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Testing Monadic Code with QuickCheck

Koen Claessen and John Hughes
Department of Computer Science
Chalmers University of Technologyfkoen,rjmhg�s.halmers.se

ABSTRACTQuikChek is a previously published random testing toolfor Haskell programs. In this paper we show how to use itfor testing monadi ode, and in partiular imperative odewritten using the ST monad. QuikChek tests a programagainst a spei�ation: we show that QuikChek's spei�-ation language is suÆiently powerful to represent ommonforms of spei�ations: algebrai, model-based (both fun-tional and relational), and pre-/post-onditional. Moreover,all these forms of spei�ation an be used diretly for test-ing. We de�ne a new language of monadi properties, andmake a link between program testing and the notion of ob-servational equivalene.
1. INTRODUCTIONQuikChek [4℄ is an automated testing tool for Haskellprograms. It de�nes a formal spei�ation language whihprogrammers an use to speify the ode under test, andthen heks that the stated properties hold in a large numberof randomly generated test ases. Spei�ations are thusused diretly, both for test ase generation and as a testorale. The bene�ts of usingQuikChek are doumented andrepeatable testing, and prodution of a spei�ation whihhas been mahine-heked for onsisteny with the program.While there is no guarantee that the spei�ed propertieshold in general, we and others have found this approah tobe highly e�etive at revealing errors quikly [21, 17℄.In our �rst QuikChek paper, we foussed on testing purefuntions, whih are easier to test than side-e�eting onessine one need not take a potentially large and omplex stateinto aount. Haskell programs onsist to a large extent ofpure funtions, and so this fous was not a major restri-tion. Yet even in Haskell, imperative data-strutures andalgorithms are sometimes important for ahieving good per-formane; hene the popularity of monads [22℄, and Peyton-Jones' laim that Haskell is \the world's �nest imperativeprogramming language" [14℄. Thus, in this paper, we shallshow how QuikChek an be used to test monadi Haskell
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ode, and espeially imperative ode using the ST monad[15℄.The key problem is onstruting spei�ations of monadiode that an be used diretly for testing. Although thisis not as straightforward as for pure funtions, we shallshow that by borrowing onepts from programming lan-guage theory, we an onstrut testable spei�ations basedon algebrai laws, abstrat models, or pre- and poston-ditions. We introdue a new monadi property language,whih simpli�es these spei�ations onsiderably. Our mainexamples are an imperative implementation of queues, andthe Union/Find algorithm.The struture of the paper is as follows. In the next se-tion, we introdue QuikChek as previously desribed. Insetion 3 we introdue the queue example. Setion 4 presentsan algebrai spei�ation of imperative queues, and showshow it an be used for testing, introduing the key idea oftesting observational equivalene. The next setion repeatsthe exerise for a model-based spei�ation instead. Se-tion 6 draws lessons from the queue example, in partiularthe desirability of extending QuikChek with a language ofmonadi properties. The next three setions introdue thislanguage, present a formal semantis, and sketh its imple-mentation. We illustrate the monadi property language bytesting the Union/Find algorithm in the next three setions,whih introdue the algorithm, test it using pre- and post-onditions, and using a relational model-based spei�ationrespetively. Spei�ations an beome quite bulky; setion13 illustrates an approah to simplifying them, by de�ningeven higher-level ombinators for model-based spei�ationof imperative ADTs, whih make suh spei�ations veryonise. Finally, setion 14 disusses related work, and se-tion 15 onludes.
2. BACKGROUND: AN OVERVIEW OF

QUICKCHECKQuikChek is used by adding property de�nitions to theprogram ode, either together with the ode under test, orin separate \spei�ation" modules. Properties are simplyHaskell de�nitions, suh as the following:prop PlusAsso :: Int ! Int ! Int ! Boolprop PlusAsso x y z = (x + y) + z == x + (y + z)Properties are impliitly universally quanti�ed over their ar-guments, so this property states the assoiativity of integeraddition.Properties are tested by passing them to the funtionquikChek . For example, using the Hugs interpreter we



would test the property above byMain> quikChek prop PlusAssoOK ; passed 100 tests:This tests the property in one hundred randomly gener-ated ases. The funtion quikChek is overloaded, to a-ept properties with any number of arguments, and we alsoprovide a small sript whih invokes quikChek on everyproperty in a module (property names begin with \prop "just so that this sript an �nd them).The QuikChek property language also provides ondi-tional properties. For example,prop InsertOrdered :: Int ! [Int ℄ ! Propertyprop InsertOrdered x xs = ordered xs =)ordered (insert x xs)states that inserting an element into an ordered list produesan ordered list. Testing suh a property disards test aseswhih do not satisfy the preondition, to guarantee that wetest the onlusion with 100 ordered lists. Notie that the re-sult type is di�erent in this ase: =) isn't a simple booleanoperator sine it a�ets the seletion of test ases. All suhoperators in QuikChek have the result type Property .Alternatively, rather than quantify over all lists and thenselet the ordered ones, we an quantify expliitly over or-dered ones:prop InsertOrdered :: Int ! Propertyprop InsertOrdered x = forAll orderedLists $ � xs !ordered (insert x xs)This makes for more eÆient testing and, often, better testoverage.The �rst argument of forAll above, orderedLists , is a testdata generator. We an think of it as representing a set thatwe quantify over, or, more preisely, a probability distribu-tion over suh a set. QuikChek also provides a test datageneration language for de�ning suh sets. Test data gener-ators have types of the form Gen � , where Gen is a monad,whih enables us to use Haskell's monadi syntati sugarand rih library of monadi operators in test data generatorde�nitions. In addition, there are ombinators for makinghoies between alternatives, suh asoneof :: [Gen �℄ ! Gen �whih hooses between alternatives with equal probability,or frequeny :: [(Int ;Gen �)℄ ! Gen �whih attahes a weight to eah alternative.We an de�ne a default test data generator for eah typeas an instane of the lass Arbitrary :lass Arbitrary �wherearbitrary :: Gen �QuikChek provides instanes of this lass for all of Haskell'sstandard types. These default generators are used to on-strut top-level property arguments, or of ourse if the pro-grammer writes forAll arbitrary expliitly.QuikChek provides several funtions for making observa-tions of test data, of whih the most important is ollet . Forexample, we ould observe the lengths of lists in prop Insert-Ordered by rede�ning it as

