
Science of Computer Programming 37 (2000) 67–111
www.elsevier.nl/locate/scico

Generalising monads to arrows

John Hughes
Chalmers Tekniska Hogskola, Institutionen for Datavetenskap, S-412 96 Goteborg, Sweden

Abstract

Monads have become very popular for structuring functional programs since Wadler introduced
their use in 1990. In particular, libraries of combinators are often based on a monadic type. Such
libraries share (in part) a common interface, from which numerous bene�ts
ow, such as the
possibility to write generic code which works together with any library. But, several interesting
and useful libraries are fundamentally incompatible with the monadic interface. In this paper I
propose a generalisation of monads, which I call arrows, with signi�cantly wider applicability.
The paper shows how many of the techniques of monadic programming generalise to the new
setting, and gives examples to show that the greater generality is useful. In particular, three
non-monadic libraries for e�cient parsing, building graphical user interfaces, and programming
active web pages �t naturally into the new framework. c© 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction

One of the distinguishing features of functional programming is the widespread use
of combinators to construct programs. A combinator is a function which builds pro-
gram fragments from program fragments; in a sense the programmer using combina-
tors constructs much of the desired program automatically, rather than writing every
detail by hand. The freedom that functional languages provide to manipulate func-
tions – program fragments – as �rst-class citizens supports combinator programming
directly.
Some combinators, such as the well-known list-processing operators map and �l-

ter, encapsulate generally useful program constructions and may appear in almost any
functional program. Others are tailored to particular application areas, and are of-
ten collected into libraries that enable applications in that area to be built quickly
and easily. For example, parsing is an application area that has been extensively
studied.

E-mail address: rjmh@cs.chalmers.se (J. Hughes).

0167-6423/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6423(99)00023 -4

68 J. Hughes / Science of Computer Programming 37 (2000) 67–111

Given an appropriate library of parsing combinators, a parser for the grammar

G ::= a G b | c
might be programmed in Haskell [5,9] as

gram=symbol “a” ‘cat‘ gram ‘cat‘ symbol “b”¡+¿ symbol “c”

A note on syntax: in Haskell, function application is written without brackets, so
symbol “a” denotes a call of the function symbol with argument “a”, and any function
of two arguments may be used as an in�x operator by enclosing it in back-quotes.
In this example, symbol is a function which constructs a parser that accepts just the
given token, ‘cat‘ is a binary operator which combines two parsers into a parser
that runs both in sequence (and concatenates their results), ¡+¿ is a binary operator
which combines two parsers into one which tries both as alternatives, and the entire
declaration is a recursive de�nition of a parser gram which recognises the language
described by the grammar G.
Although the idea of programming with combinators is quite old, the design of com-

binator libraries has been profoundly in
uenced in recent years by Wadler’s introduc-
tion of the concept of a monad into functional programming [13–15]. We shall discuss
monads much more fully in the next section, but for now, su�ce to say that a monad
is a kind of standardised interface to an abstract data type of ‘program fragments’. The
monad interface has been found to be suitable for many combinator libraries, and is
now extensively used. Numerous bene�ts
ow from using a common interface: to take
just one example, Haskell has been extended with special constructions to make the
use of monads particularly convenient.
It is therefore a matter for some concern when libraries emerge which cannot, for

fundamental reasons, use the monad interface. In particular, Swierstra and Duponcheel
have developed a very interesting library for parsing LL-1 grammars [11], that avoids
a well-known ine�ciency in monadic parsing libraries by combining the construc-
tion of a parser with a ‘static analysis’ of the program so constructed. Yet Swierstra
and Duponcheel’s optimisation is incompatible with the monad interface. We believe
that their library is not just an isolated example, but demonstrates a generally useful
paradigm for combinator design that falls outside the world of monads. We shall look
more closely at their idea in Section 3.
Inspired by Swierstra and Duponcheel’s library, I sought a generalisation of the

monad concept that could also o�er a standardised interface to libraries of this new
type. My proposal, which I call arrows, is the subject of this paper. Pleasingly, the
arrow interface turned out to be applicable to other kinds of non-monadic library also,
for example the fudgets library for graphical user interfaces [3], and a new library
for programming active web pages. These applications will be described in Sections 6
and 10.
While arrows are a little less convenient to use than monads, they have signi�cantly

wider applicability. They can therefore be used to bring the bene�ts of monad-like
programming to a much wider class of applications.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 69

2. Background: Library design using monads

What, then, is a monad? In Haskell, the monad interface can be de�ned as a class:

class Monad m where
return :: a→m a
(¿¿=) :: m a→ (a→m b)→m b

Read this as follows: a parameterised type m (which we may think of as a function
from types to types) is a monad if it supports the two operations return and ¿¿= (pro-
nounced ‘bind’) with the types given. Intuitively, we think of a value of type m a as
representing a computation with result of type a – a program fragment. The nature of
the computation is captured by the choice of the type m. The return operation constructs
a trivial computation that just delivers its argument as its result. The ¿¿= operation
combines two computations in sequence, passing the result of the �rst as an argument
to the second – hence the type of the second argument of ¿¿=: it is a function that con-
structs the second computation, rather than just a computation. The monad combinators
must satisfy some simple laws, but we defer a discussion of these to Section 7.

2.1. An Example: A monad to manage failures

For example, computations which may raise an exception can be modelled in a
purely functional language by returning a special value from functions which ‘fail’,
and exception handling can be modelled by testing for this special value. We can use
the parameterised type Maybe for this purpose, de�ned by

data Maybe a=Just a |Nothing
This declaration introduces a new parameterised type Maybe with two constructors,
Just and Nothing. A value of type Maybe a is either of the form Just x, where x is
a value of type a, or of the form Nothing. Now a function which intuitively returns
a result of type t, but may fail, can be de�ned to return a result of type Maybe t
instead, where Nothing represents failure. Other functions can ‘handle’ the exception
by testing for Nothing, or propagate it by returning Nothing themselves. However, a
disadvantage of this approach is that failure has to be propagated explicitly: at every
function call, we have to test whether a failure occurred. The idea can be used much
more conveniently if we de�ne a combinator library to take care of failure handling.
To do so, we declare the typeMaybe to be a monad; that is, we give implementations

of return and ¿¿= for this type. In Haskell, we write

instance Monad Maybe where
return a = Just a
x¿¿=f = case x of

Just a → f a
Nothing → Nothing

where x¿¿=f fails immediately, without calling f, if its �rst argument x fails.

70 J. Hughes / Science of Computer Programming 37 (2000) 67–111

Using these combinators we can write functions which handle failure properly with-
out any explicit tests for Just and Nothing. For example, the following function adds
together two possibly failing integers, failing itself if either argument does:

add ::Maybe Int→Maybe Int→Maybe Int
add x y= x¿¿= �a→

y¿¿= �b→
return (a+ b)

(The layout here is well suited to monadic programs, but may be confusing at �rst: the
body of the �-expression �a→ : : : extends to the end of the entire right-hand side!)
Note that this de�nition is quite independent of the Maybe type: it only uses return
and ¿¿=, and so would work with any monad.
To complete a useful library for failure handling we must add a combinator to cause

a failure,

fail ::Maybe a
fail=Nothing

and a combinator to invoke a handler when a failure occurs:

handle ::Maybe a→Maybe a→Maybe a
x ‘handle‘ h= case x of

Just a → Just a
Nothing → h

Now, we can treat the Maybe type as abstract, and write programs that cause and
propagate failures just using the operators fail, handle, return and ¿¿=, without any
explicit dependence on the way that failures are represented.

2.2. Another example: A monad to manage state

As another example, an updatable state can be modelled in a purely functional
language by passing each function the current contents of the state as an additional
parameter, and returning the possibly modi�ed state as a part of each function’s result.
To do so by hand is tedious and error-prone, but fortunately we can encapsulate the
state passing mechanism in a combinator library by using a monad.
In this case we represent a computation with result type a and a state of type s by

a value of the type 1

newtype StateMonad s a = SM (s→ (a; s))
1 The Haskell newtype declaration introduces a new type isomorphic to an existing one, where the con-

structor names the isomorphism. Its purpose is to enable us to de�ne overloaded operations which behave
di�erently on the new type and the old. In this case, we will de�ne the monad operations for StateMonad
quite independently of any de�nition that may be given for functions. The di�erence between a newtype
and data declaration is subtle, but quite important for e�ciency: at run-time, a value of a type de�ned by
newtype is represented in exactly the same way as the type it is isomorphic to – the constructor is not
represented at all – whereas the constructors of a data type are always represented explicitly.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 71

For any state type s, the partially applied type StateMonad s (which denotes a pa-
rameterised type with one remaining parameter) is a monad:

instance Monad (StateMonad s) where
return a = SM (�s→ (a; s))
x¿¿=f = SM (�s→ let SM x′=x

(a; s′)=x′ s
SM f′=f a

in f′ s′)

With these de�nitions, we can write programs which pass around a state just in terms
of return and ¿¿=; there is no need to manipulate the state explicitly. Note that ¿¿=
must pass the modi�ed state s′ returned by its �rst argument to its second, rather than
the original state, and must return the modi�ed state returned by its second argument
as part of its own result. If one attempts to pass a state around by hand, rather than
by using combinators, then it is very easy to forget a ′ somewhere, with strange bugs
as a result.
To complete a library for state passing we must provide combinators for reading

and modifying the state. For example,

fetch ::StateMonad s s
fetch=SM (�s→ (s; s))

store :: s→StateMonad s ()
store x=SM (�s→ ((); x))

Now the StateMonad type can be made abstract, and stateful programs can be written
just in terms of the combinators. For example, a function to increment a counter:

tick ::StateMonad Int Int
tick= fetch¿¿= �n→

store (n+ 1)¿¿= �()→
return n

This de�nes a computation with a state of type Int, which fetches the state and binds
it to n, updates the state with n + 1, and then delivers the value of the counter n as
its result.

2.3. Monadic parsing combinators

In practice, combinator libraries are usually based on monads providing a combina-
tion of features. For example, a parser for values of type a can be represented by the
type

newtype Parser s a = P ([s]→Maybe (a; [s]))

72 J. Hughes / Science of Computer Programming 37 (2000) 67–111

where s is the type used to represent symbols in the parser’s input, and [s] is Haskell’s
notation for the type list-of-s. Such a parser is invoked by applying its representation
to a list of symbols to parse; its result indicates whether or not parsing was successful,
and in the event of success contains both the value parsed and the remaining, unparsed
input. For example, a parser which recognises a particular symbol can be de�ned
by

symbol :: s→Parser s s
symbol s=P (�xs→ case xs of

[]→Nothing
(x : xs′)→ if x=s then Just (s; xs′) else Nothing)

This parser fails if the input is empty or begins with the wrong symbol, and succeeds
with one symbol consumed from the input otherwise.
This representation of parsers supports a combination of failure handling and state

passing, where the state is the unparsed input. It can be declared to be a monad just like
the Maybe and StateMonad types above – see Wadler’s articles for details. Indeed,
both the type and the implementation of the monad operators can be derived from
the Maybe monad and a generalisation of our StateMonad – we will sketch this in
Section 9. Further combinators can then be added to build up a complete library for
parsing based on this monad.
This Parser type is often generalised to handle ambiguous grammars by replacing

Maybe by a list, so that a parser may return several possible parses. We refrain from
doing so here because Swierstra and Duponcheel’s combinators, which we are most
interested in, are designed to parse only LL(1) grammars.

