
Breadth-First Numbering:
Lessons from a Small Exercise in Algorithm Design

(Functional Pearl)

Chris Okasaki
Department of Computer Science

Columbia University

cdo@cs.columbia.edu

ABSTRACTEvery programmer has blind spots. Breadth-�rst numberingis an interesting toy problem that exposes a blind spot
om-mon to many|perhaps most|fun
tional programmers.
Categories and Subject DescriptorsD.1.1 [Programming Te
hniques℄: Appli
ative (Fun
-tional) Programming
General TermsAlgorithms, Design
KeywordsBreadth-�rst numbering, breadth-�rst traversal, views
1. INTRODUCTIONBreadth-�rst traversal of a tree is easy, but rebuilding thetree afterwards seems to be mu
h harder, at least to fun
-tional programmers. At ICFP'98, John Laun
hbury
hal-lenged me with the following problem:Given a tree T ,
reate a new tree of the sameshape, but with the values at the nodes repla
edby the numbers 1 : : : jT j in breadth-�rst order.For example, breadth-�rst numbering of the treeab

b

b b

d
b b

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’00, Montreal, Canada
Copyright 2000 ACM 1-58113-202-6/00/0009 ..$5.00

should yield the tree 12
b 4

b b

3
b bLaun
hbury knew of a solution by Jones and Gibbons [5℄that depended on lazy evaluation, but wondered how onewould solve the problem in a stri
t language like StandardML [6℄. I qui
kly s
ribbled what seemed to me to be amostly straightforward answer and showed it to him at thenext break.Over the next year, I presented the problem to many otherfun
tional programmers and was
ontinually amazed at thebaroque solutions I re
eived in reply. With only a singleex
eption, everyone who
ame near a workable answer wentin a very di�erent dire
tion from my solution right from thevery beginning of the design pro
ess. I gradually realizedthat I was witnessing some sort of mass mental blo
k, a
ommunal blind spot, that was steering programmers awayfrom what seemed to be a very natural solution. I make no
laims that mine is the best solution, but I �nd it fas
inatingthat something about my solution makes it so diÆ
ult forfun
tional programmers to
on
eive of in the �rst pla
e.STOP!Before reading further, spend ten or �fteen minutes sket
h-ing out a solution. For
on
reteness, assume that you havea type of labeled binary treesdatatype 'a Tree = E| T of 'a * 'a Tree * 'a Treeand that you are to produ
e a fun
tionbfnum : 'a Tree -> int Tree

2. BREADTH-FIRST TRAVERSALWhen attempting to solve any non-trivial problem, the�rst step should always be to review solutions to relatedproblems. In algorithm design, as in programming in gen-eral, theft of ideas is to be applauded rather than
on-demned. In this
ase, the most obvious
andidate for plun-der is the well-known queue-based algorithm for breadth-�rst

traversal, that is, produ
ing a list of the labels in a tree, inbreadth-�rst order [5℄. For example, breadth-�rst traversalof the tree ab
b

b b

d
b bshould yield the list [a; b; d;
℄.The key step in developing an algorithm for breadth-�rsttraversal is to generalize the problem, illustrating the para-doxi
al, yet
ommon, phenomenon that a more general prob-lem is often easier to solve. In parti
ular, we generalize theproblem from breadth-�rst traversal of a tree to breadth-�rst traversal of a forest, that is, frombftrav : 'a Tree -> 'a listtobftrav' : 'a Tree Seq -> 'a listwhere Seq is some as-yet-undetermined type of sequen
esused to represent forests. For example, breadth-�rst traver-sal of the forest ab

b b

b b

d
b b

e
b f

b bshould yield the list [a; d; e; b;
; f ℄.Then, bftrav
an be spe
i�ed by the equationbftrav t = bftrav' htiwhere hti denotes the singleton forest
ontaining t.Now, bftrav' is easy to spe
ify with the following threeequations:bftrav' h i = [℄bftrav' (E � ts) = bftrav' tsbftrav' (T (x,a,b) � ts) =x :: bftrav' (ts � a � b)The last equation takes the
hildren of the �rst tree andadds them to the end of the sequen
e. The empty sequen
eis denoted h i, and the symbols � and � denote in�x \
ons"and \sno
", respe
tively. Sin
e this is a spe
i�
ation ratherthan an implementation, I feel free to use h i, �, and � onboth sides of the equations.The �nal step before a
tually produ
ing
ode is to
hoosean implementation for the sequen
e ADT. The main opera-tions we need on these sequen
es are adding trees to the endof the sequen
e and removing trees from the beginning ofthe sequen
e. Therefore, we
hoose queues as our sequen
erepresentation. Figure 1 gives a
on
rete implementation inStandard ML.The use of queues as an ADT makes this
ode look ratherugly to an eye a