prop InsertOrdered x xs = ordered xs =)ollet (length xs) $ ordered (insert x xs)whih auses a table showing the distribution of length xs inthe atual test data to be displayed when testing is omplete.The programmer an then deide whether the test overagewas adequate, or not.Apart from the small sript for extrating and testingproperties from modules, QuikChek is de�ned entirely as aolletion of ombinators | it is a domain spei� embeddedlanguage [13℄. To use it, the programmer need only importmodule QuikChek | whih is itself only 300 lines of ode!Its lightweight nature makes QuikChek easy to modify andexperiment with.
3. A SIMPLE EXAMPLE: QUEUESWe shall take as an example one of the simplest imperativeabstrat datatypes, a queue. We assume we are given amodule implementing queues, with the signaturedataQueue s a = : : :empty :: ST s (Queue s a)add :: Queue s a ! a ! ST s ()remove :: Queue s a ! ST s ()front :: Queue s a ! ST s (Maybe a)whose operations reate an empty queue, add an element,remove an element, and return the front element withoutremoving it, if there is one. Queues are implemented in thestandard imperative way, so the queue operations have typesin the ST monad, and the Queue type is parameterised onthe state thread it belongs to. We omit the details of theimplementation.Of ourse, there are eÆient ways to implement queuespurely funtionally also [3℄, but this is not the point: queuesserve here simply as an example of an abstrat datatype withan imperative implementation. In the following setions weshall see how we an speify their behaviour.
4. TESTING AN ALGEBRAIC SPECIFICA-

TION OF QUEUESOne well established way to speify an abstrat datatypeis via an algebrai spei�ation, in whih we haraterise thebehaviour of our operations by giving equations betweenterms. For example, if we were speifying Haskell's lists,then one suh equation might bexs ++ (ys ++ zs) = (xs ++ ys) ++ zsIn this ase, sine our operations are monadi, we will giveequations between fragments of monadi ode, that is, pro-gram fragments whih might appear as part of a do blok.Our spei�ation of queues is given below.



q  emptyx  front q = q  emptyx  return Nothing (1)q  emptyadd q mx  front q = q  emptyadd q mx  return (Just m) (2)add q madd q nx  front q = add q mx  front qadd q n (3)q  emptyadd q mremove q = q  empty (4)add q madd q nremove q = add q mremove qadd q n (5)Are these equations a omplete spei�ation? Do they de-�ne the behaviour of every sequene of queue operations? Tosee that they do, we shall argue that every suh sequenean be put into a normal form onsisting of queue reation,followed by any number of add operations, followed by bind-ings of variables to values (via x  return v). Consider anysuh sequene, and onsider the �rst use of front or remove ,if one exists. If this �rst use is of front , then equations (1)to (3) allow us to remove it, by moving it earlier until it anbe replaed by a return . Bindings using return an thenbe moved to the end of the sequene of queue operationsusing the monad laws, and so do not interfere with furtherappliation of these equations. If the �rst use is of remove ,then equations (4) and (5) enable us to remove it by movingit earlier until it enounters the mathing add | providedthere are at least as many adds as removes. Indeed, a se-quene of queue operations is only well-formed if every pre�xontains at least as many add operations as removes.But what do we mean by equality in these equations? Weertainly do not mean that the two sides generate the samestate when they are run! In partiular, the left hand sideof equation (4) reates and disards an internal ell in thequeue, while the right hand side does not: learly pointervalues and memory ontents will di�er after the two se-quenes are exeuted. Yet the di�erene is in low-level rep-resentations, and annot be observed by the Haskell pro-grammer.We therefore fous on the observable behaviour of ourode. Fortunately, operational semantiists have already de-�ned a program equivalene based on observations!De�nition A ontext C is a \program with ahole". We write the result of \�lling the hole"with a term e as C [e℄.De�nition We write p + o when program pomputes an observable result o.De�nition Two terms e and e 0 are operationallyequivalent if, for every ontext C , then C [e℄ + oif and only if C [e 0℄ + o.In our ase, two program fragments are equivalent if, whenthey are inserted into any Haskell program, the programoutput is the same. Yet quantifying over all Haskell pro-grams with holes is impratial, beause Haskell is so om-plex. So instead, we shall restrit our attention to \queue

programs", whih ontain only queue operations on a singlequeue of integers, and moreover are well-formed in the sensedisussed above. We shall restrit our observations to thevalues bound to variables in uses of front . Thus we on-sider two queue-program fragments equivalent if, when theyare inserted into any queue program (in a well-formed way),then the results delivered by all the alls of front are thesame.In restriting ontexts and observations like this, we aremaking a number of reasonable assumptions. Sine Queueis an abstrat datatype, other operations in the ST monadshould not interfere with queue operations | i.e. theyshould ommute, sine the Queue representations are hid-den. We are also assuming that operations on di�erentqueues ommute, sine there is no sharing between their rep-resentations. Given these assumptions, we an ignore othermonadi operations and operations on other queues whenwe reason about the queue of interest. Sine the Queue op-erations are polymorphi, we an appeal to parametriityto argue that if the equations are satis�ed for Queues ofintegers, they are satis�ed at every type. It is also reason-able to restrit our observations to the results from front ,again sine Queue is an abstrat data type, and there is noother operator whih delivers any other type of value fromit. Thus, if two program fragments are operationally equiva-lent when we restrit our attention to queue programs, thenthey should be equivalent in Haskell also.Now we just program operational equivalene using Quik-Chek. We must de�ne queue programs: they onsist ofqueue reation followed by a sequene of Ations.dataAtion = Add Int j Remove jFront j Return (Maybe Int)deriving (Eq ; Show)We will not need to represent variable names in this exam-ple: we just assume that eah Front and Return binds avariable, and we shall observe the sequene of values bound.We de�ne the semantis of ation sequenes via the funtionperform .perform ::Queue a Int ! [Ation℄! ST a [Maybe Int ℄perform q [℄ = return [℄perform q (a : as) =ase a ofAdd n !add n q >> perform q asRemove !remove q >> perform q asFront !liftM 2 (:) (front q) (perform q as)Return x !liftM (x :) (perform q as)We shall need to quantify over ations, or more spei�allyover well-formed ation sequenes. We must therefore de�nea test-data generator for these. We de�ne ations n as theset of ation sequenes whih are well-formed after n addoperations, that is, for queues already ontaining n elements.A Remove is only possible if the queue is non-empty.ations :: Num a ) a ! Gen [Ation℄ations n =