2.4. Why use monads?

We have now seen that monads can be used as a basis for combinator libraries,
but why should they be used? Why have monads become so ubiquitous in Haskell
programs today?
One reason, of course, is that using monads simpli�es code dramatically. It should

be clear that writing a parser with explicit tests for failure and explicit passing of
the input here and there, would be much more labour intensive than writing one in
terms of symbol, return and ¿¿=. However, this is an advantage of using any com-
binator library to encapsulate coding details, and does not argue for using monads in
particular.
Another reason for using monads is that they o�er a design guideline for combinator

libraries: it is often a good start to begin by de�ning a suitable monad. For example,
it is fairly clear that a library for parsing should include a combinator to invoke two
parsers in sequence, but there are many possible ways in which such a combinator
might handle the two parsers’ results. In some early parsing libraries the two results
were paired together, in others the sequencing combinator took an extra parameter, a
function to combine the results. The monadic operator ¿¿= is more general than either

J. Hughes / Science of Computer Programming 37 (2000) 67–111 73

of these: both may be easily de�ned in terms of ¿¿=, but the converse is not true. By
basing a parsing library on a monad, the designer gives the user more
exibility than
these ad hoc alternatives. Indeed, we know from experience that the monadic interface
gives the library user great power.
Choosing a monadic interface can also guide the implementor of a combinator library.

We have already seen three examples of monads; in fact, using monad transformers
[6,7], we can systematically construct an in�nite variety of monads. A systematic ap-
proach to monad design helps the implementor to �nd an appropriate type to base a
combinator library on.
Finally, the fact that the monad operations return and ¿¿= are overloaded in Haskell

permits us to write generic monadic code, which can be used together with any library
based on a monad. A growing collection of such functions are provided in the standard
Haskell library. For example, we can generalise the add function above (for adding
two possibly failing integers) into a generic function which applies any binary operator
to the results of two computations.

liftM2 ::Monad m⇒ (a→ b→ c)→m a→m b→m c
liftM2 op x y=x¿¿= �a→

y¿¿= �b→
return(a ‘op‘ b)

(The Monad m ⇒ in the type of liftM2 is a context, and means that this function
may be used for any monad type m.) Now the ‘cat‘ operator on parsers that we saw
in the introduction can be de�ned simply as

cat= liftM2 (++)

(where ++ is Haskell’s concatenation operator for lists).
Generic code of this sort represents functionality that the designer of an individual

combinator library no longer needs to provide: simply by basing the library on a monad,
one gains access to a host of useful functions for free. This in turn may signi�cantly
reduce the work required to produce each new library.
Taken together, these arguments provide rather compelling reasons for using monads

in combinator design; it is no wonder that they have become so ubiquitous.

2.5. Further parsing combinators

Let us pursue our example of combinators for parsing a little further. One of the
things a parser can do is to fail; to enable us to express this we de�ne a combinator
which always fails. In fact, very many monads support a notion of failure, and so it
is useful to overload the failure operator, just as we overloaded monadic return and

74 J. Hughes / Science of Computer Programming 37 (2000) 67–111

¿¿=. In Haskell this is done via a prede�ned class

class Monad m⇒MonadZero m where
zero :: m a

to be read as follows: a parameterised type m is a MonadZero if it is a Monad, and
additionally supports the operation zero. The implementation of zero for parsers is then
de�ned by

instance MonadZero Parser where
zero=P (�s→Nothing)

Moreover, many monads which support failure also support a choice combinator,
which tries two alternative ways to perform a computation, using the second if the
�rst one fails. Haskell de�nes a prede�ned class

class MonadZero m⇒MonadPlus m where
(++) :: m a→m a→m a

and the implementation for parsers is

instance MonadPlus Parser where
P a++P b=P (�s→ case a s of

Just (x; s′)→ Just (x; s′)
Nothing→ b s)

This is the operator we called ¡+¿ in the example in the introduction.
This is one of the fundamental building blocks of a parsing library: every interesting

grammar de�nes some non-terminals via alternatives. But unfortunately, this de�nition
contains a serious space leak. That is, it can cause the retention of data by the garbage
collector much longer than one would naively anticipate, with the result that parsers
built with this operator may use much more space than one would reasonably expect.
To see why, note that the input to be parsed, s, cannot be garbage collected while
the �rst parser a is running, because if a eventually fails, then s must be passed to
b. In a lazy language such as Haskell, it is the very act of running parser a which
forces the list of tokens s to be constructed, perhaps by reading from a �le. Provided a
fails quickly, without forcing the evaluation of many elements of s, then little space is
used. But if a actually succeeds in parsing a large part of the input s, then a great deal
of space may be used to hold these already-parsed tokens, just in case a eventually
fails and b needs to be invoked. Ironically, in practice a and b usually recognise quite
di�erent syntactic constructs, so that if a succeeds in parsing many symbols then b
will almost certainly fail as soon as it is invoked. Saving the input for b is costly only
when it is unnecessary!
This problem has been known since combinator libraries for parsing were �rst pro-

posed, and Wadler for example gives a partial solution in his 1985 paper [12]. But the

J. Hughes / Science of Computer Programming 37 (2000) 67–111 75

solutions known for monadic parser libraries are only partial, and depend on the pro-
grammer using an additional combinator similar to Prolog’s ‘cut’ operator, to declare
that a parser need never backtrack beyond a certain point. Although monadic parser
libraries work quite well in practice, the fundamental problem remains unsolved, which
is really rather unsatisfactory.

3. Swierstra and Duponcheel’s parsing library

In 1996, Swierstra and Duponcheel found a novel way to avoid the space leak in
parsing libraries. They restrict their attention to LL(1) parsers, in which choices be-
tween alternative parses can always be resolved by looking at the next token of the
input. Their implementation of a++b can therefore choose between a and b immedi-
ately, and there is no need to save the input s in case the other alternative needs to
be tried later. The space leak that other parsing libraries su�er from is completely
cured.
To implement this idea, Swierstra and Duponcheel need to be able to tell, given a

parser, which tokens it might accept as the �rst in the input, and also whether or not
it can accept the empty sequence of tokens. (The latter information is needed to derive
the former; a string matching the grammar PQ may begin with a token that starts Q, if
P can match the empty string.) This means that parsers can no longer be represented
as functions, as they were in the previous section. Instead, they are represented as a
combination of static information, which can be computed before parsing begins, and
a function to do the parsing itself. The combinators make use of the static information
to construct ‘optimised’ parsing functions. Paraphrasing Swierstra and Duponcheel, we
might de�ne

data StaticParser s = SP Bool [s]
newtype DynamicParser s a = DP ([s]→Maybe (a; [s]))
data Parser s a = P (StaticParser s) (DynamicParser s a)

The �rst component of a parser tells us whether it matches the empty string, and which
tokens it can accept �rst, while the second component is a function which does the
actual parsing. For example, the combinator which accepts a particular symbol can be
de�ned as

symbol :: s→Parser s s
symbol s=P (SP False [s]) (DP (�(x : xs)→ Just (s; xs)))

The dynamic parsing function need not test for an empty input, or check that the �rst
symbol is s, because it will be invoked only when the preconditions expressed by the
static part are satis�ed.

76 J. Hughes / Science of Computer Programming 37 (2000) 67–111

Now we can make use of the static information to de�ne the choice combinator
e�ciently:

instance MonadPlus Parser where
P (SP empty1 starters1) (DP p1)++P (SP empty2 starters2) (DP p2)=
P (SP (empty1 ∨ empty2) (starters1++starters2))
(DP (�xs→

case xs of
[] → if empty1 then p1 [] else

if empty2 then p2 [] else Nothing
x : xs′ → if x ∈ starters1 then p1 (x : xs′) else

if x ∈ starters2 then p2 (x : xs′) else
if empty1 then p1 (x : xs

′) else
if empty2 then p2 (x : xs

′) else Nothing))

It is clear from this de�nition that the choice of whether to invoke p1 or p2 is made
directly, and once made cannot be revised, so there is no need to retain a pointer to
the input, and consequently no space leak. 2

Just as the ++ operator computes the starter symbols and potential emptiness of
the parser it constructs, so must all of the other combinators. In most cases this is
straightforward to do, but unfortunately in the case of ¿¿= it turns out to be impossible!
To see why, recall the type which ¿¿= must have in this case:

(¿¿=) ::Parser s a→ (a→Parser s b)→Parser s b

Now, the static properties of the result of ¿¿= depend on the static properties of
both the �rst and the second argument – for example, the combination can match the
empty sequence only if both arguments can. Yet in the de�nition of ¿¿=, while we
have access to the static properties of the �rst argument, we cannot obtain the static
properties of the second one without applying it to a value of type a. Such values
will be constructed only during parsing, but for Swierstra and Duponcheel’s idea to
be useful we must compute the static parts of parsers once and for all, before parsing
begins. It is simply impossible to �nd a de�nition of ¿¿= which does this.
Swierstra and Duponcheel’s solution to this problem was to abandon the use of a

monad: instead of ¿¿= they de�ned a di�erent sequencing operator with the type

(¡∗¿) ::Parser s (a→ b)→Parser s a→Parser s b

This operator is perfectly adequate for expressing parsers, and poses no problem as far
as computing static properties in advance of parsing is concerned. Nevertheless, the

2 However, this de�nition is not completely realistic. It assumes that the user of the library really does
write an LL(1) parser, so that starters1 and starters2 are disjoint. In a real implementation this would of
course be checked. Moreover, the expensive tests of the form x∈ starters1 can be avoided by choosing a
cleverer representation of parsers – see Swierstra and Duponcheel’s article for details.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 77

need to abandon the monad signature is worrying, for the reasons we discussed above.
Useful as it is, Swierstra and Duponcheel’s parsing library stands alone; it cannot, for
example, be used with generic monadic functions.
If this were an isolated case we might simply ignore it. But Swierstra and

Duponcheel’s idea is clearly much more widely applicable: to optimise a combinator
library, rede�ne the combinators to collect static properties of the computations they
construct, and then use those static properties to optimise the dynamic computations. If
we think of a library as de�ning a domain speci�c ‘language’, whose constructions are
represented as combinators, then Swierstra and Duponcheel’s idea is to implement the
language via a combination of a static analysis and an optimised dynamic semantics.
We may clearly wish to do this very often indeed. But every time we do, the type of
¿¿= will make it impossible to use a monadic interface!
It is this observation that motivated us to search for a generalisation of monads, a

generic interface for combinator libraries that �ts a much wider class of applications.
We will introduce the generalisation we found in the next section.

4. Arrows

Recall that Swierstra and Duponcheel were unable to implement

(¿¿=) ::Parser s a→ (a→Parser s b)→Parser s b

because its second argument is a function, and the only thing one can do with a
function is apply it. Lacking a suitable value of type a to apply it to, they could not
extract any static information from it, and therefore could not construct the static part
of ¿¿=’s result.
Our solution is simply to change the representation of this argument. Rather than

a function of type a→Parser s b we will use an abstract type, which we will call
an arrow from a to b. We solve Swierstra and Duponcheel’s problem by choosing a
representation for arrows which makes static properties immediately accessible.
In fact, there is no need to work with two abstract types, a monad type and an arrow

type. Instead we will work purely with arrows. In general, an arrow type will be a
parameterised type with two parameters, supporting operations analogous to return and
¿¿=. Just as we think of a monadic type m a as representing a ‘computation delivering
an a’, so we think of an arrow type a b c (that is, the application of the parameterised
type a to the two parameters b and c) as representing a ‘computation with input of
type b delivering a c’.
Just as Haskell de�nes a Monad class, so we shall de�ne an Arrow class with

analogous operators. But we must make dependence on an input explicit. Thus while
the return operator, with type a→m a, merely converts a value into a computation,
its analogue for arrows, with type (b→ c)→ a b c, converts a function from input to
output into a computation. The analogue of ¿¿= is just composition of arrows. We

78 J. Hughes / Science of Computer Programming 37 (2000) 67–111

de�ne

class Arrow a where
arr :: (b→ c)→ a b c
(¿¿¿) :: a b c→ a c d→ a b d

Category theorists might also expect an operator to construct the identity arrow from
a type to itself; we omit it because it is directly obtainable as arr (�x→ x).
For any monad m, functions of type a→m b are potential arrows. If we give this

type a name,

newtype Kleisli m a b = K (a→m b)
then we can implement the arrow operations as follows:

instance Monad m⇒Arrow (Kleisli m) where
arr f = K (�b→ return (f b))
K f¿¿¿K g = K (�b→f b¿¿= g)

This shows that arrows do indeed generalise monads; for every monad type, there is a
corresponding arrow type. (Of course, it does not follow that every monadic program
can be rewritten in terms of arr and ¿¿¿.) Categorically speaking, we just constructed
the Kleisli category of the monad m. Of course, we will see later that there are also
many other, non-monadic implementations of the arrow signature.

