A tutorial on Parallel Strategies in Haskell
b
Oscar Anydersson
Yanling Jin

This tutorial assumes some previous Haskell experience, including some understanding of
Monads and preferably having seen par and pseq before.

1. Introduction

There are surprisingly many ways to do deterministic parallelism in Haskell. One of the more
complete libraries is called “Strategies”, which provides built-in support for controlling granularity
by chunking, evaluation control and, of course, “sparking”.

A spark is the atomic unit of work in the GHC runtime system. A spark points to a thunk suitable
for evaluation. The RTS scheduler will select sparks from the spark pool (which is a circular
buffer) when it has no runnable threads. Still, the computation will not stall when the RTS hasn’t
had any time to evaluate its sparks. The regular program flow will not hold just because there are
unevaluated sparks left -- it will evaluate them on-the-fly.

Since Haskell is lazy, we know that operations like mapping over a list doesn’t necessarily
evaluate the whole list, if not carefully referenced in such a manner. This tutorial will deal with
how to control evaluation in Haskell. The Strategies libraries make it easy to express what level
of evaluation you expect from your input and when you want it.

Compiling and how to profile GHC programs

Don’t forget that you need need to compile your programs with, at least, the -threaded flag. This
compiles the runtime system with the ability to spawn OS threads. This is a good idea if you
want anything more than an academic exercise.

The GHC runtime system is capable of outputting logging information about its internal events.
Coupled with a visualization tool like ThreadScope, we get a decent profiling tool. Make sure to
compile your programs using the the -eventlog flag.

To be able to set important runtime options, compile with the -rtsopts flag.

Depending on what compilation options you prefer, compiling a program may look something like
ghc --make -threaded -eventlog -rtsopts -02 program.hs

2. A first example

As always with Haskell, we'll learn by doing some Fibonacci.

1

nfib :: Integer -»> Integer
nfibn |l n=<2=1
nfib n = nfib (n - 13 + nfib (n - 2) + 1

-~ The Ewal Monad wersion

qfib :: Integer -> Integer

gfib n | n <= 2 =1

gfib n = runEval % do
nfl <= rpar (qfib Cn-1))
nfZ <= rpar (qfib (n-2J)
return (nfl + nfZ + 1)

-- The strategy wversion

sfib :: Integer -> Integer
sfibn Il n=<2=1
sfib n = -- nfl + nfZ + 1 "using™ strat

with5trategy strat nfl + nfZ + 1
where nfl = nfib (n - 1)
nfZ = nfib (n - 2)
strat v = do rpar nfl; rseq nfl; return v

There’s a close relationship between the Eval monad and Strategies as we can see in the
Haddock documentation. Strategies step in as a higher-level abstraction to ease many of the
problems associated with regulating granularity and forcing evaluation manually.

type Strategy a = a -> Eval a

using :: a -> Strategy a -> a
X "using’® s = runEval (s x)

withStrategy :: Strategyv a -> a -> a
withStrategy s x = runEval (s x)

“using” and “withStrategies” are logically equivalent. They’re in the library to provide syntactic
sugar.

Strategies can in many ways be seen as an extension of the Eval monad, with some syntactic
sugar and evaluation order control.

Connecting to the code examples above, it's very hard to reason theoretically about how sfib will
execute. The strategy rpar provides no guarantees about evaluation, it is merely a hint to the
RTS that it might be a good idea to work on these thunks when there are no runnable threads for
the RTS to schedule. When running sfib on a 4-core system, we expect the spark to be
scheduled, due to the lack of competing threads. When trying to profile this program using GHC
eventlogs and ThreadScope, this is what running sfib 40 looks like:

http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AEval&sa=D&sntz=1&usg=AFQjCNEQS_PHYl_SAetZxrJXs35g7QqRdA
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AEval&sa=D&sntz=1&usg=AFQjCNEQS_PHYl_SAetZxrJXs35g7QqRdA
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g

Activity

HEC 0

I

HEC 2

7 OO O AR

It seems like we achieved good utilization of two cores for a significant period of time. But was it
useful work? Let’'s compare the wall clock time to running nfib 40, our sequential variant and
building block of sfib.

0s 0.5s 1s 15s 2s 2.5s 3s 3.5s 4s 4.5s

IIIIIIlllllllllllllllllllllllllllllllllIIIIIIIIII

Activity

HEC 0

HEC 1

HEC 2

HEC 3

Look at the time axis -- sfib is a huge improvement to nfib! So what happened in the sfib
example? We didn’t spark off a bunch of sparks and do work stealing, but the thunks evaluated
in main thread were apparently accessible to the spark thread and vice versa.

Looking at the gfib version, it seems like it will allow for even more parallelized execution. It calls
itself recursively, spawning more sparks at every call. Let’s run gfib 40, and feed the eventlog
through ThreadScope.

