
Graph Algorithms in a Lazy Functional Programming Language

Yugo Kashiwagi*
Semiconductor Design and Development Center, Hitachi, Ltd.

5-20-1 Josuihoncho Kodaira, Tokyo 187, Japan
kasiwagi%crl.hitachi.junet@uunet.uu.net

David S. Wisey
Computer Science Department, Indiana University
101 Lindley Hall, Bloomington, IN 47405-4101

dswise@iuvax.cs.indiana.edu

CR categories and Subject Descriptors:
D.1.1 [Applicative (Functional) Programming Techniques]; G.2.2 [Graph Theory]: Graph Algo-
rithms; E.1 [Data Structures]: Lists; C.1.2 [Multiple Data Stream Architectures (Multiproces-
sors)]: Parallel processors.
General Term: Algorithms.
Additional Key Words and Phrases: Haskell, lazy evaluation, �xed point.

Abstract

Solutions to graph problems can be formulated as the �xed point of a set of recursive equations. Tra-
ditional algorithms solve these problems by using pointers to build a graph and by iterating side e�ects
to arrive at the �xed point, but this strategy causes serious problems of synchronization under a parallel
implementation. In denying side e�ects, functional programming avoids them, but it also precludes known
algorithms that are uniprocessor-optimal.

Functional programming provides another, translation scheme that computes the �xed point without
relying on the operational concept of a \store". In this approach, laziness plays an essential role to build a
cyclic data structure, a graph, and to implement iteration as streams. The resulting algorithm is not optimal
on uniprocessors but, avoiding side e�ects, the algorithm suggests a promising, more general approach to
multiprocessor solutions.

0. Introduction
This paper considers directed graphs, in which edges are ordered pairs: the �rst, source of the arrow,

and the second, the sink. Here we call the source, \parent," and the sink, \child," as if the graphs were
trees or dags (directed acyclic graphs). Of course the graphs are not, in general, thus restricted, but the
terminology is apt because the algorithms locally treat nodes as if they were in a tree|up to the penultimate
step where the �xed point is discovered.

Graph algorithms [1] are often de�ned by a set of recursive equations. Data
ow equations in conventional
compiler construction [2] are typical examples.

Let n1; : : : ; nm be nodes of graph,

(ni) = fnj j nj is a parent node of nig;

(ni) = fnj j nj is a child node of nig;

and F be a function of three arguments: a value and two sets of values. Then, the general form for a de�ning
equation of a function f on graph nodes can be presented as follows:

f(ni) = F(f(ni); ff(nj) j nj 2 (ni)g; ff(nj) j nj 2 (ni)g): (1 � i � m)

Then a �xed point, f , of �f:�n:F(fn; f n; f n) will characterize the solution.

* Research performed as a Graduate Student at Indiana University on a Hitachi Fellowship.
y Research reported herein was sponsored, in part, by the National Science Foundation under Grant

Number DCR 90-027092

Given appropriate initial values, f0(ni), repetitive approximation according to the following equations
computes the solution, if it exists.

f1(ni) = F(f0(ni); ;; ;);

fk+1(ni) = F(fk(ni)ffk(nj) j nj 2 (ni)g; ffk(nj) j nj 2 (ni)g):

The solution builds a graph structure from input data, assigns a chain of approximations for each node, and
�nds an isolated �xed point from each chain.

A procedural language would implement the graph structure with pointers, and chains of approximations
with side e�ects, which are incompatible with lazy evaluation [3], [4]. However, parallel implementation [5]
forces an absence of side e�ects in order to avoid con
icts in data access.

It is possible, of course, to simulate side e�ects within lazy functional languages. A graph, viewed as
the state of \store", can be passed as an extra argument to and returned from each updating function. This
strategy generates a stream of graphs G1; G2; : : : that can be represented \in place" for e�cient storage
management. Current implementations, however, would require copying and reconstruction of the graph
structure for each update, and often yield an expensive implementation and obscure code.

The problem in the above approach is trying to simulate the \store", the notion inherited fromprocedural
languages. This paper seeks a more abstract approach to graph problems. Instead of simulating pointers
and side e�ects, the desired solution should use only mechanisms natural to lazy functional languages. For
instance, lazy binding can represent the cyclic data structure of a graph. Chains of approximation can be
conveniently represented as streams [6], the direct analog of Lucid's histories [9].

The resulting program turned out to be a direct translation of the de�ning equations, not easily avail-
able from non-lazy languages. Although the resulting algorithm is uniprocessor sub-optimal, it successfully
eliminates expensive global update of the graph, giving a possibility of further optimization, especially on
parallel processors. This would con�rm the choice of lazy functional expression of parallel algorithms.