4.1. Arrows and pairs

However, even though in the case of monads the operators return and ¿¿= are all
we need to begin writing useful code, for arrows the analogous operators arr and ¿¿¿
are not su�cient. Even the simple monadic addition function that we saw earlier

add ::Monad m⇒m Int→m Int→m Int
add x y=x¿¿= �u→y¿¿= �v→ return (u+ v)

cannot yet be expressed in an arrow form. Making dependence on an input explicit,
we see that an analogous de�nition should take the form

add ::Arrow a⇒ (a b Int)→ (a b Int)→ (a b Int)
add f g= : : :

where we must combine f and g in sequence. The only sequencing operator available
is ¿¿¿, but f and g do not have the right types to be composed. Indeed, the add
function needs to save the input of type b across the computation of f, so as to be
able to supply the same input to g. Likewise the result of f must be saved across
the computation of g, so that the two results can eventually be added together and
returned. The arrow combinators so far introduced give us no way to save a value
across another computation, and so we have no alternative but to introduce another
combinator.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 79

We extend the de�nition of the Arrow class as follows:

class Arrow a where
arr :: (b→ c)→ a b c
(¿¿¿) :: a b c→ a c d→ a b d
�rst :: a b c→ a (b; d) (c; d)

The new operator �rst converts an arrow from b to c into an arrow on pairs, that applies
its argument to the �rst component and leaves the second component untouched, thus
saving its value across a computation. Once again, we can implement �rst for any
Kleisli arrow:

instance Monad m⇒Arrow (Kleisli m) where
· · ·
�rst (K f)=K (�(b; d)→f b¿¿= �c→ return(c; d))

Given �rst, we can de�ne a combinator that applies its argument to the second
component instead,

second ::Arrow a⇒ a b c→ a (d; b) (d; c)
second f=arr swap¿¿¿ �rst f¿¿¿ arr swap

where swap (x; y)=(y; x)

a combinator which processes both components of a pair,

(∗∗∗) ::Arrow a⇒ a b c→ a d e→ a (b; d) (c; e)
f ∗∗∗ g=�rst f¿¿¿ second g

and a combinator which builds a pair from the results of two arrows,

(&&&) ::Arrow a⇒ a b c→ a b d→ a b (c; d)
f&&& g=arr (�b→ (b; b))¿¿¿ (f ∗∗∗ g)

With these de�nitions the add function is easily completed:

add ::Arrow a⇒ (a b Int)→ (a b Int)→ (a b Int)
add f g=(f&&& g)¿¿¿ arr (�(u; v)→ u+ v)

Just as we abstracted the idea of applying a binary operator to the results of two
monadic computations, by going on to de�ne liftM2, so we can generalise the arrow
version likewise:

liftA2 ::Arrow a⇒ (b→ c→d)→ a e b→ a e c→ a e d
liftA2 op f g=(f&&& g)¿¿¿ arr (�(b; c)→ b ‘op‘ c)

We can then rede�ne add by

add= liftA2 (+)

80 J. Hughes / Science of Computer Programming 37 (2000) 67–111

Readers with a categorical background should note that Haskell pairs are not in
general a product in the category of arrows. This would require properties such as

(f&&& g)¿¿¿ arr fst=f

to hold, and in general, since our arrows usually represent computations with some
sort of e�ect, laws of this sort are simply false. In this case, the side-e�ects of g are
lost on the right-hand side.
The reader may also wonder why we chose to take �rst as primitive, rather than

(say) &&& which resembles a well-known categorical operator. There are two main
reasons for our choice.

• Firstly, since in general our arrows represent computations with e�ects, evaluation
order makes a di�erence. The de�nition of f&&& g above is explicit about this: the
e�ects of f are composed with the e�ects of g in that order, that is evaluation
is left to right. The de�nitions of &&& and ∗∗∗ above can be used as algebraic laws
by the programmer, laws which capture evaluation order. In contrast, had we taken
&&& as primitive, then the designer of each arrow-based library would have had to
choose either left-to-right or right-to-left evaluation, with the result that evaluation
order would probably di�er from case to case. This would make the behaviour of
arrow-based libraries less predictable, and reduce the number of useful laws that
arrow combinators satisfy.
• Secondly, �rst is a simpler operator than &&&, and in general its implementation is
around half the size of that of the latter. In practice, the implementations of arrow
combinators can be quite complex, and by making the choice we did we reduce the
work required to build a new arrow-based library appreciably.

4.2. Swierstra and Duponcheel’s parsers as arrows

Now let us return to Swierstra and Duponcheel’s parsers. Recall that we de�ned
their parser type as

data StaticParser s = SP Bool [s]
newtype DynamicParser s a = DP ([s]→Maybe (a; [s]))
data Parser s a = P (StaticParser s) (DynamicParser s a)

We were unable to make Parser into a monad, but can we make it into an arrow type?
To do so, we will need to add an extra type parameter, the type of inputs to

parser arrows. Our intention is that the static properties of a parser should not de-
pend on parse-time inputs, so let us change only the type of the dynamic parsing
function:

newtype DynamicParser s a b = DP ((a; [s])→Maybe (b; [s]))
data Parser s a b = P (StaticParser s) (DynamicParser s a b)

J. Hughes / Science of Computer Programming 37 (2000) 67–111 81

Implementing the arrow combinators for this type is now straightforward:

instance Arrow (Parser s) where

arr f=P (SP True []) (DP (�(b; s)→ Just (f b; s)))

P (SP empty1 starters1) (DP p1)¿¿¿P (SP empty2 starters2) (DP p2)=
P (SP (empty1 ∧ empty2)

(starters1 ‘union‘ if empty1 then starters2 else []))
(DP (�(b; s)→ case p1 (b; s) of

Just (c; s′) → p2 (c; s′)
Nothing → Nothing

))

�rst (P sp (DP p))=
P sp (�((b; d); s)→ case p (b; s) of

Just (c; s′) → Just ((c; d); s′)
Nothing → Nothing

)

It is easy to modify the de�nitions from Section 3 of symbol, the failure operator
zero, and the choice combinator ++, to handle the arrows’ input appropriately. Of
course, since zero and ++ are overloaded names for monad operators, then we cannot
use the same names for the corresponding operators on arrows. We therefore introduce
two further arrow classes,

class Arrow a⇒ArrowZero a where
zeroArrow :: a b c

class ArrowZero a⇒ArrowPlus a where
(¡+¿) :: a b c→ a b c→ a b c

and declare Parser s to be an instance of these classes instead. Having done so, we
can go on to de�ne all the operators in the interface that Swierstra and Duponcheel
use, in terms of the arrow operations already introduced. For example, their sequencing
operator is de�nable by

(¡∗¿) ::Parser s a (b→ c)→Parser s a b→Parser s a c
(¡∗¿)= liftA2 (�f x→f x)

So the user of an arrow-based parsing library can use it in exactly the same way as
Swierstra and Duponcheel’s original library, but in addition can combine parsers with
generic arrow code.

5. Arrows and interpreters

How awkward is it to program with arrow combinators instead of monadic ones? And
how expressive are the combinators in each case – are there some kinds of program

82 J. Hughes / Science of Computer Programming 37 (2000) 67–111

which can be expressed using return and ¿¿=, but cannot be written at all in terms of
arr, ¿¿¿ and �rst? We can begin to answer both questions by looking at (fragments of)
an interpreter based on arrows vs. one based on monads. If we can write an interpreter
in which program fragments in a certain language are interpreted as arrows, then we
know that any kind of program expressible in the interpreted language can also be
expressed in terms of the arrow combinators. Since we not concerned to implement
any particular kind of e�ect, our interpreters will in both cases be generic, that is they
will work with any monad or arrow, respectively.
To begin with, we shall consider a tiny language with only variables and addition.

We represent expressions by the datatype

data Exp=Var Id |Add Exp Exp
type Id=String

The value of such an expression is always an integer, but in anticipation of making
extensions we introduce a separate type of values anyway:

data Val= Num Int

We will also require a type for environments:

type Env=[(Id ;Val)]

Now, a monadic interpreter maps expressions to computations, represented using a
monad M . To do so, we introduce an evaluation function

eval ::Exp→Env→M Val

which we can de�ne by

eval (Var s) env = return (lookup s env)
eval (Add e1 e2) env = liftM2 add (eval e1 env) (eval e2 env)

where add (Num u) (Num v)=Num (u+ v)

An arrow interpreter, on the other hand, maps expressions to computations repre-
sented as arrows. But what should the input of an arrow denoting an expression be?
By analogy with the monadic case, it is natural to take the input of an expression to
be the environment. In an arrow interpreter based on arrow type A, we therefore give
eval the type

eval ::Exp→A Env Val
We can de�ne eval as follows:

eval (Var s) = arr (lookup s)
eval (Add e1 e2) = liftA2 add (eval e1) (eval e2)

where add (Num u) (Num v)=Num (u+ v)

As we can see, at least in this small example, the arrow code is by no means more
awkward than the monadic code. Indeed, often the user of a monadic combinator

J. Hughes / Science of Computer Programming 37 (2000) 67–111 83

library works more with derived operators such as liftM2 than with the operators in
the monad signature themselves. Where analogous operators can be de�ned on arrows,
arrow programs are essentially the same as monadic ones.

5.1. Interpreting conditionals

Let us pursue the interpreter example a little further, and add a conditional expression
to the interpreted language. We extend the expression and value types as follows:

data Exp = : : : | If Exp Exp Exp
data Val = : : : |Bl Bool

The monadic interpreter is easy to extend; we add a new case

eval (If e1 e2 e3) env= eval e1 env¿¿= �(Bl b)→
if b then eval e2 env else eval e3 env

But the arrow interpreter is more di�cult. Certainly, we could de�ne

eval (If e1 e2 e3)= (eval e1 &&& eval e2 &&& eval e3)¿¿¿
arr (�(Bl b; (v1; v2))→ if b then v1 else v2)

but this does not properly capture the meaning of a conditional expression: both
branches are evaluated, and we just choose between the results. 3 Of course the inten-
tion is to evaluate just one branch, depending on the value of the boolean.
And this is the crux of the problem: the arrow combinators provide no way to choose

between two arrows on the basis of an input. To do so, we are obliged to add a new
combinator. But this time, we choose to de�ne a new class ArrowChoice rather than
enlarge the existing Arrow class further. By doing so we retain the freedom to de�ne
arrow types which do not support a dynamic choice combinator; they will simply fail
to be instances of our new class.
The new combinator we want will choose between two arrows on the basis of the

input, and it makes sense therefore for the input to be of Haskell’s sum type

data Either a b= Left a |Right b

We will de�ne (f ||| g) to pass Left inputs to f and Right inputs to g, so the type
of ||| will be

(|||) ::ArrowChoice a⇒ a b d→ a c d→ a (Either b c) d

However, just as we chose to de�ne �rst as an arrow primitive rather than &&&, so
we choose a simpler operator than ||| as the primitive method in the ArrowChoice

3 Do not expect Haskell’s lazy evaluation to avoid computing eval of the other branch. Normally the
de�nition of arrow composition, and hence also &&&, forces the result to depend on both operands, so lazy
evaluation plays no rôle.