oneof ([return [℄;liftM 2 (:) (liftM Add arbitrary)(ations (n + 1));liftM (Front :) (ations n)℄ ++if n == 0 then[℄else[liftM (Remove :) (ations (n � 1))℄)We also de�ne a funtiondelta :: [Ation℄ ! Intto ompute the hange in the number of queue elementswrought by a sequene of Ations.Now for the de�nition of operational equivalene, whihfollows the formal de�nition exatly: we hoose an arbitaryontext onsisting of a pre�x and suÆx of queue ations,taking are that the omplete program is well-formed, andthen hek that the observations we make are the same ineah ase.(�=) :: [Ation℄ ! [Ation℄ ! Property �= 0 =forAll (ations 0) $ � pref !forAll (ations (delta (pref ++ ))) $ � su� !letobserve x =runST ( doq  emptyperform q (pref ++ x ++ su� ))inobserve  == observe 0Equations (3) and (5) in the spei�ation an now be writtendiretly as QuikChek properties.prop FrontAdd m n =[Add m; Add n; Front ℄ �= [Add m; Front ; Add n℄prop AddRemove m n =[Add m; Add n; Remove℄ �= [Add m; Remove; Add n℄The other three equations relate fragments that begin byreating an empty queue, and an thus only appear at thestart of a queue program. We therefore need a slightly dif-ferent notion of operational equivalene. �=^ 0 =forAll (ations (delta )) $ � su� !letobserve x =runST ( doq  emptyperform q (x ++ su� ))inobserve  == observe 0The remaining equations are now easily stated.prop FrontEmpty =[Front ℄ �=^ [Return Nothing ℄prop FrontAddEmpty m =[Add m; Front ℄ �=^ [Add m; Return (Just m)℄prop AddRemoveEmpty m =[Add m; Remove℄ �=^ [℄The properties an now be heked by QuikChek. As ex-peted, they all sueed.

5. TESTING A MODEL-BASED SPECIFI-
CATION OF QUEUESIn the previous setion, we implemented an algebrai spe-i�ation of queues as QuikChek properties. But spei�a-tions ome in other avours too. In this setion, we imple-ment a spei�ation based on an abstrat model of queues.The popular Z spei�ation language, for example, is basedon suh models [11℄.We shall model the state of a queue as a list of the storedelements. With this model, the queue operations are veryeasy to de�ne. We give them names subsripted by S , sinethey will serve as spei�ations. Note that eah (exeptempty) returns both a \result" and a new queue.emptyS = [℄addS a q = ((); q ++ [a℄)removeS ( : q) = ((); q)frontS [℄ = (Nothing ; [℄)frontS (a : q) = (Just a; a : q)Now, to formulate the orretness of the implementation,we must relate the implementation state to the abstratmodel. A standard way to do so is to de�ne an abstra-tion funtion, whih maps the implementation state to theabstrat value that it represents. Our abstration funtionmust, of ourse, be monadi.abstrat :: Queue s a ! ST s [a℄We omit the (easy) de�nition; note only that abstrat mustnot hange the implementation state in any way.An implementation is orret if it ommutes with abstrat :that is, if the answer delivered is the same answer that thespei�ation delivers on the abstration of the initial state,and the �nal state, when abstrated, is the same as the �nalstate produed by the spei�ation from the abstration ofthe initial state.ommutes :: Eq a )Queue s Int ! (Queue s Int ! ST s a)!([Int ℄ ! (a; [Int ℄)) ! ST s Boolommutes q a f = doold  abstrat qx  a qnew  abstrat qreturn ((x ; new)== f old)Of ourse, this ondition must hold in all states. But whatdo we mean by \all states"? Certainly not all memory states:the referenes that make up a queue representation must sat-isfy a strong invariant | they must be linked together in alinear hain, without loops, the head node must point at the�rst and last element nodes, and so on. Trying to generate arandom heap state, with a rats' nest of referenes, and thenselet those that represent queues, would be both diÆultand hopeless in pratie. Let us instead quantify over reah-able states, that is, states whih an atually be produedby a sequene of queue operations. These automatially sat-isfy the queue invariant, they an be represented naturallyby the sequene of operations whih onstruts them, andthey are the only states of interest anyway! Fortunately, wehave already de�ned a generator for well-formed sequenesof queue operations in the previous setion, so now it is easyto de�ne when an operation orretly implements a spei�-ation.



implements :: Eq a )(8 s:Queue s Int ! ST s a) !([Int ℄ ! (a; [Int ℄)) ! Propertya `implements` f =forAll (ations 0) $ � as !runST ( doq  emptyperform q asommutes q a f )The orretness properties for add and front are now diret.prop Add n = add n `implements` addS nprop Front = front `implements` frontSThe empty operation does not quite �t this framework, sineit reates a queue rather than modifying an existing one. Weannot reuse implements, but of ourse it is orret if therepresentation it onstruts abstrats to the empty queue inthe spei�ation.prop Empty =runST ( doq  emptyq 0  abstrat qreturn (q 0== (emptyS :: [Int ℄)))Finally, the remove operation does not quite �t either, be-ause it has a preondition: it an only be applied to non-empty queues. Thus we need a version of implements whihquanti�es over states satisfying a preondition.implementsIf :: Eq a )(8 s:Queue s Int ! ST s Bool) !(8 s:Queue s Int ! ST s a) !([Int ℄ ! (a; [Int ℄)) !PropertyimplementsIf pre a f =forAll (ations 0) $ � as !runST ( doq  emptyperform q aspre q) =)runST ( doq  emptyperform q asommutes q a f )Now we an omplete our spei�ation:prop Remove =implementsIf (liftM isJust Æ front) remove removeSOne again, all properties sueed.
6. LESSONS FROM THE QUEUE EXAM-

PLEWe have shown how to represent two popular kinds ofspei�ation as QuikChek properties, and thus use them di-retly for testing. The key idea for oping with the monadinature of the implementation was to de�ne a \queue pro-gram language", represented as a Haskell datatype, andquantify over ontexts. This enabled us to implement di-retly the de�nition of operational equivalene for testingthe algebrai spei�ation, and to generate random reah-able states to test the model-based one.