Activity

HEC 0

HEC 1

HEC 2

HEC 3

It looks like we’re using the machine to its full extent, but it's performing worse than sfib, which,
at best, only utilized two cores on the machine. Let’s check out the spark stats from the
eventlog.

HEC Total Converted Overflowed Dud GC'd Fizzled

Total 432769518 288 428330619 0 213481 4225130
HECO 84128180 77 81993088 0 49734 1285105
HEC1 125415614 120 123823085 0 49126 1897792
HEC 2 131121180 50 130749755 0 57309 516256
HEC = 92104544 41 01764601 0 57312 525977

That’s an insane amount of sparks! Let’s go through the meaning of these terms. Converted
means that the spark was actually evaluated by an available core and turned into useful work.
Overflowed refers to sparks discarded due to the spark pool being full. GC’d refers to sparks
being garbage collected. Fizzled were the sparks already evaluated by the normal program flow.

Sparking off work in the GHC runtime system is associated with much lower overhead than
spawning kernel threads, or forking a process, but there is still overhead. We want to find a
balance between dfib, which is sparking way too many units, and sfib, being able to utilize a
maximum of two cores. Also, sparking off tasks with rpar and hoping for stuff to evaluate didn’t
serve us very well here. Strategies will remedy this to a certain extent as we will see, and also,
Strategies incorporate control of the granularity as part of the library.

3.1 Scan revisited

A useful family of functions that very gracefully lets themselves be parallelized are the family of
scan functions. Below is a parallel implementation using Strategies.

scanP :: (Num a, NFData a) => Int -> (a -> a -> a) -> [a] -> [a]
scanP d £ list = concat reducedList
where

scanList = map (scanll f) (chunk d 1list) “using parlList rdeepseq

reducedList = reduce f scanlList
strat v = do rpar reducedList; return v
reduce :: (a-> a-> a) —-> [[al]l -> [lal]
reduce £ [] = []
reduce £ (x:[]) = [x]
reduce f (x:(y:xs)) = x : reduce f (map (f $ last x) y : xs)
chunk :: Int -> [a] -> [[al]
chunk [] = []

chunk n xs as : chunk n bs where (as,bs) = splitAt n xs

scanlList = map (scanll f) (chunk d list) “using parList rdeepseq

Here we see the outermost building block of Strategies, the infixed “using” function, evaluating an
expression using a strategy.

X "using® s = runEval (s x)
parList :: Strategy a -> Strateqgy [a]

“parList” is arguably one of the most straightforward strategies in the library. It evaluates each
element of a list in parallel as sparks according to a given strategy. In this example, the
granularity control built in to Strategies is not used, as we want to retain control over the reduce
step. If you’re not so concerned about the reduce step of your algorithm, go ahead and use the
“chunking” built-in to Strategies. It would look something like this:

scanlList = map (scanll f) (chunk d list) “using parListChunk 4
rdeepseq

http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g

3.2 Reasoning about evaluation in Haskell

We’ll now turn our attention to the strategy rdeepseq. What does it mean, and what is the
NFData typeclass defined in the type signature of scanP?

The NFData typeclass introduces the constraint that all arguments of type a must be evaluated
to normal form, which means that there are no more beta reductions to apply to the expression.
For most practical purposes, one can say that the expression is evaluated when it is in normal
form, that there are no unevaluated thunks left.

The “rdeepseq” is the function actively enforcing this evaluation to normal form, and makes
Haskell behave more like a strict programming language. “rpar” is the strategy of leaving the
evaluation to the spark pool, as we’ve seen before. “rseq” is a weaker evaluation strategy, only
evaluating the list to weak head normal form, for lists meaning that the head will be evaluated.
Note that rdeepseq as a strategy can be useful even in sequential Haskell programming.

evallList :: Strategy a -> Strategy [a]

is the sequential counterpart of parList. Stringing this Strategy together with rdeepseq can be a
powerful tool in constructing efficient algorithms.

It was mentioned earlier that the laziness of Haskell requires more consideration of the
programmer when it comes to evaluation. It is not customary for Haskell to fully evaluate lists
unless that information is required as part of some requested computation.

3.3 Other Strategies

parListChunk :: Int -> Strategy a -> Strateqgy [a]

parListChunk, in contrast to parList, does not spark evaluation of all list elements individually, but
rather divides the list into a fixed amount of chunks, which will also be the number of sparked
tasks. The reduce step is built-in.