84 J. Hughes / Science of Computer Programming 37 (2000) 67–111

class. We de�ne

class Arrow a⇒ArrowChoice a where
left :: a b c→ a (Either b d) (Either c d)

where left f invokes f only on Left inputs, and leaves Right inputs unchanged. As
usual, we check that we can implement left for Kleisli arrows:

instance Monad m⇒ArrowChoice (Kleisli m) where
left (K f)=K (�x→ case x of

Left b→f b¿¿= �c→ return (Left c)
Right d→ return (Right d))

Once we have introduced left, we can de�ne

right f = arr mirror¿¿¿ left f¿¿¿ arr mirror
where mirror (Left x)=Right x

mirror (Right x)=Left x

f+++ g = left f¿¿¿ right g

f ||| g = (f+++ g)¿¿¿ arr untag
where untag (Left x)=x

untag (Right y)=y

Now returning to our interpreter, we can at last de�ne the interpretation of
conditionals:

eval (If e1 e2 e3)= (eval e1 &&& arr id)¿¿¿
arr(�(Bl b; env)→ if b then Left env else Right env)¿¿¿
(eval e2 ||| eval e3)

This is certainly more awkward than the monadic code, but would be much simpli�ed
by introducing a combinator especially for testing predicates:

test ::Arrow a⇒ a b Bool→ a b (Either b b)
test f=(f&&& arr id)¿¿¿ arr (�(b; x)→ if b then Left x else Right x)

Such a combinator is su�ciently useful that it is reasonable to include it in the arrow
library, whereupon this case of our interpreter becomes no more complicated than the
monadic version:

eval (If e1 e2 e3)= test (eval e1¿¿¿ arr(�(Bl b)→b))¿¿¿ (eval e2 ||| eval e3)

Alternatively, Paterson’s syntactic sugar for arrows (see Section 8) makes this de�nition
much more readable.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 85

5.2. Interpreting �-calculus

Using the combinators we have now introduced, we could go on to write an
arrow interpreter for a complete �rst-order functional language. But can we interpret
higher-order functions? Let us consider adding �-expressions and (call-by-value) appli-
cation to the interpreted language. We extend the type of expressions as follows:

data Exp= : : : |Lam Id Exp |App Exp Exp
Before we can extend the type Val, we must decide how to represent function values.
Since calling a function may have an e�ect, we cannot interpret functions as values
of type Val→Val. In the monadic interpreter, we can use functions whose result is a
computation,

data Val= : : : |Fun (Val→M Val)

while in the arrow interpreter, we naturally represent functions by arrows:

data Val= : : : |Fun (A Val Val)
The monadic eval function is easily extended to handle the new cases:

eval (Lam x e) env = return (Fun (�v→ eval e ((x; v) : env)))
eval (App e1 e2) env = eval e1 env¿¿= �f→ eval e2 env¿¿= �v→f v

But the arrow version proves more di�cult. Interpreting �-expressions is unproblematic,

eval (Lam x e)=arr (�env→Fun (arr (�v→ (x; v) : env)¿¿¿ eval e))

but application is harder. If we try to de�ne

eval (App e1 e2)=((eval e1¿¿¿ arr (�(Fun f)→f))&&& eval e2)¿¿¿ app

for some suitable de�nition of app, then we �nd that app must invoke an arrow which
it receives as an input, and there is no way to do so using the combinators so far
introduced. There is nothing for it but to introduce another new class:

class Arrow a⇒ArrowApply a where
app :: a (a b c; b) c

whereupon the de�nition of eval above works. So, given an implementation of app,
we can write an interpreter for the �-calculus, and so we can also express other arrow
programs in a higher-order style.
Note that we can de�ne left in terms of app:

left f= arr (�z→ case z of
Left b→ (arr (�()→ b)¿¿¿f¿¿¿ arr Left; ())
Right d→ (arr (�()→Right d); ()))¿¿¿

app

so any arrow type in class ArrowApply can also made an instance of ArrowChoice.

86 J. Hughes / Science of Computer Programming 37 (2000) 67–111

Once more, it is easy to implement app for Kleisli arrows:

instance Monad m⇒ArrowApply (Kleisli m) where
app=K (�(K f; x)→f x)

We have now seen that, given a monad m, we can de�ne a corresponding arrow type
Kleisli m which moreover supports all the other combinators we have introduced so
far. Conversely, it turns out that, given an arrow type a which also supports app, we
can de�ne a corresponding monad type ArrowMonad a. The de�nition is simply

newtype ArrowApply a⇒ArrowMonad a b = M (a Void b)

where Void is Haskell’s one-point type, whose only element is the unde�ned value
⊥. That is, a ‘monadic’ computation based on a is simply an arrow which ignores its
input. We can now de�ne the monad operations on ArrowMonad a:

instance ArrowApply a⇒Monad (ArrowMonad a) where
return x = M (arr (�z→ x))
M m¿¿=f = M (m¿¿¿

arr (�x→ let M h=f x in (h;⊥))¿¿¿
app)

We need app in order to invoke the arrow that the second argument of ¿¿= produces.
One conclusion we can draw from this is that arrow types which support app are just

as expressive as monads. In principle, one might eliminate the concept of a monad from
Haskell altogether, and replace it with arrows supporting app. But another conclusion to
draw is that arrows supporting app are really of little interest to us here. Our motivation,
after all, is to �nd a generic interface for combinator libraries which cannot be based
on a monad. But clearly, any library which supports an arrow type with app could
equally well be given a monadic interface. In the rest of the paper, therefore, we will
be most interested in arrow types which cannot be made instances of ArrowApply.
What of Swierstra and Duponcheel’s parsers? A moment’s thought shows that parsers

cannot support either choice or application. The choice operator f ||| g is supposed to
make a dynamic choice between two arrows on the basis of the input, which implies
that the possible starting symbols of f ||| g would depend on the arrow’s input. But
we have deliberately designed the Parser type so that the value of the input cannot
a�ect the static component. It follows that ||| is unimplementable. And if choice is
unimplementable, then so a fortiori is app, since the former can be de�ned in terms of
the latter. Luckily this does not matter: it is rare that we want to write a parser which
decides on the grammar to accept on the basis of previously parsed values.
What we see here is that the arrow interface lets the programmer make �ner distinc-

tions than the monad interface does; we can distinguish between types of computations
that permit dynamic choices and calls of dynamic functions, and types of computations
that do not. Swierstra and Duponcheel parsers do not. In contrast, once we declare a
type to be a monad, we open the possibility of doing everything with it. This is why
the monadic interface is restrictive: the only kinds of computations we can represent

J. Hughes / Science of Computer Programming 37 (2000) 67–111 87

as monads are those which support all the operations of choice, application, and so on.
But computations which support only some of these can still be represented as arrows,
they just will not be instances of all the arrow classes.
It may seem surprising that we focus our attention on arrows without app, when

Cartesian Closed Categories (which model the �-calculus) otherwise play such a large
rôle in computer science, or indeed, when higher-order programming is so prevalent in
Haskell. But we are actually giving up very little, since when we use arrows we work
with two ‘levels’ of function. Of course, we can still work with functions on functions,
and even functions on arrows; the one thing we cannot express is arrows on arrows.
It is a small price to pay for the generality which arrows give us.

6. Stream processors: Processes as arrows

We have already seen that any monad gives rise to a corresponding arrow type
in a natural way, and that Swierstra and Duponcheel’s parsers (or more generally,
combinators which collect static information about computations) can also be repre-
sented as arrows. In this section we will show that yet another ‘non-monadic’ notion
of computation, namely that of a process, �ts naturally into the arrow framework.
We concern ourselves for the time being with processes that have one input channel

and one output channel. Such processes can be modelled in a purely functional language
by stream processors. A stream processor maps a stream of input messages into a
stream of output messages, but is represented by an abstract data type. Let SP a b
be the type of stream processors with inputs of type a and outputs of type b. Stream
processors are then constructed using the operators

put :: b→SP a b→SP a b
which constructs a stream processor which outputs the b and then behaves like the
second argument, and

get :: (a→SP a b)→SP a b
which constructs a stream processor which waits for an input, passes it to its function
argument, and then behaves like the result. For simplicity, we shall only consider non-
terminating (recursively de�ned) stream processors; otherwise we would add another
operator to construct a stream processor which halts.
Stream processors can be represented in several di�erent ways, but quite a good

choice is as a datatype with put and get as constructors:

data SP a b= Put b (SP a b) |Get (a→SP a b)
put=Put
get=Get

Now, we can write single processes using put and get, but to put processes together
we need further combinators.

88 J. Hughes / Science of Computer Programming 37 (2000) 67–111

The arrow combinators turn out to represent very natural operations on processes!
The arr operator maps its argument f over the input stream, and the ¿¿¿ operator
connects two processes in series:

instance Arrow SP where
arr f = Get (�x→Put (f x) (arr f))

sp1¿¿¿Put c sp2 = Put c (sp1¿¿¿ sp2)
Put b sp1¿¿¿Get f = sp1¿¿¿f b
Get f1¿¿¿Get f2 = Get (�a→f1 a¿¿¿Get f2)
...

Note that we de�ne process composition lazily: the composition blocks waiting for an
input only if both its constituent processes do.
Finally, the �rst operator builds a process that feeds the �rst components of its

inputs through its argument process, while the second components bypass the argument
process and are recombined with its outputs. But what if the argument process does not
produce one output per input? Our solution is to bu�er the unconsumed inputs until
corresponding outputs are produced. The function bypass below takes as additional
arguments the queues of unused �rst and second components; note that one of these
is always empty.

instance Arrow SP where
...
�rst f=bypass [] [] f

bypass [] ds (Get f) = Get (�(b; d)→ bypass [] (ds++[d]) (f b))
bypass (b : bs) [] (Get f) = bypass bs [] (f b)
bypass bs [] (Put c sp) = Get (�(b; d) →

Put (c; d) (bypass (bs++[b]) [] sp))
bypass [] (d : ds) (Put c sp) = Put (c; d) (bypass [] ds sp)

With this de�nition, f&&& g combines f and g in parallel, synchronising their output
streams to produce a stream of pairs (and also synchronising their joint output with
the input stream).
We can now use generic arrow combinators to write down stream processors. For

example, the following stream processor outputs Fibonacci numbers:

�bs = put 0 �bs′

�bs′ = put 1 (liftA2 (+) �bs �bs′)

Stream processors also support a natural notion of failure: a failing process simply
never produces more output. We can therefore de�ne a zeroArrow as

instance ArrowZero SP where
zeroArrow=Get (�x→ zeroArrow)

J. Hughes / Science of Computer Programming 37 (2000) 67–111 89

This is often called a sink. (Had we included a constructor for a stopped process in the
type SP then we would of course use that here, rather than representing zeroArrow
by the process which continually reads input.)
We de�ne p¡+¿q to run p and q in parallel, merging their outputs; this is often

called a fanout.

instance ArrowPlus SP where
Put b sp1¡+¿ sp2 = Put b (sp1¡+¿ sp2)
sp1¡+¿Put b sp2 = Put b (sp1¡+¿ sp2)
Get f1¡+¿Get f2 = Get (�a→f1 a¡+¿f2 a)

We take care to de�ne parallel composition lazily also, so that p¡+¿q blocks waiting
for input only if both p and q do.
These de�nitions satisfy the laws

zeroArrow¡+¿q= q

p¡+¿ zeroArrow=p

(p¡+¿q)¡+¿r =p¡+¿(q¡+¿r)

which is a strong indication that they are reasonable.
Stream processors can also support dynamic choice. The stream processor left sp

simply passes messages tagged Left through sp, while others are passed on directly.