The reader may wonder why we did not represent programfragments as monadi values | as semantis, rather thanabstrat syntax. In priniple this may seem attrative, butthere are major advantages in using a datatype.� When tests fail, the values of quanti�ed variables aredisplayed. If we quantify over ontexts, then we see theabstrat syntax tree, whih is, of ourse, very useful.The semantis of a ontext is a funtion, however: ifwe quanti�ed over this instead then we would see nouseful information on a test failure.� As well as running program fragments, we may wishto ompute some of their properties by stati analy-sis, whih requires an abstrat syntax tree. A simpleexample of this is the delta funtion, used above topredit the hanges in the number of elements in thequeue, when a queue program fragment is run.� When we test ode using the ST monad, then om-putations have polymorphi types, and funtions overthem must have rank-2 types. Examples are the im-plements and implementsIf funtions in the previoussetion. These types an be quite omplex, and more-over must always be stated expliitly. By passing ab-strat syntax trees instead, we avoid the need for mostrank-2 types.Indeed, there is an even more severe problem. If wewere to quantify over the semantis of ontexts in the STmonad, by writing forAll ontexts(�  ! : : : ), then sine must have a polymorphi type, the �-expression must havea rank-2 type, and forAll must be used at an instane witha rank-3 type! This goes beyond what today's implemen-tations an support: Hugs allows only rank-2 types, andalthough GHC now supports rank-k types (using Oderskyand L�aufer's work [20℄), the type system is still prediative,whih means that type variables annot be instantiated toanything other than monotypes. To quantify over valuesinvolving the ST monad, we would need to de�ne a spe-ial version of forAll , with an expliitly stated rank-3 type.Moreover, we would need a di�erent version of forAll foreah type of value quanti�ed over, so these versions annotreasonably be plaed in the QuikChek library; they mustbe de�ned by the user of QuikChek, whih is unaeptable.Thus representing ontexts by abstrat syntax is essential tomaking our approah work at all.So far, we have used only QuikChek as desribed inour original paper [4℄, and it has worked pretty well; wehave needed no extensions spei� to monads. However,the shoe does pinh a little. Look bak at the de�nition ofimplementsIf (for testing an operation with a preondition):in order to hek that the state generated by the randomontext satis�es the preondition, we had to run the odegenerating it twie! We annot write, for example,pre q =) ommutes q a finside a single all of runST , beause =) is a property om-binator, and has the wrong type to appear in an ST om-putation. We annot either writeb  pre qif b thenommutes q a felsereturn True



beause this has a di�erent meaning: it ounts a test inwhih the preondition is not satis�ed as a suessful test,whih is not what we want at all!The problem is that we annot use property operatorsin the midst of a monadi omputation | and sometimes,that is exatly what we want to do. Other examples wouldbe quantifying over the elements of a list produed by amonadi omputation, or olleting values generated in mo-nadi ode. This motivates extending QuikChek with alanguage of monadi properties: the subjet of the next se-tion.
7. A LANGUAGE OF MONADIC SPECIFI-

CATIONSOur goal is to extend QuikChek with a new kind ofproperty, whih an ontain monadi omputations in anunderlying monad m. We therefore de�ne a property monadPropertyM m a, whose elements may mix property oper-ations and m-omputations. This is really just a monadtransformer [16℄, whose lifting operation we allrun :: Monad m ) m a ! PropertyM m aNon-monadi properties an be embedded in monadi onesusing assert :: (Monad m; Testable a) )a ! PropertyM m ()(where Testable types are those orresponding to propertiesin vanilla QuikChek). An assertion must hold when themonadi property is tested.Preonditions an be inluded in monadi properties usingpre :: Monad m ) Bool ! PropertyM m ()Test ases in whih preonditions fail are disarded, just likewhen using the impliation ombinator =).Using these operations, we an represent a Hoare triplefpgx  efqg aspre px  run eassert qWe an also think of run as a monadi weakest preonditionoperator: we ould de�newp :: Monad m )m a ! (a ! PropertyM m b) ! PropertyM m bwp m k = run m >>= kand represent the weakest preondition wp(x  e; p) aswp e $ � x ! p.We represent quanti�ation in monadi properties by ei-ther usingpik :: (Monad m; Show a) )Gen a ! PropertyM m aor, for more familiar notation,forAllM gen k = pik gen >>= kThe hoie between pik/forAllM and run/wp is a matterof taste: the latter operations resemble mathematial nota-tion more losely, while the former let us take advantage ofHaskell's do syntati sugar.

We an make observations of test data usingmonitor :: Monad m )(Property ! Property) ! PropertyM m ()For example, monitor (ollet e) ollets the distribution ofvalues of e. Finally, we an onvert monadi properties bakto ordinary ones, given a \run funtion" for the underlyingmonad, usingmonadi :: Monad m )(m Property ! Property) !PropertyM m () ! Propertyimperative :: (8 b: PropertyM (ST b) ()) ! Propertyimperative is equivalent to monadi runST , exept that thelatter would need imprediative rank-3 types and so annotbe written.Using these operations, we an revisit implementsIf andrewrite it as follows:implementsIf p a f = imperative (forAllM (ations 0) $ � as !doq  run emptyrun (perform q as)ok  run (p q)pre okb  run (ommutes q a f )assert b)The repeated exeution needed in the original version to testthe preondition is gone.
8. SEMANTICS OF MONADIC

PROPERTIESQuikChek properties enjoy both a omputational and adelarative reading, in whih generators really denote sets,=) is true impliation, and forAll is true quanti�ation. Inthe delarative reading, a property just denotes a truth value(not neessarily omputable). Of ourse, non-termination ina property may make a delarative reading impossible, butwe restrit ourselves here to terminating programs whosesemantis an be modelled using sets and funtions, ratherthan domains and ontinuous funtions. Even if there isa mismath here, the delarative reading is the \intendedsemantis" whih our Haskell implementation approximates.But what is the delarative reading of a monadi prop-erty? What is the logi whih we are trying to represent?Of ourse, monadi properties may be based on any monad,not just the familiar state one. The meaning of propertieswhen the underlying monad permits baktraking throughpreonditions, for example, or onurreny, is far from ob-vious. In this setion, we give a formal semantis to themonadi property language whih answers suh questions.We model monadi properties over a monad M as non-empty sets of omputations of the type M Bool . We usesets to model quanti�ation: a property forAllM s p is mod-elled by a set onstruted from s. Given a satisfation testfor the monad, testM :: M Bool ! Bool , a monadi prop-erty is satis�ed if every omputation in the set delivers Truewhen it is tested. Di�erent hoies for testM lead to di�er-ent interpretations of properties | for example, if M is thelist monad (representing baktraking omputations), thentestM might require that all possible results are True, that