The remainder of this paper is organized as follows. Section 1 presents a generic graph package for
a modest selection of three typical graph algorithms and its applications. The programs are presented
in the lazy functional language Haskell [7]. Section 2 discusses storage management problems, where the
granularity of data structures plays an essential role. Section 3 presents a method to share graphs among
di�erent algorithms. Section 4 discusses e�ciency and opportunities for further optimization.

1. Implementation of a graph package and its applications
It is not the purpose of this paper to introduce Haskell since a decent introduction is available elsewhere

[8]. However, an insightful reader might barge ahead without it because much of the surface syntax is read-
able. Haskell is a strongly typed, modular, lazy, functional programming language. All code is declarative.

The module Graph is the implementation of a graph package as a Haskell module. The package can
be applied to algorithms whose �xed point can be determined from local information, like the chain itself
and the size of the graph. Three modules, StrongComponent, FindCycle, and WeakComponent are
implementations of a strong component algorithm, a graph acyclicity test, and a weak component algorithm,
respectively, using Graph. Each application uses di�erent �xed-point conditions.

1.1 Graph package

1.1.1 Type parameters
The package uses three data types.
The Identi�er type (id) identi�es nodes of the graph. This type requires an equality test to

distinguish each node. It is often a subrange of integers elsewhere, but it need not be here.
The Chain type (c) is the type of elements of the chain attached to each node. Its counterpart in

a procedural implementation is the history of updated data attached to each node [9].
The Result type (r) is the type of the �nal result of the algorithm for each node.

1.1.2 Data structures
The input is a list of edges. An edge is a pair of node identi�ers, each of whose �rst element

indicates the parent node, and whose second, the child node.

-- Graph Algorithm Generator in Haskell

module Graph(GraphData, GraphSkel, GraphInitFun, GraphStepFun,

GraphResultFun, GraphResult,
graphAlgorithm) where

-- GraphData: Input data for graph algorithm
type (Eq id) => GraphData id = (id, id)

-- (parentId, childId)
-- GraphSkel: Skeleton node of graph
type (Eq id) => GraphSkel id = (id, [id], [id])

-- (id, parentIds, childIds)
-- GraphNode: Node of the graph (not exported)
type (Eq id) => GraphNode id c = (id, [c])

-- (id, chain)
-- GraphInitFun: Init function of the iteration
type (Eq id) => GraphInitFun id c = Integer -> [id] -> id -> c

-- size -> ids -> id -> init
-- GraphStepFun: Step function of the iteration
type GraphStepFun c =

c -> [c] -> [c] -> c
-- previous -> parents -> children -> next
-- GraphResultFun: Function to compute the result
type (Eq id) => GraphResultFun id c r = Integer -> [id] -> [c] -> r

-- size -> ids -> chain -> result
-- GraphResult: The result of the algorithm
type (Eq id) => GraphResult id r = (id, r)

Module 1. Graph(Type declarations)

-- functions for pairs --
-- pairToList: Conversion from a homogeneous pair to a list
pairToList :: (a, a) -> [a]
pairToList (a, b) = [a, b]
-- get1st, get2nd: Projections from a homogeneous pair
get1st, get2nd :: (a, a) -> a
get1st (a, b) = a
get2nd (a, b) = b
-- test1st, test2nd: Comparators into a homogeneous pair
test1st, test2nd :: (Eq a) => a -> (a, a) -> Bool
test1st a (b, c) = a == b
test2nd a (b, c) = a == c
--- functions for graph node --
-- testNode: Checks id field of the graph node
testNode :: (Eq id) => id -> GraphNode id c -> Bool
testNode key (id, _) = key == id
-- getNode: Searches a graph with the key (The order of arguments are
-- permuted for currying)
getNode :: (Eq id) =>

[GraphNode id c] -> id -> GraphNode id c
getNode nodes key = head (filter (testNode key) nodes)
-- getId: Id field accessor
getId :: (Eq id) => GraphNode id c -> id
getId (id, _) = id
-- getChain: Chain field accessor
getChain :: (Eq id) => GraphNode id c -> [c]
getChain (_, chain) = chain

Module 1. Graph(Help fnctions)

The algorithm builds three lists: skeleton list, node list, and result list. Elements of these lists
correspond to graph nodes, and have a component of identi�er type standing for a node. (The choice
of the underlying list structure is made for convenience. Alternatively, complete binary trees or arrays
give more operational e�ciency than lists, but simplicity dictates their use here.) The program de�nes
these types as GraphSkel,GraphNode, GraphResult, respectively.