instance ArrowChoice SP where
left (Put c sp) = Put (Left c) (left sp)
left (Get f) = Get (�z→ case z of

Left a → left (f a)
Right b → Put (Right b)

(left (Get f)))

With this de�nition, then f ||| g can be regarded as yet another kind of parallel com-
position, which routes inputs tagged Left to f and inputs tagged Right to g.
In fact, although stream processors have only one input and one output channel, we

can model processes with many of each by multiplexing several channels onto one.
For example, we can regard a channel carrying messages of type Either a b as a
representation for two channels, one carrying a’s and the other carrying b’s. With this
viewpoint, f ||| g combines f and g in parallel to yield a stream processor with two
input channels (multiplexed onto one), and merges the output channels onto one. Should
we wish to combine f and g without merging their outputs, we can instead use f+++ g.
We can copy an input channel to two output channels using arr Left¡+¿ arr Right,
and so we can de�ne a parallel combination of f and g with two output channels, but
which copies one input channel to both processes by

f |&| g=(arr Left¡+¿ arr Right)¿¿¿ (f+++ g)

90 J. Hughes / Science of Computer Programming 37 (2000) 67–111

We can write a stream processor with two input channels and one output, that just
copies the �rst input channel and discards the second, or vice versa, as

justLeft = arr id ||| zeroArrow
justRight = zeroArrow ||| arr id

Not surprisingly, combining two processes and then discarding the output channel from
one of them is equivalent to the other:

(f |&| g)¿¿¿ justLeft=f

(f |&| g)¿¿¿ justRight= g

But these properties have a categorical interpretation: they tell us that the Either type is
a weak categorical product in the category of stream processors! (Only weak, because
there is more than one way to de�ne |&| so that these equations hold; our de�nition
favours g over f in the case that both produce outputs simultaneously.) In a categorical
sense, then, the Either type behaves more like a product than the pair type does,
when we work with stream processors. And indeed, a channel carrying a sum type
corresponds much more closely to a pair of channels than does a channel carrying
pairs.
The only arrow class we have not yet shown how to implement is ArrowApply. But

it turns out that there is no sensible de�nition of

app ::SP (SP a b; a) b

Since app would receive a new stream processor to invoke with every input, there
is no real sense in which the stream processors it is passed would receive a stream
of inputs; we could supply them with only one input each. This would really be
very unnatural. Since stream processors do not support a natural de�nition of app,
they cannot be �tted into the monadic framework. They thus give us our second
example of a useful kind of computation which cannot be represented as a
monad. 4

However, recalling that Either may play the rôle of a product type for stream pro-
cessors, we might instead of app consider looking for a function of type

dyn ::SP (Either (SP a b) a) b

There is actually a very natural de�nition with this type: the ‘dynamic stream processor’
dyn receives stream processors on its �rst input channel, and then passes inputs from
its second input channel through the stream processor received, until it receives another

4 Another way to see this is to note that the Kleisli arrow of any monad M , with type a→M b, takes
only a single a as input. In contrast, stream processors take many as as inputs, and so cannot be constructed
as a Kleisli arrow.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 91

stream processor to replace the �rst. We implement it as

dyn=dynloop zeroArrow
where dynloop (Put b sp)=Put b (dynloop sp)

dynloop (Get f)=Get (�z→
case z of
Right a→ dynloop (f a)
Left sp → dynloop sp)

Stream processors are not just amusing toys: they are at the heart of the fudgets
combinator library for programming graphical user interfaces [3]. A fudget with the
type F a b can be thought of as a process with four communication channels, a
high-level input channel, carrying messages of type a from other fudgets, a high-level
output channel carrying messages of type b to other fudgets, and two low-level channels
carrying messages to and from the window manager. A fudget can therefore exchange
high-level messages with other fudgets, but can also manage a part of the screen.
Thus a fudget has both an appearance and a behaviour, which makes them useful for
structuring complex user interfaces.
The fudget type F a b is actually implemented as a stream processor in which

the high and low level communication channels are multiplexed onto one, in just
the way we described. Since fudgets are just stream processors, they can also be
declared to be arrows, supporting the same operations. Interestingly, almost all the
operations we discussed in this section do indeed appear in the fudgets library – even
dyn – although of course, they appear with di�erent names, and not as instances of
a general framework. If declarations making fudgets into arrows were added to the
fudgets library, then programmers would be able to combine fudgets using generic
arrow combinators, in addition to those which are already de�ned in the library.

7. Arrow laws

Up to this point we have ignored the matter of laws. In fact, the presentation of
monads in Section 2 was a little oversimpli�ed: an implementation of return and ¿¿=
constitutes a monad only if the so-called monad laws are satis�ed:

return x¿¿=f=f x

m¿¿= return=m

(m¿¿= �x→f x)¿¿= g=m¿¿=(�x→f x¿¿= g)
These laws state in essense that sequential composition is associative, and return is
its unit, although they are complicated slightly by the need to pass values from one
computation to the next. The programmer relies implicitly on the monad laws every
time he or she uses a monad-based library without worrying about how to bracket
sequential compositions.

92 J. Hughes / Science of Computer Programming 37 (2000) 67–111

We will place similar requirements on the implementations of the arrow combinators.
But since there are many more arrow combinators than monadic ones, we will require
a larger collection of laws. All of the laws that we state in this section are satis�ed
by Kleisli arrows.
We can simplify the statements of the laws a little by noting that the ordinary

function type can be declared to be an arrow:

instance Arrow (→) where
arr f = f
f¿¿¿g = g ◦ f
�rst f = �(b; c)→ (f b; c)

instance ArrowChoice (→) where
left f (Left b) = Left (f b)
left f (Right d) = Right d

instance ArrowApply (→) where
app=�(f; x)→f x

Of course, we will require composition to be associative, and moreover to be pre-
served by arr:

(f¿¿¿g)¿¿¿h=f¿¿¿(g¿¿¿h)

arr (f¿¿¿g) = arr f¿¿¿arr g

Moreover, we require that arr id be an identity for composition:

arr id¿¿¿f=f=f¿¿¿arr id

Categorically speaking, we now know that arrows form a category, and that arr is a
functor from the category of Haskell functions to the category of arrows.
These laws correspond in some sense to the monad laws, but now we must go on

to state the laws that the other arrow combinators are required to satisfy. Let us call
an arrow pure if it is equal to arr f for some f; a pure arrow ‘has no side-e�ects’.
We shall require that all combinators behave for pure arrows as they do for functions;
that is

�rst (arr f) = arr (�rst f)

left (arr f) = arr (left f)

Furthermore, we require that our combinators preserve composition:

�rst (f¿¿¿g) = �rst f¿¿¿�rst g

left (f¿¿¿g) = left f¿¿¿left g

Categorically, we require that �rst and left be functors. Similar properties for second
and right follow as easy consequences.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 93

Note, though, that it does not follow that

(f ∗∗∗ g)¿¿¿(h ∗∗∗ k)=(f¿¿¿h) ∗∗∗(g¿¿¿k)
since the order of g and h di�ers on the two sides. This is another reason to favour
�rst and left as primitives over their more usual binary counterparts: the laws they
must satisfy become much simpler to state.
We formalise the property that �rst f depends only on �rst components of pairs as

follows:

�rst f¿¿¿arr fst=arr fst¿¿¿f

but it is not in general true that

�rst f¿¿¿arr snd=arr snd

since, on the right-hand side, the side-e�ects of f are lost. Instead, we formalise the
intuition that the second component of a pair is una�ected by �rst f via two laws.
The �rst of these laws allows a function of that second component to be moved

across the use of �rst. We have to require that the function be pure, to avoid potentially
changing the order in which side-e�ects occur. Thus the law becomes

�rst f¿¿¿second (arr g)=second (arr g)¿¿¿�rst f

Once again, the dual statement, in which �rst and second are interchanged, follows as
an easy corollary.
The second law formalises the intuition that if �rst f saves the value of the second

component across a call of f, then saving two values should be equivalent to saving
a pair. Let

assoc ((x; y); z)=(x; (y; z))

We can think of assoc as moving y into the ‘saved state’. Now, saving y and then
passing x to f should have the same e�ect as passing (x; y) to �rst f and then saving
y. Formally,

arr assoc¿¿¿�rst f=�rst (�rst f)¿¿¿arr assoc

Given these laws we can prove that

((f ∗∗∗ g) ∗∗∗ h)¿¿¿assoc=assoc¿¿¿(f ∗∗∗(g ∗∗∗ h))
We note in passing that many categorical properties of products fail in the presence

of side e�ects. For example, the reader might expect that

f¿¿¿(g&&& h)=(f¿¿¿g)&&&(f¿¿¿h)

but this is not true (unless f is pure) because the side-e�ects of f are duplicated on
the right.

94 J. Hughes / Science of Computer Programming 37 (2000) 67–111

The laws for �rst serve as models for the laws for left; we require that

arr Left¿¿¿left f=f¿¿¿arr Left

right (arr g)¿¿¿left f= left f¿¿¿right (arr g)

arr assocsum¿¿¿left f= left (left f)¿¿¿arr assocsum

where

assocsum (Left (Left x)) =Left x

assocsum (Left (Right y)) =Right (Left y)

assocsum (Right z) =Right (Right z)

Note here also that we cannot change the order of left f and right g unless we know
that one of f or g is pure, because we might change the order of side-e�ects.
For arrows supporting application, we require �rstly that ‘currying’ and then applying

the identity arrow is equivalent to the identity (on pairs):

�rst (arr (�x→ arr (�y→ (x; y))))¿¿¿app=arr id

Secondly, we require a kind of parametricity property for app, which permits operations
to be moved in or out of the applied arrow:

�rst (arr (g¿¿¿))¿¿¿app= second g¿¿¿app

�rst (arr (¿¿¿h))¿¿¿app= app¿¿¿h

From these laws we can prove an analogue of �-conversion, that applying a constant
arrow using app is equivalent to the arrow itself:

arr (�x→ (f; x))¿¿¿app=f

Moreover, currying and then applying any arrow is equivalent to the arrow:

�rst (arr (�x→ arr (�y→ (x; y))¿¿¿f))¿¿¿app=f

Finally, we can prove that the monad laws hold for the ArrowMonad de�ned in
Section 5.2.
For the remaining arrow classes, ArrowZero and ArrowPlus, we just require that

¡+¿ is associative, and zeroArrow is its unit. Stronger conditions, such as, for
example,

zeroArrow¿¿¿f=zeroArrow

would be overly restrictive: this property fails for stream processors, for example, since
f may very well produce outputs independently of its input.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 95

In general, there is something of a con
ict between the desire on the one hand to
state many laws, thus making it possible to prove strong properties generically, for
every kind of arrow, and the wish on the other hand to leave open the possibility of
very many di�erent implementations of the arrow signature. We believe that the laws
we have stated in this section are a rather minimal set, which every reasonable arrow
type should satisfy.