the �rst result is True, or that some result is True. If Mis the Maybe monad, then testM might interpret Nothing asTrue (testing for partial orretness) or False (total orret-ness). We require only that testM (return b) = b.Now, without loss of generality, we an assume (beauseof their type) that monadi properties end in return (). Suha property is trivially satis�ed. (Note that it is solely theassertions made during a monadi omputation whih intro-due truth values to be heked; the result of the omputa-tion plays no role and is therefore irrelevant.)[[return()℄℄ = freturn TruegOtherwise, a property takes the form of m>>= k for some mand k . An assertion returns False if it is not satis�ed:[[assert True>>p℄℄ = [[p℄℄[[assert False>>p℄℄ = freturn FalsegA preondition returns True if it is False.[[pre True>>p℄℄ = [[p℄℄[[pre False>>p℄℄ = freturn TruegQuanti�ation derives a set of omputations from eah ele-ment of the set quanti�ed over, and merges them | unlessthe set we quantify over is empty, when it sueeds at one(to ensure that the meaning of the property is a non-emptyset).[[pik ;>>=k ℄℄ = freturn Trueg[[pik s>>=k ℄℄ = fm j x 2 s;m 2 [[k x ℄℄g; if s 6= ;Finally, running a omputation of type M � is interpretedas [[run m>>=k ℄℄ = fm>>=k 0 j k 0 2 � ! M Bool ;8x :k 0 x 2 [[k x ℄℄gHere k represents a funtion from � to a set of omputations,and k 0 is a funtion whih makes a hoie from eah suh set.It is to make this possible that we require the meaning of aproperty to be a non-empty set. The e�et of this de�nitionis that, if there is quanti�ation in k (perhaps dependingon the result delivered by m), then every possible hoie isrepresented by some m>>=k 0 in the resulting set.With these de�nitions, monadi properties have a well-de�ned meaning no matter what the underlying monad is.To understand these de�nitions a little bit better, it isuseful to instantiate them for a partiular monad. It is easyto see for example that taking the identity monad simplyreverts to basi QuikChek properties. Let us also look ata more elaborate example: As the underlying monad, wetake the list monad, and we look at the following somewhatarti�ial property whih depends on an unknown prediatep: dox  run [1; 2℄y  pik (elements [x + 3; x + 4℄)assert (p x y)(For onveniene, we have left out the �nishing return ().)The operational reading is: We make two omputations,one where x equals 1, and the other where x equals 2. Inboth omputations, we pik an arbitrary element from thelist [x + 3; x + 4℄ as the value for y , and �nally we returnthe two-list of the results.

The delarative reading of the two simple subexpressionsshould also be lear:[[assert(p x y)℄℄ = f[p x y ℄g[[pik(elements[x + 3; x + 4℄)>>=�y ! assert(p x y)℄℄ =f[p x (x + 3)℄; [p x (x + 4)℄gThe delarative reading of the whole property is:fk 0 1 ++ k 0 2 j 8x :k 0 x 2 f[p x (x + 3)℄; [p x (x + 4)℄gThis last expression simpli�es to:f[p 1 y1; p 2 y2℄ j y1 2 f1 + 3; 1 + 4g; y2 2 f2 + 3; 2 + 4ggWhih is the same as:f[p 1 4; p 2 5℄; [p 1 4; p 2 6℄; [p 1 5; p 2 5℄; [p 1 5; p 2 6℄gExatly what we expeted! It then depends on the hosentest[℄ funtion (and on p of ourse) whih of the elements inthe set atually pass the test or not, and thus whether allelements in the set pass the test.
9. IMPLEMENTING MONADIC PROPER-

TIESThe implementation of QuikChek is based on the monadGen , an abstrat type de�ned bynewtypeGen a = Gen (Int ! StdGen ! a)Essentially a Gen a is a funtion from a random numberseed to an a: the Int parameter is used to ontrol the size ofgenerated data and need not onern us here. QuikChekproperties are just generators for test resultsnewtype Property = Prop (Gen Result)where the Result type ollets quanti�ed variables, preon-ditions, and monitoring information as well as representingsuess or failure.Monadi properties are built by ombining Gen and aCPS monad with the underlying monad m.newtype PropertyM m a =Monadi ((a ! Gen (m Result)) !Gen (m Result))Using CPS enables pre and assert to disard the rest of aproperty when their argument is false.Given this type, the rest of the implementation is mostlystraightforward, and follows the semantis losely; indeed,we added only about 30 lines of ode to QuikChek, anddid not need to hange any existing ode at all. The onlytriky part is the de�nition of run:run m = Monadi (� k ! liftM (m >>=) (promote k))Here the ontinuation k is of type a ! Gen (m Result), butbefore we apply liftM (m >>=) to it, we must onvert it to aGen (a ! m Result). Beause of the way we de�ned Genthis is simple to do: the promote funtion need only swapthe arguments of the funtion it is passed, to take the ran-dom number seed and size �rst, rather than the a. Butthis kind of promotion is quite impossible for most mon-ads: indeed, for the monad Set (whih Gen is supposed torepresent), promote orresponds to applying the Axiom ofChoie! No wonder this seemingly simple de�nition is some-what ounter-intuitive.



data Element s a = Element a (STRef s (Link s a))data Link s a = Weight Int jNext (Element s a)newElement :: a ! ST s (Element s a)newElement a = dor  newSTRef (Weight 1)return (Element a r)�ndElement :: Element s a ! ST s (Element s a)�ndElement (Element a r) =doe  readSTRef rase e ofWeight w ! return (Element a r)Next next ! dolast  �ndElement nextwriteSTRef r (Next last)return lastunionElements ::Element s a ! Element s a ! ST s ()unionElements e1 e2 =doElement a1 r1  �ndElement e1Element a2 r2  �ndElement e2Weight w1  readSTRef r1Weight w2  readSTRef r2if w1 � w2 thendowriteSTRef r1 (Next (Element a2 r2))writeSTRef r2 (Weight (w1 + w2))elsedowriteSTRef r2 (Next (Element a1 r1))writeSTRef r1 (Weight (w1 + w2))instane Eq (Element s a)whereElement r == Element r 0 = r == r 0Figure 1: The Union-Find Algorithm.
10. ANOTHER EXAMPLE: THE UNION/

FIND ALGORITHMAs an example whih makes extensive use of monadiproperties, we shall test the Union/Find algorithm. Thisis a very eÆient way to represent an equivalene relation.Elements of the relation are organised into trees representingequivalene lasses, with eah element ontaining a pointerto its parent. By following these pointers to the root of eahtree, we an �nd a distinguished element of eah equiva-lene lass; the operation whih does so is alled �nd . Wean test whether two elements are equivalent by omparingthe results of �nd on eah one. Equivalene lasses an alsobe merged by delaring two elements to be equivalent: thisis done by the funtion union, and ahieved by making theroot of one tree point at the root of the other.The Union/Find algorithm owes its great eÆieny to twooptimisations:� After �nd has traversed a path to the root of a tree, itupdates all the elements in the path to point diretlyat the root. This speeds up subsequent �nds.� When trees are merged, the root of the lighter tree is

made to point at the root of the heavier, where theweight of a tree is the number of elements in it. Thisalso speeds up subsequent �nds.With these optimisations, a sequene of union and �nd op-erations is exeuted in almost linear time (where \almost"involves the inverse of the Akermann funtion, so for allpratial purposes we an onsider the time to be linear).A Haskell implementation of the Union/Find algorithm isvery simple; one appears in Figure 1. Elements are repre-sented by the type Element , ontain a value (so we an rep-resent equivalene relations on other types), and are reatedby the funtion newElement . The �nd and union operationsare implemented by �ndElement and unionElements. Fi-nally, Elements an be ompared, so we an deide whethertwo results of �ndElement are the same. Elements ontainan updateable Link , whih in the ase of root nodes ontainsa weight, and for other nodes ontains the parent.
11. TESTING PRE- AND POSTCONDITIONS