-- graphAlgorithm: Applies the graph algorithm
graphAlgorithm :: (Eq id) =>

[GraphData id] -> GraphInitFun id c -> GraphStepFun c
-- edges -> initFunction -> stepFunction

-> GraphResultFun id c r -> [GraphResult id r]
-- -> resultFunction -> result

graphAlgorithm edges init step getResult = result where
-- ids: Set of id's in the graph (symbol table)
ids = nub (concat (map pairToList edges)) -- nub drops duplicates
-- Number of nodes in the graph
size = length ids
-- Skeleton nodes of the graph
skeletonNodes :: (Eq id) => [GraphSkel id]
skeletonNodes = map makeSkeletonNode ids
-- Skeleton builder
makeSkeletonNode :: (Eq id) => id -> GraphSkel id
makeSkeletonNode id = (id, parentIds, childIds) where

parentIds = map get1st (filter (test2nd id) edges)
childIds = map get2nd (filter (test1st id) edges)

-- The graph
graph = map makeGraphNode skeletonNodes
-- Graph builder
makeGraphNode :: (Eq id) =>

GraphSkel id -> GraphNode id c
makeGraphNode (id, parentIds, childIds) = (id, chain) where
-- Parent nodes and child nodes of this node
parentChains = map (getChain . (getNode graph)) parentIds
childChains = map (getChain . (getNode graph)) childIds
-- The iteration
chain = hd : tl where
hd = init size ids id
tl = next hd parentChains childChains

-- Inductive Step
next :: c -> [[c]] -> [[c]] -> [c]
next previous parents children = current : rest where
current = step previous (map head parents) (map head children)
rest = next current (map tail parents) (map tail children)

-- Get result
result = map makeResult graph
makeResult :: (Eq id) =>

GraphNode id c -> GraphResult id r
makeResult (id, chain) = (id, getResult size ids chain)

Module 1. Graph(Main program)

Besides the identi�er �eld, these list-element types have the following sub-�elds.
Skeleton has two sub-�elds, which are lists of the identi�ers of parent nodes and of child nodes.

Taken together, these data describe the structure of the graph.
Node has one sub-�eld, a chain of data, that approximates the �xed point step-by-step.
Result has one sub-�eld, which is the result for the node. In general, it will be de�ned from, or

itself be, the �xed point of the chain.

1.1.3 Arguments of the main function
The main function of the program, graphAlgorithm, takes four arguments. The �rst parameter,

edges, is input data, a list of edges. Three others are functions. First two build a chain, and the last
retrieves the result from it.

The Initialization function, init, computes the �rst element of the chain from the identi�er of the
node and from global information, the list of all the identi�ers and the size of the graph.

The Step function, step, computes next element of the chain from the pre�x of the chain.
The Result function, getResult, �nds the �xed point and extracts the result from the chain of the

node and global information.

1.1.4 Skeleton of the graph
The �rst stage of the algorithm extracts the skeleton of the graph. It also builds the set of node

identi�ers, and counts the size of the graph. Some standard Haskell functions require explanation here.
Concat concatenates a list of lists into a single list. Nub drops all the duplicate elements from a list.
These functions are used to obtain the set of node identi�ers from the raw data of edges.

Filter has two arguments, say predicate and list. It selects elements of the list on which predicate
is true. This function is used to obtain the set of parent identi�ers and child identi�ers for each node.

This part of the program requires nothing beyond the equality test on identi�ers. If the identi�ers
were implemented as a totally ordered set, then a sorted array would be a more e�cient implementation
than our list.

1.1.5 Building the graph
The second stage establishes links among nodes using the function makeGraphNode. The func-

tion makeGraphNode, mapped on the skeleton of the graph, searches the chains of parents and
children from the graph itself, and binds them to local variables parentChains and childChains.
Giving direct access to the chains of parents and children, these bindings serve as links of the graph.
Laziness is essential to build the graph, a cyclic data structure, from the
at data structure of the
skeleton.

The search is performed only once for each parent and each child of the node, independently of the
iteration in the chain. Once the chains of parents and children are directly accessible, it is easy to build
the chain from init and step.

1.1.6 Retrieval of the result
To retrieve the result from chains of each node, the function getResult is mapped over the graph.

The programmer must be certain that the function getResult converges, on only a bounded traversal
of the chain. Laziness is once again essential because the chain is likely to be de�ned well beyond the
desired �xed point.