8. Syntactic sugar for arrows

While monads can be used without any kind of language support, monadic program-
ming in Haskell is made signi�cantly more attractive by using syntactic sugar (the do
notation). The notational simplicity which results is especially important for beginners.
In the case of arrows, there is even more to be gained from wisely chosen syntax,
since much of the ‘plumbing’ to carry values from one point to another can then be
made implicit.
Ross Paterson has recently proposed an extension to Haskell to support arrows. We

shall explain a minor variant of his proposal here, and show how much it can improve
readability. We will make heavy use of the extension in the remaining sections of this
paper.
Paterson proposes to add a new form of expression to Haskell, which we write as

� • p→{b}, denoting an arrow. Here p is a pattern, and the body of the arrow, b,
may take one of the forms below (where e denotes an expression):

b ::= e

| e • e
| p← b; b

| if e then b else b
| case e of {brs}

brs ::= p→ b
| p→ b; brs

As usual, curly brackets and semicolons can be omitted using Haskell’s layout rule.
Intuitively, a body of the form e just returns the value of e, an ‘arrow application’

e1 • e2 passes the value of e2 to the arrow e1, a binding p← b1; b2 binds the output
from b1 to the pattern p within b2, a conditional body if e then b1 else b2 chooses
between two bodies based on the boolean value of e, and a case body case e of {brs}
chooses a branch whose pattern matches e.
The meaning of the new syntax is de�ned formally by the following translation:

<� • p→{b}= = <b=p

96 J. Hughes / Science of Computer Programming 37 (2000) 67–111

<e=p = arr (�p→ e)

<e1 • e2=p =
{
arr (�p→ (e1; e2))¿¿¿app
arr (�p→ e2)¿¿¿e1; if FV (e1)∩FV (p)=∅

<p′ ← b1; b2=p = arr (�x→ (x; x))¿¿¿�rst <b1=p¿¿¿<b2=(p′ ;p)

<if e then b1 else b2=p = arr (�p→ if e then Left p else Right p)¿¿¿
(<b1=p ||| <b2=p)

<case e of {brs}=p = arr (�p→ (e; p))¿¿¿<brs=p

<p′→ b=p = <b=(p′ ;p)

<p′→ b; brs=p = arr (�(x; p)→ case x of
p′→Left (x; p)
z→Right (x; p))¿¿¿

(<b= (p′ ;p) ||| <brs=p); x fresh

Arrow expressions are overloaded, and can be used to denote an arrow of any type.
However, an arrow expression involving an if or a case must of course denote an
arrow in the class ArrowChoice, since the translation of these constructions uses com-
binators from that class. Similarly, an arrow expression whose translation involves the
combinator app must denote an arrow in the class ArrowApply.
Note, however, that there are two possible translations of ‘arrow application’ e1 • e2.

The �rst is always applicable, but involves app, and so requires the arrow expression
to have a type in ArrowApply. The second translation uses only the basic arrow com-
binators, but is applicable only when the arrow e1 does not involve any variables in the
pattern p. Let us call these arrow-bound variables; they are just the variables bound
by � • p→ : : : or p ← : : : ; : : : . An arrow expression thus requires its type to be in
class ArrowApply if any expression to the left of an arrow application (•) involves an
arrow-bound variable.
Just as we usually de�ne functions by one or more equations, rather than using �-

expressions and case expressions explicitly, we will allow ourselves to de�ne arrows
by equations in a similar way. We write

f • p1=b1
...
f • pn=bn

instead of

f=� • x→ case x of
p1→ b1
...
pn→ bn

We leave the details of this notation a little informal.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 97

As an illustration of Paterson’s notation, we rewrite the interpreter from Section 5:

eval (Var s) • env = lookup s env
eval (Add e1 e2) • env = liftA2 add (eval e1) (eval e2) • env
eval (If e1 e2 e3) • env =Bl b← eval e1 • env

if b then eval e2 • env else eval e3 • env
eval (Lam x e) • env = Fun (� • v→ eval e • (x; v) : env)
eval (App e1 e2) • env = Fun f ← eval e1 • env

v← eval e2 • env
f • v

Comparison with the unsugared version should convince the reader of the value of
Paterson’s idea.

9. Functors: New arrows from old

One of the attractive features of monads is that they can be built up piecewise, using
so-called monad transformers [7]. A monad transformer is a monad parameterised on
another monad, such that computations over the parameter monad can be ‘lifted’ to
computations over the new one.
For example, the state monad of Section 2.2 can be generalised to a monad transformer:

newtype StateMonadT s m a = SM (s→m (a; s))
In general, the monad operators on the new type must be de�ned in terms of the monad
operators on the parameter monad, as in this case:

instance Monad m⇒Monad (StateMonadT s m) where
return a = SM (�s→ return (a; s))
x¿¿=f = SM (�s→ let SM x′=x in

x′ s¿¿= �(a; s′)→
let SM f′=f a in
f′ s′)

Lifting of computations is de�ned by passing the state through unchanged:

liftState ::Monad m⇒m a→StateMonadT s m a
liftState x=SM (�s→ x¿¿= �a→ return (a; s))

Finally, the new monad supports fetch and store operations, just like the original state
monad:

fetch ::Monad m⇒StateMonad s m s
fetch=SM (�s→ return (s; s))
store ::Monad m⇒ s→StateMonad s m ()
store x=SM (�s→ return ((); x))

98 J. Hughes / Science of Computer Programming 37 (2000) 67–111

The new monad thus supports all the computations of the parameter monad (by lift-
ing), and in addition manages a state. By composing monad transformers together, one
can build up a monad providing any desired combination of features. For example, if
we want a monad which manages a state and handles failures, we can use the type
StateMonadT s Maybe, and this is of course just the parsing monad we discussed in
Section 2.3.
In this section we show that arrows have the same property: we can de�ne ‘arrow

transformers’ which map simpler arrow types to more complex ones. The most im-
portant monad transformers have arrow transformer counterparts, and we will describe
those for handling failures, state, and continuations. An arrow transformer is, by analogy
with a monad transformer, just an arrow type parameterised on another arrow type, such
that arrows of the second type can be mapped into arrows of the �rst. It may be helpful
to look at the kind of an arrow transformer: since an arrow type has kind ∗→ ∗ →∗
(it maps two types into a type), then an arrow transformer must have the kind

(∗→ ∗ →∗)→ (∗→ ∗ →∗)
It maps an arrow type into an arrow type. If F is an arrow transformer with this kind,
then the function mapping arrows of type a to arrows of type F a must have the type

liftF :: a b c→F a b c
We shall require arrow transformers to satisfy certain laws. We require that

liftF (arr f) = arr f

liftF (f¿¿¿g) = liftF f¿¿¿liftF g

liftF (�rst f) = �rst (liftF f)

where the arrow combinators on the left-hand sides are for arrows of type a, and those
on the right are for arrows of type F a. These requirements imply that our arrow
transformers are functors in the usual categorical sense, and so from now on we shall
use the word functor instead of arrow transformer.
We note brie
y that the concepts of monad transformers and functors can be for-

malised as classes, thus overloading the lifting operations, but that this requires a more
powerful class system than Haskell currently supports. We therefore refrain from doing so.

9.1. The maybe functor

Any arrow type can be lifted to an arrow type supporting failures by the functor

newtype MaybeFunctor a b c =MF (a b (Maybe c))

That is, we use arrows whose result can indicate failure. We can lift arrows to this
type using

liftMaybe ::Arrow a⇒ a b c→MaybeFunctor a b c
liftMaybe f=MF (f¿¿¿arr Just)

J. Hughes / Science of Computer Programming 37 (2000) 67–111 99

The arrow operations need to handle failures, which means they need to make dynamic
decisions. We therefore must require that the parameter arrow type supports choice:

instance ArrowChoice a⇒Arrow (MaybeFunctor a) where
arr f = liftMaybe (arr f)
MF f¿¿¿MF g = MF (� • x→ z ← f • x

case z of
Just c→ g • c
Nothing→Nothing)

�rst (MF f) = MF (� • (b; d)→ c′ ← f • b
case c′ of
Just c→ Just (c; d)
Nothing→Nothing)

Arrows formed by MaybeFunctor support failure and failure handling, of course:

instance ArrowChoice a⇒ArrowZero (MaybeFunctor a) where
zeroArrow=MF (� • z→Nothing)

instance ArrowChoice a⇒ArrowPlus (MaybeFunctor a) where
MF f¡+¿MF g=MF (� • b→ c′ ← f • b

case c′ of
Just c → Just c
Nothing → g • b)

and they also, not surprisingly, support choice:

instance ArrowChoice a⇒ArrowChoice (MaybeFunctor a) where
left (MF f)=MF (left f)

Finally, if the underlying arrows support application, then so do the arrows produced
by MaybeFunctor:

instance (ArrowChoice a;ArrowApply a)⇒
ArrowApply (MaybeFunctor a) where

app=MF (� • (MF f; b)→f • b)

9.2. The state functor

Any arrow type can be lifted to an arrow type supporting state passing by the functor

newtype StateFunctor s a b c = SF (a (b; s) (c; s))

We can lift arrows to this type using

liftState ::Arrow a⇒ a b c→StateFunctor s a b c
liftState f=SF (�rst f)

100 J. Hughes / Science of Computer Programming 37 (2000) 67–111

The arrow operations just pass the state along as one would expect:

instance Arrow a⇒Arrow (StateFunctor s a) where
arr f = liftState (arr f)
SF f¿¿¿SF g = SF (f¿¿¿g)
�rst (SF f) = SF (� • ((b; d); s)→ (c; s′)← f • (b; s)

((c; d); s′))

Of course, the arrows produced by the StateFunctor support fetch and store operations:

fetch ::Arrow a⇒StateFunctor s a b s
fetch=SF (� • (b; s)→ (s; s))

store ::Arrow a⇒StateFunctor s a s ()
store=SF (� • (x; s)→ ((); x))

Stateful arrows inherit the ability to support dynamic choice, failure, and failure
handling from the parameter arrow:

instance ArrowChoice a⇒ArrowChoice (StateFunctor s a) where
left (SF f) = SF (� • (z; s)→ case z of

Left b → (d; s′)← f • (b; s)
(Left d; s′)

Right c → (Right c; s))

instance ArrowZero a⇒ArrowZero (StateFunctor s a) where
zeroArrow = SF zeroArrow

instance ArrowPlus a⇒ArrowPlus (StateFunctor s a) where
SF f¡+¿SF g = SF (f¡+¿g)

Finally, if the underlying arrow type supports application, then so do stateful arrows
based on it:

instance ArrowApply a⇒ArrowApply (StateFunctor s a) where
app = SF (� • ((SF f; b); s)→f • (b; s))

The state functor we have de�ned is, of course, closely related to the state monad
transformer, but the advantage of de�ning functors on arrows, rather than transformers
on monads, is that we can apply them to arrow types that do not correspond to any
monad. As an example, the reader is invited to work out the behaviour of arrows of
type StateFunctor s SP, derived by adding state passing to stream processors.

9.3. The CPS functor

A third well-known monad transformer adds continuation passing to any monad. In
the monadic world, we can de�ne

newtype CPS ans m a = CPS ((a→m ans)→m ans)

J. Hughes / Science of Computer Programming 37 (2000) 67–111 101

so that a computation is represented by a function from a continuation for its result (a
monadic function into an answer type) to the computation of the answer. In the world
of arrows, we can represent a continuation by an arrow, rather than a function, and
a continuation-passing arrow from b to c as a function from the continuation of the
result to the continuation of the argument:

newtype CPSFunctor ans a b c = CPS ((a c ans)→ (a b ans))
Lifting an arrow to the CPS type is straightforward:

liftCPS ::Arrow a⇒ a b c→CPSFunctor ans a b c
liftCPS f=CPS (�k→f¿¿¿k)

But now, in order to de�ne the basic arrow operations on CPS arrows, we �nd we
already need to use application at the underlying arrow type!

instance ArrowApply a⇒Arrow (CPSFunctor ans a) where
arr f = liftCPS (arr f)
CPS f¿¿¿CPS g = CPS (�k→f (g k))
�rst (CPS f) = CPS (�k→ � • (b; d)→f (� • c→ k • (c; d)) • b)

To de�ne �rst (CPS f) we must invoke f with a continuation which recombines
its result with the second component of the argument. This we can do, but only in
the scope of � • (b; d)→ : : :) which binds a name to that second component. We can
only construct the arrow representing f’s continuation within another arrow, and so
we can only contruct the continuation of f’s argument within an arrow, which forces
us to use app to invoke it. In the code above, we see that we require an arrow in
class ArrowApply since the arrow-bound variable d appears in an expression to the
left of an arrow application. In a way, since continuation passing is the epitome of
higher-order programming, this is not really surprising.
CPS arrows inherit the ability to support failures and failure handling from the

underlying arrow type, and can of course support dynamic choice and application.
However, we will not give the de�nition here. What we will do is show how to de�ne
a jump operator, which invokes a continuation supplied as its input

jump ::ArrowApply a⇒CPSFunctor ans a (a c ans; c) z
jump=CPS (�k→ app)

and a combinator callcc, which passes the current continuation to its argument arrow:

callcc ::ArrowApply a⇒
(a c ans→CPSFunctor ans a b c)→CPSFunctor ans a b c

callcc f=CPS (�k→ let CPS g=f k in g k)
As we have seen, continuation passing arrows always support application, and must

be based on an underlying arrow type which also supports application. Thus, both
the argument and the resulting arrow types correspond to monads. Our CPS functor

102 J. Hughes / Science of Computer Programming 37 (2000) 67–111

is therefore no more general than the CPS monad transformer, but nonetheless, what
we have shown is that we can work entirely with arrows even if we want to use
continuation passing style.