FOR UNION/FINDWe shall test our Union/Find implementation using yeta third method: be speifying pre- and post-onditions foreah operation. With this approah, we need neither anabstrat model, nor algebrai laws. But we will still needto quantify over reahable states. As before, we de�ne alanguage of union/�nd programs.dataAtion = New j Find Var jUnion Var Varderiving ShowtypeVar = IntA program is a list of Ations, whih may reate, �nd, orunite elements. The arguments of �ndElement and unionElementsmay be any element previously reated by newElement ; weuse natural numbers to refer to them in order of reation.The semantis of ation sequenes is de�ned byexe :: [Ation℄ ! [Element a ()℄ !ST a [Element a ()℄whih delivers as its result a list of the Elements reated bynewElement .Of ourse, only ertain union/�nd programs are well-formed:we must not use an Element whih has not been reated.We therefore de�ne a generator for the set of programs well-formed in the ontext of k elements.ations :: Int ! Gen [Ation℄ations 0 =frequeny [(25; liftM (New :) (ations 1));(1; return [℄)℄ations n =frequeny[(2; liftM (New :) (ations (n + 1)));(2; liftM 2 (:) (liftM Find element)(ations n));(2; liftM 2 (:) (liftM 2Union elementelement)(ations n));(1; return [℄)℄whereelement = hoose (0; n � 1)When the number of elements is zero, the only possible a-tion is New : we give this a high probability, to avoid a large



number of tests in the initial state. Similarly, we assigna higher probability to hoosing an operation than to re-turning the empty list: we an expet to generate ationsequenes with an average length of 7 using this de�nition.Now we an de�ne a ombinator for quantifying over allstates.forAllStates ::(8 s: [Element s ()℄ ! PropertyM (ST s) a) !PropertyforAllStates p =forAll (ations 0) $ � as !imperative ( dovars  run (exe as [℄)p vars)We pass the property p a list of all reated Elements; inmost properties we need to quantify over the elements ofthis list.This quanti�ation poses a problem, though. QuikChek'squanti�ation operators an only quantify over types in lassShow , sine the value hosen must be displayed when a testfails. But Elements annot be shown, sine they ontainSTRef s, and this is an abstrat type for whih show is notde�ned. Of ourse, we ould de�ne our own Show instaneto display referenes as "< STRef >", but this would not beuseful! We want to know whih element was hosen when atest fails!Our solution to the \abstrat type quanti�ation" prob-lem is to quantify over an element's position in a list instead:as long as we know how the list is onstruted, we an in-fer whih element was used. In this ase, we use the list ofreated Elements passed to properties by forAllStates . Wede�ne a funtionpikElement :: Monad m ) [a℄ ! PropertyM m apikElement vars =dopre (not (null vars))i  pik (hoose (0; length vars � 1))return (vars !! i)whih quanti�es over this list, and imposes a preonditionthat it be non-empty.Now we just need to haraterise the behaviour of �ndElementand unionElements using pre- and postonditions. We willneed to refer to the distinguished representative of eahequivalene lass, so we de�nerepresentative :: Element a b ! ST a (Element a b)to �nd it. Of ourse, this funtion delivers the same resultas �ndElement , but without a side e�et. It is just for usein formulating properties.Let us begin! Firstly, �ndElements returns the represen-tative of its argument.prop FindReturnsRep =forAllStates (� vars !dov  pikElement varsr  run (representative v)r 0  run (�ndElement v)assert (r== r 0))Seondly, �ndElement does not hange the representative ofany element.

prop FindPreservesReps =forAllStates (� vars !do(v ; v 0)  two (pikElement vars)r0  run (representative v)r 0  run (�ndElement v 0)r1  run (representative v)assert (r0== r1))Thirdly, unionElements does not hange the representativesof elements whih were not previously equivalent to one ofits arguments.prop UnionPreservesOtherReps =forAllStates (� vars !do(v0; v1; v2)  three (pikElement vars)[r0; r1; r2℄  run (mapM representative [v0; v1; v2℄)pre (r0 6= r1 ^ r0 6= r2)run (unionElements v1 v2)r00  run (representative v0)assert (r0 == r00))Finally, unionElements really does unite equivalene lasses.We express this by stating that all the elements of the equiv-alene lass of either argument have the same representativeafterwards.prop UnionUnites =forAllStates (� vars !do(v1; v2)  two (pikElement vars)1  run (equivClass vars v1)2  run (equivClass vars v2)run (unionElements v1 v2)10  run (mapM representative 1)20  run (mapM representative 2)assert (length (nub (10 ++ 20)) == 1))whereequivClass vars v = �lterM (� v) varse1 � e2 = liftM 2 (==) (representative e1)(representative e2)We laim that these properties are easy to read and write.Moreover, note that we have taken great advantage of themonadi property language: preonditions, quanti�ations,and omputations are thoroughly mixed in these properties.Let us test one more property: the \weight invariant"stating that eah root node ontains a weight equal to thenumber of elements whih it represents.prop WeightInvariant =forAllStates (� vars !dov  pikElement varsr�(Element link)  run (representative v)Weight w  run (readSTRef link)rs  run (mapM representative vars)assert (w== length (�lter (== r) rs)))This property is not neessary for orretness, but it is foreÆieny. Surprisingly, when we quikChek it, it fails! Af-ter a few tries to �nd a small ounter-example, we �ndUnionFind > quikChek prop WeightInvariantFalsi�able; after 3 tests :



[NewElement ;UnionElements 0 0℄0This tells us that the weight of element 0 is wrong after it isunioned with itself. Inspeting the ode of unionElements ,we quikly see why: we forgot to onsider the ase when thetwo arguments are already equivalent. In that ase, we needdo nothing | and in partiular, the weight should not beupdated. Adding this speial ase makes all properties gothrough.
12. TESTING A MODEL-BASED SPECIFI-