Unlike init and step, the function getResult is not trivial. The condition of convergence is not
immediate from the de�ning equations. That is, a separate proof is required to guarantee the isolated
�xed point of the algorithm, just as Floyd-Hoare proof of strong correctness requires a separate proof
of termination.

1.2 Examples
To illustrate the package, this section presents three examples of its use, each showing subtly di�erent

behavior at �xed points.
1.2.1 Strong component algorithm

A strong component algorithm is given by the following equations:

ancestors(ni) = fnig [(
[

nj2 (ni)

ancestors(nj));

descendants (ni) = fnig [(
[

nj2 (ni)

descendants (nj));

strongcomponent (ni) = ancestors(ni) \ descendants (ni):

The strong component of a node is both an ancestor and a descendant of the node. The node
is both an ancestor and descendant of itself. Parents' ancestors are recursively ancestors. Children's
descendants are recursively descendants.

The initialization function seeds the chain with the singleton set of the node, itself. The step
function extends the union transitively to ancestors of parents and descendants of children.

The �xed point is identi�ed by one set occurring twice, consecutively in the chain. Once the �xed
point is found, it is a routine to extract the resulting set. The �xed-point condition is justi�ed by
Lemma 1.

Lemma 1
The �xed point for each node in the strong component algorithm is indicated by one set occurring

twice (consecutively) in the chain.

-- Strong Component Algorithm using general graph builder

module StrongComponent where
import Graph(..)
-- general purpose function (should be in prelude)
-- select: Filter a list with a boolean list
select :: [Bool] -> [a] -> [a]
select [] [] = []
select (True:rest) (hd:tl) = hd : select rest tl
select (False:rest) (_:tl) = select rest tl
-- get1st, get2nd: Projectons from a homogeneous pair
get1st, get2nd :: (a, a) -> a
get1st (a, b) = a
get2nd (a, b) = b
-- BitMap: Bitmap of the graph nodes
type BitMap = [Bool]
-- Bitmap pair (for ancestors and descendants)
type BMPair = (BitMap, BitMap)
-- bmAnd, bmOr: Bitmap functions
bmAnd, bmOr :: BitMap -> BitMap -> BitMap
bmAnd a b = zipWith (&&) a b
bmOr a b = zipWith (||) a b
-- makeUnit: Creates unit vector for given id
makeUnit :: (Eq id) => id -> [id] -> BitMap
makeUnit id ls = map (== id) ls
-- strongComponent
strongComponent :: (Eq id) => [GraphData id] -> [GraphResult id [id]]
strongComponent edges =
graphAlgorithm edges sCInit sCStep sCResult

-- Initialization
sCInit :: (Eq id) =>

Integer -> [id] -> id -> BMPair
sCInit _ ids id = (initialValue, initialValue) where
initialValue = makeUnit id ids

-- Step
sCStep :: BMPair -> [BMPair] -> [BMPair] -> BMPair
sCStep (a, d) parents children = (ancestors, descendants) where
ancestors = foldl1 bmOr (a : (map get1st parents))
descendants = foldl1 bmOr (d : (map get2nd children))

-- Result
sCResult :: (Eq id) =>

Integer -> [id] -> [BMPair] -> [id]
sCResult _ ids chain =

select (bmAnd ancestors descendants) ids where
-- final result
(ancestors, descendants) = findFixedpoint chain
-- fixedpoint finder
findFixedpoint :: [BMPair] -> BMPair
findFixedpoint (hd1:hd2:_) | hd1 == hd2 = hd1
findFixedpoint (_:tl) = findFixedpoint tl

Module 2. StrongComponent

Proof
The mth ancestor is propagated and �rst added to the ancestor set as the mth element of the chain.
We show by contradiction that Am = Am+1 identi�es a �xed point. Suppose that the nth element

of the ancestor set Am and the (m + 1)st element of the ancestor set Am+1 are the same, and for
(m + 2)nd element of the ancestor set, Am+2 6= Am+1 holds. This implies the node has a (m + 2)nd

ancestor without having (m + 1)st ancestor, a contradiction. By symmetry, the same argument holds

for descendants.