10. Active web pages: CGI programs as arrows

So far in this paper we have shown how the arrow interface can generalise a vari-
ety of existing combinator libraries. In this section we shall discuss a library we are
currently developing, which was inspired by the concept of arrows.
The application that this library addresses is that of constructing active web pages,

that is, pages that may appear di�erently each time they are visited. Active web pages
are represented by programs, which may run either in the client browser (applets) or
on the web server. Quite di�erent technologies are used in each case; we concern
ourselves here with programs which run on a web server. Such programs can query a
database held on the server, allow clients to upload new data, and so on. Even rather
simple programs can be very useful: for example, those which enable students to book
meetings with a teacher, or researchers to submit articles to conferences.
Active web pages of this sort are implemented by so-called CGI programs stored

on the server. When a client accesses the URL of the program, then it is run on the
server, and the output from the program (usually HTML) is sent back to the client
browser. There are a couple of di�erent mechanisms for sending data from the client
to the CGI program; the one we will consider sends an encoding of the �elds of an
HTML form to the web server, along with the request to run the program. CGI stands
for Common Gateway Interface, the protocol governing the form in which data is sent
to and fro between the client and the server.
Unfortunately, this mechanism is awkward to use in practice. Normally, the im-

plementor of a CGI program wishes to lead the remote client through a series of
interactions, for example, �rst asking a student to identify him or herself, then o�ering
a choice of meeting times, then con�rming that a time has been booked. But interac-
tions with the client can only take place in between runs of CGI programs. To ask
the client a question, a CGI program must output the question as an HTML form, and
terminate. When the client answers the question by �lling in and submitting the form,
then in general a di�erent CGI program is run to accept and process the answer. This
leads to poor modularity, because the format of the form (�eld names, etc.) must be
known both to the program which creates it, and to the program which interprets its
contents. But a more severe problem is that the state of the CGI program is lost across
the interaction.
It is therefore necessary to save the state of the CGI program explicitly across each

interaction. This cannot conveniently be done on the server! It is by no means certain
that the client ever will submit a reply, so that if the state were saved on the server
then it might remain there for ever, waiting for a reply that never came. On the other
hand, the client might submit a reply, then use the ‘Back’ button in the browser, and

J. Hughes / Science of Computer Programming 37 (2000) 67–111 103

reply to the same question again! If second and subsequent replies are to be handled
properly, then the state cannot be discarded even once a reply has been received. 5

The solution is to store the state of the CGI program on the client, along with the
question. When the client submits an answer, then the state is returned along with it,
permitting the CGI program to pick up from the same point that it left o�. One can
think of this state as a kind of continuation: when a CGI program wishes to ask the
client something, it captures its current continuation and sends it along with the question
to the client, and when the client replies then the continuation is returned to the server,
and can be invoked to handle the reply. HTML provides a mechanism for handling such
data: an HTML form can contain ‘hidden �elds’ whose contents are returned unchanged
to the server when the form is �lled in and submitted. Unfortunately, though, HTML
�elds cannot contain function values, and so we must �nd a di�erent way to represent
continuations if we are to use this idea.
The combinator library I am developing takes care of suspension of computations,

saving of state, and restart from the same point. It lets the CGI programmer view
interaction with the client as a procedure call; there is an arrow

ask ::CGI String String

which maps a question to the client’s answer. Thus programs which conduct a series of
interactions can be implemented very simply. For example, consider a program which
asks the client

What is your question?
expecting to recieve a reply such as

How old are you?
and then asks the client the same question, taking the client’s answer, and then �nally
sending the client a result such as

The answer to “How old are you?” is 40.
Such a program can be implemented by the arrow

arr (�z→ “What is your question?”)¿¿¿ ask¿¿¿
(arr id &&& ask)¿¿¿
arr (�(q; ans)→ “The answer to\“”++q++“\” is” ++ans)

or, using Paterson’s syntax,

� • z→ q← ask • “What is your question?”
ans ← ask • q
“The answer to\“”++q++“\” is” ++ans

5 It would be possible to save the state on the server along with an appropriate key to enable the server
to recognise the same client returning in the same state, given a policy for deletion of saved states, but this
is a more complicated solution than the one we propose.

104 J. Hughes / Science of Computer Programming 37 (2000) 67–111

Why choose the arrow interface rather than the monad interface for this problem?
The key observation guiding the choice was that the combinators need to save the
entire state of the program at an ask operation. But the state of a functional program
is the collection of values bound to variables, and there is no way for any Haskell
function to capture the values of variables in scope at the point where it is called.
Since we cannot capture the values of variables when ask is invoked, we must see
to it that there are no variables in scope at these points. Fortunately, we need only
be concerned here with variables bound to the results of computations, since it is
only these that may take a di�erent value the next time the program is run. Now
we see that monadic bind is problematic: it allows us to bind a local variable to
the result of a computation, with a scope which extends over another computation,
and potentially an ask. But the arrow interface does not permit this: the only way to
bind a variable to the result of a computation is with the arr combinator. Using ask
within an argument to arr constructs an arrow within an arrow, which is harmless
unless the arrow is eventually invoked. The only way to do that is via app. Thus,
provided we do not provide app, then we can guarantee that no variables bound to
the result of a computation scope over an arrow (or at least, no arrow that is ever
invoked).
Note that Paterson’s syntax disguises this property a little: in the example above,

q does appear to scope over a call of ask, but of course this is no longer true after
desugaring. Provided no arrow-bound variables appear to the left of a •, then Paterson’s
translation generates a term not involving app, in which no arrow-bound variables are
in scope over another arrow.
How, then, can CGI arrows be represented? When such an arrow is invoked, it may

either terminate normally, producing a result, or it may suspend at an ask operation.
On suspension, an arrow must produce a state to save, and a question to ask. A CGI
arrow can also be entered in two di�erent ways: it may either be entered normally,
with an argument, or it may be resumed from an ask. In the latter case we must supply
a state to resume from, and the answer to the question. A natural representation for
CGI arrows might therefore be

newtype CGI0 b c =
CGI0 (Either b (ScriptState;String)→Either c (ScriptState;String))

However, in general a CGI program may have side-e�ects on the server, which this
type does not allow for. So we shall instead represent CGI arrows as arrows be-
tween these two types, which in practice will be arrows which can perform I=O. We
shall parameterise our de�nitions on the underlying arrow type, and so de�ne a CGI
functor:

newtype CGIFunctor a b c =
CGI (a (Either b (ScriptState;String)) (Either c (ScriptState;String)))

J. Hughes / Science of Computer Programming 37 (2000) 67–111 105

Now we can de�ne

type CGI b c=CGIFunctor (Kleisli IO) b c

With this de�nition, the ask operation is easily de�ned: it suspends when entered
normally, and delivers the answer as its result when it is resumed. No state is needed
to resume the ask operator itself, so we assume that the ScriptState type includes a
constructor Empty:

data ScriptState= Empty | : : :

We de�ne ask (using Paterson’s notation) as follows:

ask ::ArrowChoice a⇒CGIFunctor a String String
ask=CGI (� • z→ case z of

Left q → Right (Empty; q)
Right (Empty; a) → Left a)

The �rst alternative here handles a normal entry, and suspends to ask the question
q, while the second alternative handles a resumption, and delivers the answer a as the
arrow’s result. 6

The arr operator is also easily de�ned: a pure arrow can never suspend, and therefore
can never be resumed either, so we need to consider only the Left summands here.

instance ArrowChoice a⇒Arrow (CGIFunctor a) where
arr f=CGI (� • (Left b)→Left (f b))
...

It is when we de�ne arrow composition that we �rst need to make use of the state.
A composition of arrows may suspend either in the �rst arrow, or in the second, and
the state that we save must record which case applied. Similarly, when we resume
a composition of arrows, then we need to know which arrow to resume. We shall
therefore extend the ScriptState type to record this information:

data ScriptState= Empty | InLeft ScriptState | InRight ScriptState | : : :

6 Note that here and elsewhere, we assume that the state returned from the client matches the state
produced when the CGI program suspends. There is an opportunity here for a malicious client to fabricate
his own state, and thus induce the program to perform actions its author did not intend. Encrypting the state
before sending it to the client might be a way to solve this problem.

106 J. Hughes / Science of Computer Programming 37 (2000) 67–111

The de�nition of composition then becomes

instance ArrowChoice a⇒Arrow (CGIFunctor a) where
...
CGI f¿¿¿CGI g=

CGI (� • z→ case z of
Left b → enterf • Left b
Right (InLeft s; a) → enterf • Right (s; a)
Right (InRight s; a) → enterg • Right (s; a))

where enterf • x= y ← f • x
case y of
Left c → enterg • Left c
Right (s; q) → Right (InLeft s; q)

enterg • x= y ← g • x
case y of
Left d → Left d
Right (s; q) → Right (InRight s; q)

...

The �rst case in ¿¿¿ handles initial entry to the composition, and just makes an initial
entry to f. The second and third cases handle resumption of f and g, respectively.
Arrow enterf invokes f, and if f terminates normally, makes an initial entry to g. If
f suspends, on the other hand, then enterf records that the suspension occurred in the
left operand of ¿¿¿. Arrow enterg similarly records that a suspension in g occurred
in the right operand of ¿¿¿. Thus, we always record in which arrow a suspension
occurred, and on resumption we return to the same point.
When we de�ne the �rst combinator, we need to use the state in a di�erent way.