CATION OF UNION/FINDJust as we tested queues using a spei�ation based onan abstrat model, we an test the Union/Find algorithmin the same way. We shall model elements by natural num-bers in the range 0 : : : k , and the state by a funtion reprfrom f0 : : : kg to itself, whih maps elements to their repre-sentative. We an onveniently represent suh a funtion inHaskell by a list (so we apply it to an element x by writingrepr !! x ). We de�ne an abstration funtion to reover theabstrat state.abstrat :: [Element a b℄ ! ST a [Int ℄abstrat vars = mapM abs varswhereabs v = dor  representative vreturn (position vars r)where position returns the position of an element in a list.The abstrat state must satisfy an invariant: repr Æ reprmust equal repr . We writeprop Invariant = forAllStates (� vars !dorepr  run (abstrat vars)assert (repr == map (repr !!) repr))Now, notie that (as far as orretness is onerned) itdoes not matter whether union makes its �rst argumentpoint to its seond, or vie versa. Rather than speifythis behaviour exatly, we shall use relational spei�ationswhih leave some freedom to the implementor. Thus wespeify our operations via a prediate whih must hold onthe inputs, initial state, output, and �nal state, rather thanby giving a funtion from the former to the latter. Thespei�ations of �nd and union are easy to write:�ndS x repr y repr 0 =repr== repr 0 ^ y == repr !! xunionS x y repr () repr 0 =letz = repr 0 !! xin(z == repr !! x _ z == repr !! y) ^repr 0 == [ if z 0== repr !! x _ z 0== repr !! y thenzelsez 0 j z 0  repr ℄These spei�ations losely resemble Z shemas [11℄.We de�ne a ombinator expressing that a monadi om-putation implements suh a spei�ation:

implements vars m s =dorepr  run (abstrat vars)ans  run mrepr 0  run (abstrat vars)assert (s repr ans repr 0)Now it only remains to state that �ndElement and union-Elements implement the spei�ations above, for all hoiesof elements. The only (slight) ompliation is that we mustonvert elements from their onrete to their abstrat rep-resentation (using position vars) before we an ompare im-plementation and spei�ation.prop Find = forAllStates (� vars !dov  pikElement varsimplements vars(liftM (position vars) (�ndElement v))(�ndS (position vars v)))prop Union = forAllStates (� vars !do(v ; v 0)  two (pikElement vars)implements vars(unionElements v v 0)(unionS (position vars v) (position vars v 0)))This ompletes the model-based spei�ation: it is pleas-ingly simple. Indeed, model-based spei�ations are oftensimpler than pre- and postondition spei�ations suh aswe gave in the previous setion, sine the latter are ouhedin terms of the (generally more omplex) implementationstate. So why not always use model-based spei�ations?Firstly, it is useful to be able to test pre- and postonditions,sine in some ases one may just wish to test a few suh prop-erties without going to the trouble of de�ning a omplete ab-strat model. Seondly, beause the pre- and post-onditionstyle is expressed entirely in terms of the implementationstate, these properties an often be tested more eÆientlythan those in the model-based style (although speed is nota problem in these examples).
13. A GENERAL MODEL-BASED SPECI-

FICATION FRAMEWORKFully formal spei�ations an beome quite omplex (thisis true whether they are used for testing or any other pur-pose). An advantage of representing them in a languagelike Haskell, with powerful abstration mehanisms, is thatwe an hope to �nd \higher-level ombinators" whih makespei�ations easier to write. In this setion we sketh aninitial step in this diretion: a library for model-based spe-i�ation of imperative ADTs, whih we apply to the queueexample one more.The library is based on two abstrat types, the �rst ofwhih isdataAtion m spe impl = : : :An element of this type represents a onrete operation inthe monad m, that works on an implementation type impl,and has an abstrat funtional ounterpart of type spe. Forexample, in the ase of queues, m is the monad ST s , speis the type [Int ℄, and impl is the type Queue s Int ; an a-tion might represent the operation add 23. However, an a-tion ontains both the spei�ation and implementation of



an operation, and when exeuted, tests if the observationaloutputs of the ation are the same. In the queue exam-ple, we hek that all alls to the implementation of frontprodue the same answer as the spei�ation | this is ourorretness riterion.The funtionsameOutput :: [Ation m spe impl ℄ ! m Boolexeutes a list of ations in sequene, thus heking that theobservable outputs of all ations are the same.The seond abstrat type isdataMethod m spe impl = : : :A Method represents an Ation generator | for example,orresponding to add , from whih the Ation add 23 an begenerated. Methods are onstruted using method ombina-tors, as in this example, whih spei�es the queue methods:methods Queue :: [Method (ST s) [Int ℄ (Queue s Int)℄methods Queue =[name "empty" $methodInit [ ℄ empty ;name "add" $ arg arbitrary $ �x !method1 addS add ;name "front" $method1 frontS front ;name "remove" $method1Pre (not : null) removeS remove℄Here, name spei�es the name of an operator (for debug-ging output). The method onstrutor methodInit spei�esa method that reates an objet, method1 spei�es a methodthat transforms one objet, method1Pre spei�es a methodthat has a preondition, and there are other method on-strutors. The method ombinator arg is used to speify anargument to a method.Given suh a list of methods, we an generate random se-quenes of ations whih orrespond to alls of the methods.This is done by the generator ations :ations :: [Method m spe impl ℄ !Gen [Ation m spe impl ℄This funtion keeps trak of the abstrat state when gener-ating the list of ations, and at any point in time only piksmethods whose preondition is satis�ed. The urrent versionof ations makes a property fail if it gets to a state wherethere are no methods whih an be performed | when itis "stuk". Of ourse, it depends on the appliation if thisreally is an error or not.Note that the list of the list of methods denotes a hoieof methods, whereas the list in the list of ations denotes asequene of ations.Finally, we hek that all generated ation sequenes pro-due the same output in the abstrat and onrete seman-tis. This is done by the funtion ommutes :ommutes :: [Method m spe impl ℄ ! PropertyM m ()ommutes methods =forAllM (ations methods) $ �ats !dob  sameOutput atsassert bNotie that, in monadi properties, we an quantify over thesemantis of ations | the \rank-3" problem disussed insetion 6 is avoided.