ustomed to the
leanliness of patternmat
hing, espe
ially the if-then-else and
ase expressionsin bftrav'. The problem is that pattern mat
hing
annotnormally be performed on ADTs. Views [10℄ o�er a wayaround this problem. Figure 2 reimplements breadth-�rsttraversal more
leanly using the syntax for views proposedin [9℄. Note that the de�nition of bftrav' is now nearlyidenti
al to the spe
i�
ation.

signature QUEUE =sigtype 'a Queueval empty : 'a Queueval isEmpty : 'a Queue -> boolval enq : 'a Queue * 'a -> 'a Queueval deq : 'a Queue -> 'a * 'a Queueendsignature BFTRAV =sigval bftrav : 'a Tree -> 'a listendfun
tor BreadthFirstTraversal (Q:QUEUE) : BFTRAV =stru
topen Qfun bftrav' q =if isEmpty q then [℄else
ase deq q of(E, ts) => bftrav' ts| (T (x,a,b), ts) =>x :: bftrav' (enq (enq (ts,a),b))fun bftrav t = bftrav' (enq (empty, t))end Figure 1: Breadth-�rst traversal in SML.signature QUEUE =sigtype 'a Queueval empty : 'a Queueval >> : 'a Queue * 'a -> 'a Queueviewtype 'a Queue = Empty | << of 'a * 'a Queueendfun
tor BreadthFirstTraversal (Q:QUEUE) : BFTRAV =stru
topen Qinfix >>infixr <<fun bftrav' Empty = [℄| bftrav' (E << ts) = bftrav' ts| bftrav' (T (x,a,b) << ts) =x :: bftrav' (ts >> a >> b)fun bftrav t = bftrav' (empty >> t)endFigure 2: Breadth-�rst traversal using views.

Provided ea
h queue operation runs in O(1) time, thisalgorithm runs in O(n) time altogether. A good implemen-tation of queues for this appli
ation would be the usual im-plementation as a pair of lists [1, 2, 3℄. Sin
e this appli
ationdoes not require persisten
e, fan
ier kinds of queues (e.g., [3,7℄) would be overkill.
3. BREADTH-FIRST NUMBERINGWe next attempt to extend the solution to breadth-�rsttraversal to get a solution to breadth-�rst numbering. Asin breadth-�rst traversal, we will begin by generalizing theproblem. Instead of breadth-�rst numbering of a tree, wewill
onsider breadth-�rst numbering of a forest. In otherwords, we introdu
e a helper fun
tion that takes a forest andreturns a numbered forest of the same shape. It will also behelpful for the helper fun
tion to take the
urrent index, soits signature will bebfnum' : int -> 'a Tree Seq -> int Tree SeqThen bfnum
an be spe
i�ed in terms of bfnum' asbfnum t = t'where ht'i = bfnum' 1 htiExtending the equations for bftrav' to bfnum' is fairlystraightforward, remembering that the output forest mustalways have the same shape as the input forest.bfnum' i h i = h ibfnum' i (E � ts) = E � ts'where ts' = bfnum' i tsbfnum' i (T (x,a,b) � ts) = T (i,a',b') � ts'where ts' � a' � b' = bfnum' (i+1) (ts � a � b)Noti
e how every equation textually preserves the shape ofthe forest.Given these spe
i�
ations, we need to
hoose a representa-tion for sequen
es. The main operations we need on forestsare adding and removing trees at both the front and theba
k. Therefore, we
ould
hoose double-ended queues asour sequen
e representation (perhaps using Hoogerwoord'simplementation of double-ended queues [4℄). However, a
loser inspe
tion reveals that we treat the input forest andthe output forest di�erently. In parti
ular, we add trees tothe ba
k of input forests and remove them from the front,whereas we add trees to the front of output forests and re-move them from the ba
k. If we remove the arti�
ial
on-straint that input forests and output forests should be rep-resented with the same kind of sequen
e, then we
an repre-sent input forests as ordinary queues and output forests asba
kwards queues.If we want to represent both input forests and outputforests as ordinary queues (perhaps be
ause our library doesn'tin
lude ba
kwards queues), then we
an
hange the spe
i-�
ation of bfnum' to return the numbered forest in reverseorder. Then, the equations be
omebfnum' i h i = h ibfnum' i (E � ts) = ts' � Ewhere ts' = bfnum' i tsbfnum' i (T (x,a,b) � ts) = ts' � T (i,a',b')where b' � a' � ts' = bfnum' (i+1) (ts � a � b)Now it is a simple matter to turn this spe
i�
ation intorunning
ode, either with views (Figure 4) or without (Fig-ure 3). Either way, assuming ea
h queue operation runs in