There is no need to record where a suspension occurred: when �rst f suspends, it
must be in the arrow f. However, since �rst f must preserve the second component
of its input unchanged, then when we resume after a suspension, we need to know
what the value of this second component was. We therefore have to save it in the state.
One di�culty is that the values to be saved can have many di�erent types, at di�erent
occurrences of �rst. We shall convert them all to the same type before saving them;
since states must eventually be embedded in HTML �elds, it is convenient to convert
them to strings, using Haskell’s standard function show. When we resume from such
a state, we can convert the saved value back to its original type using the standard
function read, which satis�es read ◦ show= id .
We shall therefore extend the ScriptState type again:

data ScriptState= Empty |
InLeft ScriptState | InRight ScriptState |
Save String ScriptState

J. Hughes / Science of Computer Programming 37 (2000) 67–111 107

and de�ne �rst as

instance ArrowChoice a⇒Arrow (CGIFunctor a) where
...
— �rst :: (Show d;Read d)⇒

CGIFunctor a b c→CGIFunctor a (b; d) (c; d)

�rst (CGI f)=CGI (� • x→
case x of
Left (b; d) → enterf • (Left b; d)
Right (Save v s; a) → enterf • (Right (s; a); read v))

where enterf • (x; d)= y ← f • x
case y of
Left c → Left (c; d)
Right (s; q) → Right (Save (show d) s; q)

On an initial entry to �rst f, we just invoke f directly; on a resumption we reconstruct
the saved second component from the state before doing so. On �nal termination of
f, we just pair its output with the second component d, but on suspension we save d
in the state. Note that the type d must support read and show operations, which not
all types do. This is recorded in the type signature of �rst, which requires d to be an
instance of the classes Read and Show.
CGI arrows also permit dynamic choices. Implementing left turns out to be partic-

ularly simple, because left f can suspend only if the input was of the form Left b;
we therefore don’t need to record any additional information in the state to allow us
to decide whether or not to invoke f on a resumption.

instance ArrowChoice a⇒ArrowChoice (CGIFunctor a) where
left (CGI f)=CGI (� • x→

case x of
Left (Left b) → enterf • Left b
Left (Right d) → Left (Right d)
Right (s; a) → enterf • Right (s; a))

where enterf • x= y ← f • x
case y of
Left c → Left (Left c)
Right (s; q) → Right (s; q)

When left f is invoked normally, we either invoke f normally (on arguments tagged
Left), or return arguments tagged Right directly. On a resumption of left f, we just
resume f in the same state. The arrow enterf invokes f: when it terminates normally,

108 J. Hughes / Science of Computer Programming 37 (2000) 67–111

then enterf also does so (tagging the result Left). When f suspends then so does
enterf, in the same state.
It is also possible to give an appealing interpretation of zeroArrow and ¡+¿ for

CGI arrows: f¡+¿g creates two ‘threads’ which run ‘in parallel’, and zeroArrow
terminates a thread. (These ‘threads’ are simulated in ordinary Haskell, no concurrency
is required in the underlying implementation). We use this mechanism to enable a CGI
arrow to ask several questions in one interaction (if both f and g suspend). We omit
the details here.
It is not possible, however, to implement app. The di�culty here is that the types that

CGI arrows operate over must support read and show, so that intermediate values can
be saved on the client. CGI arrows themselves are implemented in terms of functions,
and so cannot be read and written. Therefore, a CGI arrow cannot take another CGI
arrow in its input, and app cannot be de�ned.
The library I am developing is based on the ideas in this section, but is necessarily

a little more complicated. It is an oversimpli�cation to consider the communication
with the client to consist of a single question and answer, or even multiple questions
and answers. In reality the client is sent an HTML page containing one or more
HTML forms, each of which may contain many �elds. The full-scale library includes
combinators for generating various HTML elements, and for putting parts of forms
together into larger forms. There is also a ‘top-level’ function

serveCGI ::CGI a b→ a→ IO b

which takes an arrow and ‘runs it’, taking care of encoding states in hidden �elds,
decoding the data returning from the client, and so on. We omit the de�nition here,
since it is complicated by the vagaries of HTML and the CGI protocol.
One major irritation which we have so far glossed over is that CGI arrows cannot

actually be made an instance of the Arrow class de�ned in this paper! In a sense,
we have de�ned CGIFunctor to be ‘the wrong type’, but Haskell does not allow us
to de�ne the right one! An extension to the Haskell type system would be needed to
make CGI arrows into arrows as we de�ned them earlier.
The problem lies in the types of the arrow methods given in this section. Look back

at the type of �rst: it requires that the type of the value to be saved be an instance of
the Read and Show classes. The type given for �rst in the de�nition of the Arrow class
makes no such restriction. Therefore this implementation of �rst cannot be declared to
be an instance of the generic one – it is less general.
We might attempt to solve this problem by moving the restriction to a di�erent place.

Let us rede�ne the CGI arrow type so that it is only applicable to types in these classes:

newtype (Read b;Show b;Read c;Show c)⇒
CGIFunctor a b c =

CGI (a (Either b (ScriptState;String)) (Either c (ScriptState;String)))

In categorical terms, we want to de�ne a new category whose arrows are CGI arrows,
and whose objects are a subset of the Haskell types, namely those supporting read and

J. Hughes / Science of Computer Programming 37 (2000) 67–111 109

show. Now, since the implementation of �rst given in this section constructs a CGI
arrow from (b; d) to (c; d), then it is evident that the type d must support read and
show, and there is no need to explicitly require that in the type of �rst. As a result, it
should now be possible to declare CGI arrows an instance of the generic arrow class.
Unfortunately, this does not work. The Haskell type system requires the restrictions

on d in the type of �rst, even if we declare that they are satis�ed for all CGI arrows.
Haskell does not infer from the occurrence of a type CGI b c, that b and c must
be instances of Read and Show – and indeed, this is not even true, because of the
way that type restrictions on datatype de�nitions are interpreted. I consider this to be a
defect of the Haskell type system, which hopefully can be corrected in a future version
of the language.
In the absence of such a correction, we are obliged to make a copy of the arrow

library, and all the generic code that uses it, with the only di�erence that the type
assigned to �rst in the Arrow class is the one required for the CGI instance. By doing
so we can still bene�t from using a standard arrow interface to the CGI library – we
can still combine CGI arrows with other arrow code – but any program which uses
the CGI library must import a special de�nition of the arrow class, which restricts all
arrows in the entire program to work over types supporting read and show. This is
frustrating indeed.
Finally, we note with hindsight that a monadic interface could be used instead here.

We could de�ne a monad whose computations can be suspended and resumed, in an
analogous way to CGI arrows. However, the de�nition of m¿¿=f would need to
record not only which of m or f suspended, but also the value that m delivered, if
suspension occurred in f. Concretely, the ‘InRight’ form of ScriptState would need
to carry an extra component, namely the value of m. Thus the problem of recording
free variables is solved: every free variable of an ask operation which is bound to the
result of a computation, is bound by an occurrence of ¿¿=, and we can make that
occurrence of ¿¿= responsible for saving the value.
However, even if a monadic interface would be possible, we believe it would make

for less e�cient CGI programs. The monadic library we suggest would need to save
every previously delivered value, whereas the arrow library saves only those which are
still needed. Thus the monadic library would tend to send more information to and
from the client. Of course, such a monadic library would also fall foul of the typing
problem just discussed, so that a CGI monad could not be declared to be an instance
of Haskell’s Monad class. Consequently it could not be used together with standard
monadic functions, or Haskell’s monadic do syntax.

11. Conclusions

This paper proposes the replacement of monads as a structuring tool for combinator
libraries, by arrows. We have seen that any monadic library can be given an arrow in-
terface instead (via Kleisli arrows), and so the arrow interface is strictly more general.

110 J. Hughes / Science of Computer Programming 37 (2000) 67–111

We have seen that many monadic programming techniques have analogues in the world
of arrows: monad transformers become functors, standard monad constructions for ex-
ceptions, state passing and continuations carry over to arrows, even generic monadic
functions often have an arrow analogue. But basing an interface on arrows instead of
monads permits �ner distinctions to be made: we can distinguish between kinds of
computation which permit dynamic choices to be made, or dynamic computations to
be invoked, and those which do not.
The advantage of the arrow interface is that it has a wider class of implementations

than the monad interface does; it is more general. Thus, some libraries based on abstract
data types which simply are not monads, can nonetheless be given an arrow interface.
Such libraries include those for processes modelled by stream processors or fudgets,
libraries for e�cient parsing, or in general any library which computes static properties
of computations in advance of running them. So this category includes a number of
libraries which are highly useful in practice. By giving them an arrow interface, we
make it possible to use them together with generic arrow code.
Moreover, some existing monadic libraries might bene�t by replacing the monads

with arrows. One motivation might be in order to introduce the same kind of optimisa-
tion which Swierstra and Duponcheel used. We believe this may be the case for Conal
Elliot’s animation library [4], and for Bjesse et al. library for hardware design [1].
On the negative side, arrows oblige one to program in a ‘point-free’ style which

can be unnatural, unless Paterson’s syntactic sugar is available. Moreover, while the
designer of a monad based library need only implement return and ¿¿= to de�ne his
monad, the designer of an arrow based library must implement at least arr, ¿¿¿ and
�rst, and possibly left and app as well. In cases when a library can be based on a
monad, it might thus be sensible to build an arrow version on top of a monadic one
using the Kleisli construction, to reduce the programming e�ort required. Finally, arrow
programs will require heavy optimisation if they are to perform well, because of the
large number of calls to very small functions.
Notwithstanding these disadvantages, we believe that arrows o�er a useful extension

to the generality of generic library interfaces.

Acknowledgements

I am grateful to Ross Paterson, Phil Wadler, and the anonymous referees for their
very careful comments on this paper. Lennart Augustsson helped clarify the ideas herein
at an earlier stage. Finally, thank you to Johan Jeuring for his patient editing.

References

[1] P. Bjesse, K. Claessen, M. Sheeran, S. Singh, Lava: hardware design in haskell, in: Internat. Conf. on
Functional Programming, Baltimore, ACM, New York, 1998.

[2] M. Barr, C. Wells, Category Theory for Computing Science, Prentice-Hall, Englewood Cli�s, NJ,
1990.

J. Hughes / Science of Computer Programming 37 (2000) 67–111 111

[3] M. Carlsson, T. Hallgren, FUDGETS - a graphical user interface in a lazy functional language, in:
FPCA ’93 – Conf. on Functional Programming Languages and Computer Architecture, ACM Press,
New York, June 1993, pp. 321–330.

[4] C. Elliott, P. Hudak, Functional reactive animation, in: Internat. Conf. on Functional Programming,
ACM SIGPLAN, New York, 1997.

[5] P. Hudak et al., Report on the Programming Language Haskell: A Non-Strict, Purely Functional
Language, March 1992. Version 1.2. Also in Sigplan Notices, May 1992.

[6] D. King, P. Wadler, Combining monads, in: Glasgow Workshop on Functional Programming, Ayr,
Springer, Berlin, July 1992.

[7] S. Liang, P. Hudak, M. Jones, Monad transformers and modular interpreters, in: Conf. Record of
POPL’95: 22nd ACM SIGPLAN-SIGACT Sympos. on Principles of Programming Languages, San
Francisco, CA, January 1995, pp. 333–343.

[8] S. MacLane, Categories for the Working Mathematician, Springer, Berlin, 1971.
[9] J. Peterson, K. Hammond, The Haskell 1.3 Report, Technical Report YALEU=DCS=RR-1106, Yale

University, New Howen, CI, 1996.
[10] B.C. Pierce, Basic Category Theory for Computer Scientists, The MIT Press, Cambridge, MA, 1991.
[11] S.D. Swierstra, L. Duponcheel, Deterministic, error-correcting combinator parsers, in: J. Launchbury,

E. Meijer, T. Sheard (Eds.), Advanced Functional Programming, Lecture Notes in Computer Science
– Tutorial, Vol. 1129, Springer, Berlin, 1996, pp. 184–207.

[12] P. Wadler, How to replace failure by a list of successes, in: Proc. 1985 Conf. on Functional
Programming Languages and Computer Architecture, Nancy, France, 1985, pp. 113–128.

[13] P. Wadler, Comprehending Monads, in: Proc. 1990 ACM Conf. on Lisp and Functional Programming,
Nice, France, 1990, pp. 61–77.

[14] P. Wadler, The essence of functional programming, in: Proc. 1992 Symp. on Principles of Programming
Languages, Albuquerque, New Mexico, 1992, pp. 1–14.

[15] P. Wadler, Monads for functional programming, in: J. Jeuring, E. Meijer (Eds.), Advanced Functional
Programming, Lecture Notes in Computer Science, Vol. 925, Springer, Berlin, May 1995, pp. 24–52.