Using the library, a full orretness spei�ation of thequeue example looks like this:prop Queue = imperative (ommutes methods Queue)Together with the de�nition of methods Queue , this is onlya few lines.
14. RELATED WORKThere are two other automated testing tools for Haskell.HUnit is a unit testing framework based on the JUnit frame-work for Java, whih permits test ases to be strutured hi-erarhially into tests whih an be run automatially [12℄.HUnit allows the programmer to de�ne \assertions", butthese apply only to a partiular test ase, and so do notmake up a spei�ation. There is no automati generationof test ases.Auburn [18℄ is a tool primarily intended for benhmarkingabstrat data types. Auburn generates random \datatypeusage graphs" (dugs), orresponding to our \queue pro-grams" et, and measures the time to evaluate them. Auburnan produe dug generators and evaluators automatially,given the signature of the ADT. It avoids generating ill-formed dugs by traking an abstrat state, or \shadow",for eah value of the ADT, and heking preonditions ex-pressed in terms of it before applying an operator. Duggenerators are parameterised on the desired frequeny ofthe di�erent operations, size of data to generate, degree ofsharing et, so that benhmarking orresponds as losely aspossible to real onditions. Benhmarking an reveal errorsin the ADT implementation, but sine there is no spei�-ation or other test orale then they are disovered only ifthey lead to run-time failure.The Hat traer for Haskell [25℄ is not a testing tool, butenables the programmer to browse a omputation one ithas failed. We are investigating integrating it with Quik-Chek, so that the traer an be invoked when QuikChekdisovers a fault.The more general testing literature is voluminous.Random testing dates from the 1960s, and is now usedommerially, espeially when the distribution of randomdata an be hosen to math that of the real data. It om-pares surprisingly favourably in pratie with systematihoie of test ases. In 1984, Duran and Ntafos omparedthe fault detetion probability of random testing with parti-tion testing, and disovered that the di�erenes in e�etive-ness were small [6℄. Hamlet and Taylor orroborated theoriginal results [10℄. Although partition testing is slightlymore e�etive at exposing faults, to quote Hamlet's exel-lent survey [9℄, \By taking 20% more points in a randomtest, any advantage a partition test might have had is wipedout." Our philosophy is to apply random testing at a �negrain, by speifying properties of most funtions under test.So even when QuikChek is used to test a large program, wealways test a small part at a time, and are therefore likelyto exerise eah part of the ode thoroughly.Invoking sequenes of operations to test abstrat datatypes is a standard approah (how else ould it be done?).Generating random sequenes of operations, while still ful-�lling all preonditions, is not so ommon. Our test datageneration language, embedded in Haskell, makes this easy.The onnetion we have drawn between random sequenesof operations and the de�nition of observational equivaleneis new.



Algebrai spei�ations have been used by many authorsas a foundation for testing. The �rst system based on thisidea was DAISTS [8℄, whih tested abstrat data types byevaluating and omparing the left and right hand sides ofequations in the spei�ation, in test ases supplied by theuser. Although the language used was imperative, abstratdata type operations were forbidden to side-e�et their ar-guments, so the programs to be tested were essentially re-strited to be funtional.Later work aims to relax this restrition: Antoy and Ham-let desribe a tehnique for testing C++ lasses against analgebrai spei�ation, whih is animated in order to pre-dit the orret result [1℄. The spei�ation language mustbe somewhat restrited in order to guarantee that spei�a-tions an be animated. The onrete and abstrat states arerelated by a programmer-de�ned abstration funtion, justas in this paper. Antoy and Hamlet do not address test asegeneration, leaving that as a problem for a separate tool.Bernot, Gaudel, and Marre developed a theory of test-ing, whih formalises the assumptions on whih seletion oftest ases is based [2℄. They developed a tool for test aseseletion based on an algebrai spei�ation.One unusual feature of the algebrai spei�ations in thispaper is that they relate monadi terms, in whih the under-lying state is impliit. More ommonly in algebrai spei�a-tions, the state is an expliit argument and result. (Perhapsthis is beause algebrai spei�ation frameworks tend tobe �rst order.) Relating programs rather than states lets uswrite equations whih apply diretly to the imperative im-plementation. We believe we are the �rst to diretly verifysuh equations by testing: reall that DAISTS was limitedto testing pure funtions, and Antoy and Hamlet used theirequational spei�ation to derive rewrite rules, rather thantesting the equations in it diretly.Model-based spei�ations have also been used as a foun-dation for testing. Stoks and Carrington developed a frame-work for deriving test frames (haraterising a lass of testases) from a Z spei�ation [24℄. They derived test framesmanually, but Donat has developed an automati tool for do-ing so [5℄. Model-based spei�ations have also been used astest orales. A tool for instrumenting C++ lasses to hekpre- and post-onditions derived from a model-based spe-i�ation has been developed by Edwards [7℄. Mueller andKorel test C ode against a formal spei�ation by trans-lating the spei�ation into ode whih heks the results ofthe test, and generating test ases either randomly or usingexisting test ase generators [19℄. The ase studies used arerather small though | the most omplex is the C stringopy funtion.All of this work requires some preproessing or analysisof spei�ations before they an be used for testing. Quik-Chek is unique in using spei�ations diretly, both for testase generation and as a test orale. The other side of theoin is that the QuikChek spei�ation language is nees-sarily more restritive than, for example, prediate alulus,sine properties must be diretly testable.Pitts' evaluation logi bears some resemblane to our monadiproperty language [23℄. It is also parameterised on a monad,and permits properties to be stated whih hold after a om-putation. Pitts writes [x ( e℄P where we write run e>>=� x ! P .However, the two languages di�er in essential ways. For ex-ample, Pitts an write [x ( e℄P ^ [x 0 ( e 0℄P 0, meaningthat if we ompute e, then P will hold, but if we ompute

e 0, then P 0 will hold. We annot express this | indeed, wehave no onjuntion operator, but the reason is deep seated.To test this property, we would have to ompute both e ande 0 in some order! But Pitts' property talks about the stateafter omputing one or the other, but not both.QuikChek's main limitation as a testing tool is that itprovides no information on the strutural overage of theprogram under test: there is no hek, for example, thatevery part of the ode is exerised. We leave this as theresponsibility of an external overage tool. Unfortunately,no suh tool exists for Haskell! It is possible that Hat ouldbe extended to play this rôle.
15. CONCLUSIONSIn this paper, we have shown how QuikChek an be usedfor spei�ation-based testing of imperative operations. Themain ontributions are:� We have made a link between testing of imperativeode and the onept of observational equivalene.� We have shown how equations between imperative odefragments an be tested diretly, by running eah frag-ment in the same ontext. Representing ontexts ex-pliitly by data strutures was a key step here.� We have de�ned and given the semantis of a new kindof monadi properties, parameterised over any monad.� We have shown that theQuikChek property language,despite its limitations, is suÆiently powerful to rep-resent many ommon spei�ation formalisms (alge-brai spei�ations, funtional models, relational mod-els, pre- and post-onditions).� We have shown that eah formalism so represented anbe used diretly for testing imperative ode.It will be exiting to formulate further formal systemsusing QuikChek.
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