signature BFNUM =sigval bfnum : 'a Tree -> int Treeendfun
tor BreadthFirstNumbering (Q:QUEUE) : BFNUM =stru
topen Qfun bfnum' i q =if isEmpty q then emptyelse
ase deq q of(E, ts) => enq (bfnum' i ts, E)| (T (x,a,b), ts) =>let val q = enq (enq (ts, a), b)val q' = bfnum' (i+1) qval (b', q'') = deq q'val (a', ts') = deq q''in enq (ts', T (i,a',b')) endfun bfnum t =let val q = enq (empty, t)val q' = bfnum' 1 qval (t',_) = deq q'in t' endend Figure 3: Breadth-�rst numbering in SML.fun
tor BreadthFirstNumbering (Q:QUEUE) : BFNUM =stru
topen Qinfixr <<infix >>fun bfnum' i Empty = empty| bfnum' i (E << ts) = bfnum' i ts >> E| bfnum' i (T (x,a,b) << ts) =let val b' << a' << ts' =bfnum' (i+1) (ts >> a >> b)in ts' >> T (i,a',b') endfun bfnum t =let val t' << Empty = bfnum' 1 (empty >> t)in t' endendFigure 4: Breadth-�rst numbering using views.

O(1) time, the entire algorithm runs in O(n) time. On
eagain, the usual implementation of queues as a pair of listswould be a good
hoi
e for this algorithm.
4. LEVEL-ORIENTED SOLUTIONSNearly all the alternative solutions I re
eived from otherfun
tional programmers are level oriented, meaning that theyexpli
itly pro
ess the tree (or forest) level by level. In
on-trast, my queue-based solutions do not make expli
it thetransition from one level to the next. The main advantage ofthe level-oriented approa
h is that it relies only on lists, noton fan
ier data stru
tures su
h as queues or double-endedqueues.I will not attempt to des
ribe all the possible level-orientedsolutions. Instead, to provide a fair
omparison to my queue-based approa
h, I will des
ribe only the
leanest of these de-signs. (For
ompleteness, I also review Jones and Gibbons'algorithm in Appendix A, but their algorithm is not dire
tly
omparable to mine sin
e it depends on lazy evaluation.)Given a list of trees, where the roots of those trees formthe
urrent level, we
an extra
t the next level by
olle
tingthe subtrees of any non-empty nodes in the
urrent level, asin
on
at (map
hildren lvl)wherefun
hildren E = [℄|
hildren (T (x,a,b)) = [a,b℄Later, after a re
ursive
all has numbered all the trees inthe next level, we
an number the
urrent level by walkingdown both lists simultaneously, taking two numbered treesfrom the next level for every non-empty node in the
urrentlevel.fun rebuild i [℄ [℄ = [℄| rebuild i (E :: ts)
s = E :: rebuild i ts
s| rebuild i (T (_,_,_) :: ts) (a :: b ::
s) =T (i,a,b) :: rebuild (i+1) ts
sThe last tri
ky point is how to
ompute the starting indexfor numbering the next level from the starting index for the
urrent level. We
annot simply add the length of the listrepresenting the
urrent level to the
urrent index, be
ausethe
urrent level may
ontain arbitrarily many empty nodes,whi
h should not in
rease the index. Instead, we need to�nd the number of non-empty nodes in the
urrent level.Although we
ould de�ne a
ustom fun
tion to
ompute thatvalue, we
an instead noti
e that ea
h non-empty node inthe
urrent level
ontributes two nodes to the next level, andtherefore merely divide the length of the next level by two.The
omplete algorithm appears in Figure 5.This algorithm makes three passes over ea
h level, �rst
omputing its length, then
olle
ting its
hildren, and �nallyrebuilding the level. At the pri
e of slightly messier
ode, we
ould easily
ombine the �rst two passes, but there seemsto be no way to a