-- Graph Acyclicity Algorithm using general graph builder

module FindCycle where
import Graph(..)
-- maximum with default value 0
max0 :: [Integer] -> Integer
max0 [] = 0
max0 ls = maximum ls
-- findCycle
findCycle :: (Eq id) => [GraphData id] -> [GraphResult id Bool]
findCycle edges =
graphAlgorithm edges fCInit fCStep fCResult

-- Initialization
fCInit :: (Eq id) => Integer -> [id] -> id -> Integer
fCInit _ _ _ = 1
-- Step
fCStep :: Integer -> [Integer] -> [Integer] -> Integer
fCStep _ parents _ = max0 parents + 1
-- Result (True if no cycle, False if cycle is found)
fCResult :: (Eq id) =>

Integer -> [id] -> [Integer] -> Bool
fCResult size _ chain = testConvergence chain where
testConvergence :: [Integer] -> Bool
testConvergence (hd1:hd2:_) | hd1 == hd2 = True
testConvergence (hd:_) | hd > size = False
testConvergence (_:tl) = testConvergence tl

Module 3. FindCycle

1.2.2 Acyclicity test of a graph
The following equation de�nes depth of a node from a root, when the depth is bounded.

depth(ni) = max
nj2 (ni)

depth(nj) + 1:

Here, maxx2; x is de�ned to be 0. That is, if a node does not have any parents, its depth is 1.
The acyclicity algorithm builds chains of depths. If a chain converges, the associated node has no cycle
above it. If it diverges, the node has a cycle above it.

The initialization function returns 1. The step function computes the maximum of the depths of
parents plus one, according to the de�nition of depth above.

The result for each node is a boolean value, showing whether there is a cycle above the node. The
value depends on whether the chain converges or not. The termination of this algorithm is justi�ed by
the following lemma:

Lemma 2
The �xed point for each node in the acyclicity test algorithm is indicated by the same value occurring

twice in the chain. If a value in the chain exceeds the size of the graph, the chain diverges.
Proof

By an argument similar to the proof of Lemma 1, two equal consecutive elements in the chain gives
the �xed point. All that remains is to bound the search of the chain. If the depth exceeds the size of
the graph, there exists (n+1)st parent of the node, where n is the size of the graph. So there is at least

an node whose ancestor is itself in the graph. And the chain in�nite.
This algorithm shows that an appropriate criterion for the divergence test can handle these run-

away cases. It is worth noting that child links are never used in this example. And, since the evaluation
scheme is lazy, these links are not even computed.

-- Weak Component Algorithm using general graph builder

module WeakComponent where
import Graph(..)
-- get position
position :: (Eq id) => id -> [id] -> Integer
position id ids = posSub id ids 0 where
posSub :: id -> [id] -> Integer -> Integer
posSub id (hd:_) n | id == hd = n
posSub id (_:tl) n = posSub id tl (n+1)

-- WeakComponent
weakComponent :: (Eq id) => [GraphData id] -> [GraphResult id integer]
weakComponent edges =

graphAlgorithm edges wCInit wCStep wCResult
-- Initialization
wCInit :: (Eq id) => Integer -> [id] -> id -> Integer
wCInit _ ids id = position id ids
-- Step
wCStep :: Integer -> [Integer] -> [Integer] -> Integer
wCStep previous parents children =
maximum (previous : (parents ++ children))

-- Result
wCResult :: (Eq id) => Integer -> [id] -> [Integer] -> Integer
wCResult size _ chain = chain !! (size-1)

Module 4. WeakComponent

1.2.3 Weak component algorithm
The �xed point of the following equation assigns a unique number for each set of nodes in the same

weak component.
val(ni) = max(max

nj2 (ni)
val(nj); max

nj2 (ni)
val(ni); i):

This equation is based on the following idea:
a) Assign a unique numeric label for each node.
b) Propagate it to parents and children, and take the local maximum as the signature value for each

node.
If two nodes are weakly connected, the value converges to the maximumvalue assigned to the nodes

in the component. The initialization function gives a unique label for each node. The step function
takes the maximum of the labels of parents, children, and the node itself.

The �xed-point condition is as follows:
Lemma 3

The �xed point is reached at the mth element in the chain, where m is the span of the component.
Proof

Let two nodes, ni and nj, be connected and the length of the shortest (undirected) path from ni
and nj be k. Then at the kth element of the chain, the value is at least the maximumof original numeric
labels of two nodes.

The span is de�ned as the maximumof such shortest paths. Hence, afterm (span of the component)

steps, the value reaches the maximum numeric label in the component.
In the algorithm, the size of the entire graph is used as a bound on the �xed point. This bounded

search is not an e�cient algorithm unless there is an \e�cient" estimate on the span of the graph. Tarjan
[10] gives an almost linear uniprocessor algorithm for weak component using side e�ects. However good
it is on a uniprocessor, Tarjan's algorithm is ill-suited to asynchronous multiprocessing just as ours is
suboptimal on a uniprocessor. To achieve such an optimal algorithmwithin the framework of parallelism
or lazy functional programming is still an open problem.