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
It should not shock you terribly that there is a supplied Strategy for mapping in parallel. In ideal

cases, you can get multicore speedups by doing little more than mechanical code substitution,
like this:

http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fbase%2F4.5.0.0%2Fdoc%2Fhtml%2FData-Int.html%23t%3AInt&sa=D&sntz=1&usg=AFQjCNGuH6FmmxW9iMc1uiYaUklHVUVE_g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fbase%2F4.5.0.0%2Fdoc%2Fhtml%2FData-Int.html%23t%3AInt&sa=D&sntz=1&usg=AFQjCNGuH6FmmxW9iMc1uiYaUklHVUVE_g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2Flatest%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNG496cOawHwhOdsJZe3ucqt6H9s8g
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2F2.2.0.1%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNGFy5tkXmtngsyrGvhIgLJ5J_JE5Q
http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackages%2Farchive%2Fparallel%2F2.2.0.1%2Fdoc%2Fhtml%2FControl-Parallel-Strategies.html%23t%3AStrategy&sa=D&sntz=1&usg=AFQjCNGFy5tkXmtngsyrGvhIgLJ5J_JE5Q

-- |Add 20 to each integer in the list.
addMap :: [Integer]

addMap = map (+20) 1

addMap = parMap rdeepseq (+20) 1

Activity

£ C—

HEC 1 _

HEC 2 -

| |

A visualized eventlog of running the parallelized addMap over 30 000 elements

Bingo! The conversion from the sequential version to the parallel version didn’t take any effort at
all. This can be done mechanically for every Haskell program in existence.

Activity

HEC 0
HEC 1

HEC 2

nees i | |

A visualized eventlog of running the sequential addMap over 30 000 elements

7

But it wouldn’t be a good idea. This goes to show that in order to achieve good results,
Haskellers need a good understanding of the underlying components, from the runtime system
to evaluation order.

4. Skeletons

Strategies are well suited for writing skeletons in most cases, since one of the major strengths

of strategies is the ability to provide abstraction over parallel computation patterns. ParListChunk
in Section 3 and ParMap can be seen as skeletons.

Divide-and-conquer is a typical example of using strategies to separate algorithm from
parallelism. It is often expressed as follows:

divCong :: (a —> b)
- 3
-> (a => Bool)
-> (b => b == b)
-> (a => Maybe (a,a))
—= b
divCong f arg threshold combine divide = go arg
where
go arg =
case (divide arg) of
Nothing —> f arg
Just (10, r@) => combine 11 rl “using’ strat
where 11 = go 18
rl] = go r@
strat x = do r 11; r rl; return x
where r | threshold arg = rseq
| otherwise = rpar

DivConq divides a non-trivial problem into subproblems, and applying the same schema f to
each subproblem. The final solution is a combination of the solutions of the subproblems.
“strat” encodes the spark of subcomponents |11 and r1 as well as how they should be evaluated.
The threshold controls the depth of the parallelism.

We will use mergesort as an example to demonstrate the use of divide-and-conquer skeletons.
Sort combines two lists and performs sort using the standard Haskell function. A sequential
version of mergesort can be implemented as following.

sort :: Ord a == [a] - [a] - [a]
sort [] yl = yl
sort xL [1 = x1
sort xl@(x:xs) yl@(y:ys)

| x ==y =x : sort xs yl
| x> y =y : sort xl ys

mergeSort :: Ord a => [a] —=> [al]

mergeSort [] []

mergeSort [x] = [x]

mergeSort xs sort (mergeSort xsl) (mergeSort xs2)
where (xsl, xs2) = splitAt (length xs “div® 2) xs

With this Divide-and-Conquer skeleton, we can implement a parallel version of mergesort. It
entirely separates the algorithm from the parallelism. There is no code in this implementation
which is dedicated to concurrency.

mergeSort_dc :: Ord a => Int -> [a] -> [al]
mergeSort_dc thres xs = divCong f xs threshold combine divide

where
f 1:0rd a = [a] - [a]
f X=X

threshold :: [a] —> Bool

threshold x = length x < thres

combine :: Ord a => [a] -> [a] = [a]

combine x1 x2 = sorf x1 x2

divide :: [al -> Maybe ([al,[al)

divide x = case (splitAt (length x “div’ 2) x) of
([1,%x2) => Nothing
(x1,[1) -> Nothing
res => Just res

5. Summary

Deterministic parallelism in Haskell shows great promise, but there is no free lunch. Sprinkling
parallel constructs everywhere can hamper performance if not used carefully, as we have seen.
We have however shown that there are other higher-level frameworks available to the
programmer apart from OS threads, which in our opinion are more suitable for describing
algorithms.

6. More information
For more information, visit the Strategies webpage at
http://hackage.haskell.org/package/parallel-2.2.0.1

http://www.google.com/url?q=http%3A%2F%2Fhackage.haskell.org%2Fpackage%2Fparallel-2.2.0.1&sa=D&sntz=1&usg=AFQjCNEOarcN_upXgPL9Ljae_KUuCNU97Q