omplish all three tasks in a single passwithout lazy evaluation.
5. DISCUSSIONComparing my queue-based solution with the level-orientedsolution in the previous se
tion, I see no
ompelling reason

stru
ture BreadthFirstNumberingByLevels : BFNUM =stru
tfun
hildren E = [℄|
hildren (T (x,a,b)) = [a,b℄fun rebuild i [℄ [℄ = [℄| rebuild i (E :: ts)
s = E :: rebuild i ts
s| rebuild i (T (_,_,_) :: ts) (a :: b ::
s) =T (i,a,b) :: rebuild (i+1) ts
sfun bfnum' i [℄ = [℄| bfnum' i lvl =let val nextLvl =
on
at (map
hildren lvl)val j = i + (length nextLvl div 2)val nextLvl' = bfnum' j nextLvlin rebuild i lvl nextLvl' endfun bfnum t = hd (bfnum' 1 [t℄)endFigure 5: Level-oriented breadth-�rst numbering.to prefer one over the other. The level-oriented solutionis perhaps slightly easier to design from s
rat
h, but thequeue-based algorithm is only a modest extension of thequeue-based algorithm for breadth-�rst traversal, whi
h isquite well-known (more well-known, in fa
t, than the level-oriented algorithm for breadth-�rst traversal). Informal tim-ings indi
ate that the level-oriented solution to breadth-�rstnumbering is slightly faster than the queue-based one, butthe di�eren
e is minor and is not in any
ase an a priorijusti�
ation for favoring the level-oriented approa
h.Why is it then that fun
tional programmers fa
ed withthis problem so overwhelmingly
ommit to a level-orientedapproa
h right from the beginning of the design pro
ess?I
an only spe
ulate, armed with ane
dotal responses fromthose programmers who have attempted the exer
ise. I haveidenti�ed four potential explanations:� Unfamiliarity with the underlying traversal algorithm.A programmer unfamiliar with the queue-based algo-rithm for breadth-�rst traversal would be ex
eedinglyunlikely to
ome up with the queue-based algorithmfor breadth-�rst numbering. However, this a

ountsfor only a small fra
tion of parti
ipants in the exer-
ise.� Unfamiliarity with fun
tional queues and double-endedqueues. A programmer unfamiliar with the fa
t thatsu
h data stru
tures
an be implemented fun
tionallywould be unlikely to design an algorithm that requiredtheir use. In this
ategory, I perhaps have an un-fair advantage, having invented a variety of new im-plementations of fun
tional queues and double-endedqueues [8℄. But most programmers profess an aware-ness that these data stru
tures are available o�-the-shelf, even if they
ouldn't say o�hand how those im-plementations worked.� Premature
ommitment to a data stru
ture. Most fun
-tional programmers immediately rea
h for lists, andtry something fan
ier only if they get stu
k. Even theprogrammer who initially
hooses queues is likely to

run into trouble be
ause of the opposite orientationsof the input and output queues. The queue-based algo-rithm is easiest to develop if you begin with an abstra
tnotion of sequen
es and
ommit to a parti
ular repre-sentation of sequen
es only at the end of the pro
ess.� Premature
ommitment to a programming language.Or, to be more pre
ise, premature
ommitment to asingle programming language feature: pattern mat
h-ing. This ties ba
k into the previous reason. Fun
-tional languages su
h as Standard ML and Haskelldo not permit pattern mat
hing on abstra
t types,thereby en
ouraging early
ommitment to a parti
-ular
on
rete type, in parti
ular to a
on
rete typesu
h as lists that blends ni
ely with pattern mat
hing.Be
ause of their more
ompli
ated internal stru
ture,queues and double-ended queues do not blend nearly aswell with pattern mat
hing. Views o�er a way aroundthis problem, but be
ause Standard ML and Haskelldo not support views, they do not help the program-mer who
ommits to writing legal
ode right from thebeginning of the design pro
ess. (Again, I perhapshave an unfair advantage, having earlier proposed anotation for adding views to Standard ML [9℄.)The last two reasons, if true, are parti
ularly worrisome.We tell our students about the engineering bene�ts of ADTs,but then fail to use them. We nod at platitudes su
h as\Program into a language, not in it", but then ignore orfail to re
ognize the blinders imposed by our own favoritelanguage.Of
ourse, one does not generally use a sledgehammer to
ra
k a walnut|when working on a toy problem, we oftenpermit ourselves a degree of sloppiness that we would nevertolerate on a large proje
t. Furthermore, ending up with alevel-oriented solution is not by itself eviden
e of any sloppi-ness whatsoever. Still, if you a