2. Data structure vs binding
The code presented in this paper uses data recursion [11]. Data recursion can be implemented by

bindings, as in the program presented here, or by data structures. A data-structure solution would build the

links of the graph explicitly as links within the data structure. A binding solution builds the links of the
graph implicitly as local bindings.

The data-structure solution was explored before developing the code presented above, but abandoned
for reasons now discussed. In the data structure solution, the nodes are declared by the following code.

data GraphNode id c = Node id c [GraphNode id c] [GraphNode id c]

In this code, Node is a constructor, like cons, and is the signature of the type GraphNode, whose third
�eld is the list of parent nodes, and whose fourth �eld is the list of child nodes. With this data declaration,
the graph is constructed as an explicit data structure by the following code.

-- The graph
graph = map makeGraphNode skeleton
-- Graph builder
makeGraphNode :: (Eq id) =>

(id, [id], [id])
-> GraphNode id c

makeGraphNode (id, parentIds, childIds) =
Node id chain parents children

-- Parent nodes and child nodes of this node
parents = map (getNode graph) parentIds
children = map (getNode graph) childIds

Although this solution seems to be more intuitive and easily understood, there is currently a problem with
the requirement for intermediate storage in its implementation.

In the data-structure solution, all the information of parent nodes and child nodes are locally bound in
the scope of makeGraphNode. Consequently, all the ancestors and descendants are accessible from the
local scope of makeGraphNode. This builds a large, mutually-recursive data structure that persists as
long as there remains access to any of its nodes.

On the other hand, the binding solution binds only the chains of parents and children in the scope of
makeGraphNode. This avoids redundant binding and keeps data structure small. So the garbage collector
can reclaim nodes as soon as the last access to a node is released.

It is true that a large data structure is still bound in an outer environment to be passed to local
functions. However, such a binding can be released at earlier stage by a program transformation. This
technique applied to the environment structure has been called lambda lifting [12]; we generalize it to apply
to recursively speci�ed data types, like streams.

A transformation rule from the \data structure" to \binding" style can be stated as follows:
a) Find a binding of a structured data.
b) Analyze the scope of the binding to �nd out which of the components of the structure is actually used.
c) Replace the binding to the whole structure by the bindings to the components, themselves.

3. Sharing graphs
In traditional graph algorithms, the data structure of a graph is shared by several algorithms. This

section shows how to implement this sharing in functional languages. The technique can be considered as a
kind of \distributive law."

The function graphAlgorithm, curried [13] to its �rst argument, can be applied to several graph
algorithms. In Haskell code, the expression (graphAlgorithm edges) serves this purpose. This value can
be shared by several graph algorithms, each of which supplies its own initialization function, step function
and result function. This enables sharing the skeleton of the graph, avoiding its recomputation. Without
this sharing of the skeleton, the algorithm would rebuild it each time an algorithm were applied.

In traditional algorithms, sharing comes for free by binding the graph| cycles and all|as global data.
This idea should be rejected in lazy functional languages because of the memory ine�ciency discussed in
the previous section. To attain the space performance competing with traditional algorithms, however, it is

module Product(product, productSharingChain) where
import Graph(GraphStepFun, GraphInitFun, GraphResultFun)
proj1 :: (a,b) ->a
proj1 (a,b) = a
proj2 :: (a,b) -> b
proj2 (a,b) = b
product :: (Eq id) => (GraphInitFun id (a,b) -> GraphStepFun id (a,b) ->

GraphResultFun id (a,b) (c,d) -> GraphResult id (c,d))
-> GraphInitFun id a -> GraphInitFun id b
-> GraphStepFun id a -> GraphStepFun id b
-> GraphResultFun id a c -> GraphResultFun id b d
-> GraphResult id (c,d)

product generator init1 init2 step1 step2 result1 result2 =
generator combinedInit combinedStep combinedResult where
combinedInit :: (Eq id) => GraphInitFun id (a,b)
combinedInit size ids id = (init1 size ids id, init2 size ids id)
combinedStep :: (Eq id) => GraphStepFun id (a,b)
combinedStep (previous1, previous2) parents children =
(step1 previous1 (map proj1 parents) (map proj1 children),
step2 previous2 (map proj2 parents) (map proj2 children))

combinedResult :: (Eq id) => GraphResultFun id (a,b) (c,d)
combinedResult size ids chain=
(result1 size ids (map proj1 chain),
result2 size ids (map proj2 chain))

productSharingChain :: (Eq id) => (GraphInitFun id a -> GraphStepFun id a ->
GraphResultFun id a (b,c) ->
GraphResult id (b,c))
-> GraphResultFun id a b
-> GraphResultFun id a c
-> GraphResult id (b,c)

productSharingChain generator result1 result2 =
generator combinedResult where

combineResult :: (Eq id) => GraphResultFun id a (b,c)
combinedResult size ids chain=
(result1 size ids chain, result2 size ids chain)

