for the function quickCheck. The source code of
QuickCheck is available from www.cs.chalmers.se/~rjmh/-
QuickCheck/.

module QuickCheck where

import Monad ; import Random

-- Gen

newtype Gen a = Gen (Int -> Rand -> a)

choose :: Random a => (a, a) -> Gen a
choose bounds = Gen (\n r -> fst (randomR bounds r))

variant :: Int -> Gen a -> Gen a
variant v (Gen m) = Gen (\n r ->
m n (rands r !! (v+1)))

where
rands r0 = r1 : rands r2 where (r1, r2) = split r0

promote :: (a -> Gen b) -> Gen (a -> b)
promote f = Gen (\n r -> \a ->
let Gen m = f a in m n r)

sized :: (Int -> Gen a) -> Gen a
sized fgen = Gen (\n r ->
let Gen m = fgen n in m n r)

instance Monad Gen where
return a = Gen (\n r -> a)
Gen m1 >>= k =
Gen (\n r0 -> let (r1,r2) = split r0

Gen m2 = k (m1 n r1)
in m2 n r2)

elements :: [a] -> Gen a
elements xs = (xs !!) `liftM` choose (0, length xs - 1)

vector :: Arbitrary a => Int -> Gen [a]
vector n = sequence [arbitrary | i <- [1..n]]

oneof :: [Gen a] -> Gen a
oneof gens = elements gens >>= id

frequency :: [(Int, Gen a)] -> Gen a
frequency xs = choose (1, sum (map fst xs)) >>= (`pick` xs)
where
pick n ((k,x):xs) | n <= k = x

| otherwise = pick (n-k) xs

-- Arbitrary ; Coarbitrary

class Arbitrary a where
arbitrary :: Gen a

instance Arbitrary Bool where
arbitrary = elements [True, False]

instance Arbitrary Int where
arbitrary = sized (\n -> choose (-n,n))

instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) where
arbitrary = liftM2 (,) arbitrary arbitrary

instance Arbitrary a => Arbitrary [a] where
arbitrary = sized (\n -> choose (0,n) >>= vector)

instance (Arbitrary a, Arbitrary b) => Arbitrary (a -> b) where
arbitrary = promote (`coarbitrary` arbitrary)

class Coarbitrary a where
coarbitrary :: a -> Gen b -> Gen b

instance Coarbitrary Bool where
coarbitrary b = variant (if b then 0 else 1)

instance Coarbitrary Int where
coarbitrary n

| n == 0 = variant 0
| n < 0 = variant 2 . coarbitrary (-n)
| otherwise = variant 1 . coarbitrary (n `div` 2)

instance (Coarbitrary a, Coarbitrary b)
=> Coarbitrary (a, b) where

coarbitrary (a, b) = coarbitrary a . coarbitrary b

instance Coarbitrary a => Coarbitrary [a] where
coarbitrary [] = variant 0
coarbitrary (a:as) =

variant 1 . coarbitrary a . coarbitrary as

instance (Arbitrary a, Coarbitrary b)
=> Coarbitrary (a -> b) where

coarbitrary f gen =
arbitrary >>= ((`coarbitrary` gen) . f)

-- Property

newtype Property = Prop (Gen Result)

data Result = Result
fok :: Maybe Bool, stamp :: [String], arguments :: [String]g

nothing :: Result
nothing = Result
fok = Nothing, stamp = [], arguments = []g

result :: Result -> Property
result res = Prop (return res)

class Testable a where
property :: a -> Property

instance Testable Bool where
property b = result (nothingf ok = Just b g)

instance Testable Property where
property prop = prop

instance (Arbitrary a, Show a, Testable b)
=> Testable (a -> b) where

property f = forAll arbitrary f

evaluate :: Testable a => a -> Gen Result
evaluate a = gen where Prop gen = property a

forAll :: (Show a, Testable b) => Gen a -> (a->b) -> Property
forAll gen body = Prop $

do a <- gen
res <- evaluate (body a)
return (arg a res)

where
arg a res = resf arguments = show a : arguments res g

(==>) :: Testable a => Bool -> a -> Property
True ==> a = property a
False ==> a = result nothing

label :: Testable a => String -> a -> Property
label s a = Prop (add `fmap` evaluate a)
where add res = resf stamp = s : stamp res g

classify :: Testable a => Bool -> String -> a -> Property
classify True name = label name
classify False _ = property

collect :: (Show a, Testable b) => a -> b -> Property
collect v = label (show v)

279