ept the
laim that neithersolution is intrinsi
ally easier to design than the other, thenyou have to wonder what external fa
tor is
ausing the dis-parity in proposed solutions.
AcknowledgmentsThanks to John Laun
hbury for originally proposing theproblem and to the many programmers who parti
ipatedin this experiment.
6. REFERENCES[1℄ F. Warren Burton. An eÆ
ient fun
tionalimplementation of FIFO queues. InformationPro
essing Letters, 14(5):205{206, July 1982.[2℄ David Gries. The S
ien
e of Programming. Texts andMonographs in Computer S
ien
e. Springer-Verlag,New York, 1981.[3℄ Robert Hood and Robert Melville. Real-time queueoperations in pure Lisp. Information Pro
essingLetters, 13(2):50{53, November 1981.[4℄ Rob R. Hoogerwoord. A symmetri
 set of eÆ
ient listoperations. Journal of Fun
tional Programming,2(4):505{513, O
tober 1992.[5℄ Geraint Jones and Jeremy Gibbons. Linear-timebreadth-�rst tree algorithms: An exer
ise in thearithmeti
 of folds and zips. Te
hni
al Report No. 71,

j1����� QQQQQj2��� SSS j3��� SSSj4 j5 j6 j71 22 3 44 5 6 7 8...- -- - - -- - - - - - - -Figure 6: Threading a list of indi
es through a tree.University of Au
kland, 1993. (Also known as IFIPWorking Group 2.1 working paper 705 WIN-2.).[6℄ Robin Milner, Mads Tofte, Robert Harper, and DavidMa
Queen. The De�nition of Standard ML (Revised).The MIT Press, Cambridge, Massa
husetts, 1997.[7℄ Chris Okasaki. Simple and eÆ
ient purely fun
tionalqueues and deques. Journal of Fun
tionalProgramming, 5(4):583{592, O
tober 1995.[8℄ Chris Okasaki. Purely Fun
tional Data Stru
tures.Cambridge University Press, 1998.[9℄ Chris Okasaki. Views for Standard ML. In Workshopon ML, pages 14{23, September 1998.[10℄ Philip Wadler. Views: A way for pattern mat
hing to
ohabit with data abstra
tion. In ACM Symposium onPrin
iples of Programming Languages, pages 307{313,January 1987.
APPENDIX

A. BREADTH-FIRST NUMBERING WITH
LAZY EVALUATIONJones and Gibbons' original solution is a
tually for a slightlydi�erent problem known as breadth-�rst labelling [5℄. Tomake
omparisons easier, I adapt their algorithm to thesomewhat simpler framework of breadth-�rst numbering.Suppose you are magi
ally given a list of integers repre-senting the �rst available index on ea
h level. The followingHaskell fun
tion produ
es a tree where ea
h level is num-bered beginning with the given index. It also produ
es alist
ontaining the next available index at ea
h level. Thelist of indi
es a
ts as state that is threaded through the tree.bfn :: ([Int℄, Tree a) -> ([Int℄, Tree Int)bfn (ks, E) = (ks, E)bfn (k : ks, T x a b) = (k+1 : ks'', T k a' b')where (ks', a') = bfn (ks, a)(ks'', b') = bfn (ks', b)The e�e
t of this fun
tion is illustrated in Figure 6.But how do we
reate the initial state? Clearly, the �rstavailable index on the �rst level should be 1, but what aboutthe other levels? The essential tri
k in Jones and Gibbons'solution is to realize that, when the entire tree has beenpro
essed, the next available index at the end of one levelis a
tually the �rst available index for the next level. Inother words, if ks is the �nal state, then we
an
onstru
tthe initial state as 1 : ks. The overall algorithm
an thusbe expressed as

bfnum t = t'where (ks, t') = bfn (1 : ks, t)This tri
k of feeding the output of a fun
tion ba
k into theinput, as illustrated in Figure 7, is where lazy evaluation isrequired. Without lazy evaluation, you
ould still use theirmain algorithm, but would need to
al
ulate the initial listof indi
es in a separate pass. i����� QQQQQi��� SSS i��� SSSi i i i...- -- - - -- - - - - - - - �
�Æ- �
�Æ- �
�Æ-Figure 7: Threading the output of one level into theinput of the next level.