Module 5. Product

still necessary to share the links of the graph as well as skeleton of the graph among algorithms applied to
the same graph.

This leads us to a notion of \Cartesian" product of algorithms. We can apply a set-theoretic \product
of functions" [14] to algorithms, viewed as functions from inputs to outputs. It is illustrated in the module
Product.

For example, the product of the acyclicity algorithm and the strong component algorithm is de�ned as
follows.

productAlgorithm edges =
product (graphAlgorithm edges) fCInit sCInit

fCStep sCStep
fCResult sCResult

This program executes two algorithms simultaneously sharing common data structures.
The function product combines two chains into a chain of pairs sharing the links of the graph. Two

algorithms may share a chain, being di�erent only in the way they retrieve their result. Such a combination
is implemented by another product function, productSharingChain.

The module Product implements the product of two algorithms. The product of three algorithms could
be de�ned similarly, but not as a nested product. However, Haskell's strict typing prevents us from de�ning
product in full generality, nesting products on di�erent numbers of factors. It is common for algorithms
sharing a graph to have di�erent chain types and result types, and strong typing prohibits the heterogeneous
lists that result from their product.

Streams nicely capture the idea of sequential execution in lazy functional languages, just as histories
capture it in Lucid. However, in strongly typed languages, each value in a list is required to have the same

type, which is often not the case in common programming practice. This problem may be handled by a
syntactic macro that enables a programmer to de�ne generic procedure for arbitrary tuples.

4. Performance
Although some algorithms presented here are uniprocessor sub-optimal, they successfully remove the

expensive simulation of side e�ects, and made it possible to share a graph between algorithms. Thus, they
might perform comparatively well under massive parallelism. We have considered this carefully, but have no
multiprocessor implementation for a test of that thesis.

It is easy to give rough uniprocessor bounds of the performance of the algorithm. Establishing the links
of the graph requires O(ne) steps where n is the number of nodes and e is the number of edges. Operations
to compute chain elements are executed at most O(nk) times where k is the maximum length of the chain
before �xed point is found. In StrongComponent, each chain element requires n steps to create. These
considerations show that the upper bound of the performance of StrongComponent is cubic and that of
FindCycle and WeakComponent is quadratic.

However, the actual preformance of these algorithms is not easily analyzed from just the program, itself.
As the language is lazy, the program builds only those data structures actually accessed. For example, in
the program FindCycle, child links are never established. Hence, the actual performance depends on \how
the algorithms are used" rather than \how they are implemented." In this sense, lazy algorithms are passive
entities like data structures, rather than active like programs. Precise analysis requires either probabilistic
assumptions on input data or a speci�c access pattern from outside the algorithm.

Moreover, one must not confuse the above analysis of these algorithms' (suboptimal) performance on
uniprocessors with their performance on multiprocessors, the intended targets. Unfortunately, the analysis
of parallel algorithms is still in its infancy, so we have neither the notation nor the facility to extract
measures from this code, alone. Their performance depends also on the number of processors in the run-
time environment, the architecture of their interconnection, and the scheduling algorithm used to partition
a problem. We can assert, because the algorithms are presented functionally, that there is plently of latitude
for the scheduler to divide its problem, to �t whatever resource or architecture constraints might be in force
on a particular site.

Further improvements are necessary to make such an algorithm compete with conventional algorithms,
Since these algorithms can be considered as lazy data structures, a good strategy is to reduce the number of
probes from outside. In retrieving results, not all of the nodes' results may be required in the �nal result of
the algorithm. Clever transformation of the algorithm may further improve performance; for example, once
the identi�ers in the strong components of a node are known (in the strong component algorithm), there is
no need to explore other nodes in the same component.

5. Conclusion
This paper discusses an implementation of graph algorithms in the lazy functional language, Haskell.

The program makes full use of mechanisms of lazy evaluation, eliminating expensive simulation of pointers
and side e�ects of conventional languages. Their performance is not optimal, compared with some known,
best algorithms for uniprocessors. However, their absence of side e�ects and local binding indicates a
promising approach to programming with parallel processors. Some possibility of further improvement has
been discussed, but further investigation is necessary.

Some interesting points are raised from our experience in developing these algorithms.
(1) Derivation of a graph algorithm from equations

The algorithm provides a direct translation from de�ning equation to the program. This makes
the proof of the program mathematical and nearly transparent. Such a translation is not so obvious
in conventional languages, including non-lazy functional languages. The di�culty for graph equations
is the lack of a base case for inductive reasoning or a recursive proof, which is not essential for lazy
structures (e.g. streams).
(2) Memory e�ciency of lazy programs

As discussed in the paper, large recursive data structures prevent e�cient memory management,
and should be transformed (lambda-lifted) into bindings. It is desirable that this translation be handled
by a compiler. Although the optimization seems to be intractable in general, simple cases might be

handled by analyzing simple data dependency among �elds of structures. On the other hand, data
structures make the program more readable.
(3) Heterogeneous data structures

Strongly typed streams successfully capture the notion of sequential algorithms as long as the type
of all partial results is homogeneous. They fail where partial results are heterogeneous, as in the abstract,
second-order product of the graph algorithms. To generalize their product, a type-safe method is needed
that extends to to tuples of arbitrary arity.

The graph problems considered in this paper arose when the �rst author was writing a veri�er for
the static syntax of Haskell in Haskell. Since the static analysis and the type checking of this language is
mutually recursive among all the declarations, and since Haskell is a language highly recursive in structure
and in style, it was anticipated that it would be an excellent tool for building its own type-checker. However,
e�ective implementation of graph algorithms, originally a peripheral issue, here became a problem of focus.
The general strategy for Haskell implementation of graph algorithms, (e.g. cyclicity check) was extended to
others eventually to be required in an optimizing compiler (e.g. data
ow analysis).

After some consideration of traditional algorithms, we reformulated a general approach to graph prob-
lems as a few mutually recursive equations, whose solution is a �xed point. Thus, Haskell uses mutually
recursive, lazy chains to isolate that �xed point|something that it does well. It remains to show that its
multiprocessor implementation also performs well.

Acknowledgement
The programs presented here were syntactically tested with the Prototype Glasgow Haskell Compiler

Version 0.402. We thank Cordelia V. Hall for helping us with initial debugging.

References
1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman [1983]. Data Structures and Algorithms, Addison-Wesley,

Reading, Massachusetts.
2. A. V. Aho, R. Sethi and J. D. Ullman [1986], Compilers Principles, Techniques, and Tools, Addison-

Wesley, Reading, Massachusetts.
3. D. P. Friedman and D. S. Wise [1976]. Cons should not evaluate its arguments, in S. Michaelson and

R. Milner (Eds), Automata, Languages and Programming, Edinburgh University Press, Edinburgh, pp.
257{284.

4. P. Henderson and J. Morris, Jr. [1976]. A lazy evaluator, Proc. 3rd ACM Symp. on Principles of

programming Languages, pp. 95-103.
5. D. B. Skillcorn [1990]. Architecture-Independent Parallel Computation, Computer 23, 12, IEEE.
6. P. J. Landin [1965]. A correspondence between ALGOL60 and Church's lambda notation, Comm. ACM.

8,2. Aug. 89-101.

7. P. Hudak and P. Wadler (Eds.) [1990]. Report on the Programming Language Haskell, Version 1.0.
8. P. Hudak Para-Functional Programming [1991]. in B. Szymanski (Eds.) Parallel Functional Program-

ming Languages and Environments, Addison Wesley.
9. W. W. Wadge, E. A. Ashcroft [1985]. Lucid, the Data
ow Programming Language, Academic Press.
10. R. E. Tarjan [1983]. Data Structures and Network Algorithms, SIAM, Philadelphia.
11. S. D. Johnson. [1984]. Synthesis of Digital Designs from Recursion Equations, The MIT Press.
12. T. Johnsson [1985]. Lambda lifting: transforming programs to recursive equations, in Jouannaud (Eds),

Conference on Functional Programming Languages and Computer Architecture, Nancy, LNCS 201.
Springer Verlag.

13. J. K. Stoy [1979]. Denotational Semantics. The Scott-Stracey Approach to Programming Language

Theory, The MIT Press.
14. P. R. Halmos [1960]. Naive Set Theory, Van Nostrand, Princeton.

