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ABSTRACTEvery programmer has blind spots. Breadth-�rst numberingis an interesting toy problem that exposes a blind spot 
om-mon to many|perhaps most|fun
tional programmers.
Categories and Subject DescriptorsD.1.1 [Programming Te
hniques℄: Appli
ative (Fun
-tional) Programming
General TermsAlgorithms, Design
KeywordsBreadth-�rst numbering, breadth-�rst traversal, views
1. INTRODUCTIONBreadth-�rst traversal of a tree is easy, but rebuilding thetree afterwards seems to be mu
h harder, at least to fun
-tional programmers. At ICFP'98, John Laun
hbury 
hal-lenged me with the following problem:Given a tree T , 
reate a new tree of the sameshape, but with the values at the nodes repla
edby the numbers 1 : : : jT j in breadth-�rst order.For example, breadth-�rst numbering of the treeab
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should yield the tree 12
b 4

b b
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b bLaun
hbury knew of a solution by Jones and Gibbons [5℄that depended on lazy evaluation, but wondered how onewould solve the problem in a stri
t language like StandardML [6℄. I qui
kly s
ribbled what seemed to me to be amostly straightforward answer and showed it to him at thenext break.Over the next year, I presented the problem to many otherfun
tional programmers and was 
ontinually amazed at thebaroque solutions I re
eived in reply. With only a singleex
eption, everyone who 
ame near a workable answer wentin a very di�erent dire
tion from my solution right from thevery beginning of the design pro
ess. I gradually realizedthat I was witnessing some sort of mass mental blo
k, a
ommunal blind spot, that was steering programmers awayfrom what seemed to be a very natural solution. I make no
laims that mine is the best solution, but I �nd it fas
inatingthat something about my solution makes it so diÆ
ult forfun
tional programmers to 
on
eive of in the �rst pla
e.STOP!Before reading further, spend ten or �fteen minutes sket
h-ing out a solution. For 
on
reteness, assume that you havea type of labeled binary treesdatatype 'a Tree = E| T of 'a * 'a Tree * 'a Treeand that you are to produ
e a fun
tionbfnum : 'a Tree -> int Tree

2. BREADTH-FIRST TRAVERSALWhen attempting to solve any non-trivial problem, the�rst step should always be to review solutions to relatedproblems. In algorithm design, as in programming in gen-eral, theft of ideas is to be applauded rather than 
on-demned. In this 
ase, the most obvious 
andidate for plun-der is the well-known queue-based algorithm for breadth-�rst



traversal, that is, produ
ing a list of the labels in a tree, inbreadth-�rst order [5℄. For example, breadth-�rst traversalof the tree ab
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d
b bshould yield the list [a; b; d; 
℄.The key step in developing an algorithm for breadth-�rsttraversal is to generalize the problem, illustrating the para-doxi
al, yet 
ommon, phenomenon that a more general prob-lem is often easier to solve. In parti
ular, we generalize theproblem from breadth-�rst traversal of a tree to breadth-�rst traversal of a forest, that is, frombftrav : 'a Tree -> 'a listtobftrav' : 'a Tree Seq -> 'a listwhere Seq is some as-yet-undetermined type of sequen
esused to represent forests. For example, breadth-�rst traver-sal of the forest ab
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b bshould yield the list [a; d; e; b; 
; f ℄.Then, bftrav 
an be spe
i�ed by the equationbftrav t = bftrav' htiwhere hti denotes the singleton forest 
ontaining t.Now, bftrav' is easy to spe
ify with the following threeequations:bftrav' h i = [℄bftrav' (E � ts) = bftrav' tsbftrav' (T (x,a,b) � ts) =x :: bftrav' (ts � a � b)The last equation takes the 
hildren of the �rst tree andadds them to the end of the sequen
e. The empty sequen
eis denoted h i, and the symbols � and � denote in�x \
ons"and \sno
", respe
tively. Sin
e this is a spe
i�
ation ratherthan an implementation, I feel free to use h i, �, and � onboth sides of the equations.The �nal step before a
tually produ
ing 
ode is to 
hoosean implementation for the sequen
e ADT. The main opera-tions we need on these sequen
es are adding trees to the endof the sequen
e and removing trees from the beginning ofthe sequen
e. Therefore, we 
hoose queues as our sequen
erepresentation. Figure 1 gives a 
on
rete implementation inStandard ML.The use of queues as an ADT makes this 
ode look ratherugly to an eye a

ustomed to the 
leanliness of patternmat
hing, espe
ially the if-then-else and 
ase expressionsin bftrav'. The problem is that pattern mat
hing 
annotnormally be performed on ADTs. Views [10℄ o�er a wayaround this problem. Figure 2 reimplements breadth-�rsttraversal more 
leanly using the syntax for views proposedin [9℄. Note that the de�nition of bftrav' is now nearlyidenti
al to the spe
i�
ation.

signature QUEUE =sigtype 'a Queueval empty : 'a Queueval isEmpty : 'a Queue -> boolval enq : 'a Queue * 'a -> 'a Queueval deq : 'a Queue -> 'a * 'a Queueendsignature BFTRAV =sigval bftrav : 'a Tree -> 'a listendfun
tor BreadthFirstTraversal (Q:QUEUE) : BFTRAV =stru
topen Qfun bftrav' q =if isEmpty q then [℄else 
ase deq q of(E, ts) => bftrav' ts| (T (x,a,b), ts) =>x :: bftrav' (enq (enq (ts,a),b))fun bftrav t = bftrav' (enq (empty, t))end Figure 1: Breadth-�rst traversal in SML.signature QUEUE =sigtype 'a Queueval empty : 'a Queueval >> : 'a Queue * 'a -> 'a Queueviewtype 'a Queue = Empty | << of 'a * 'a Queueendfun
tor BreadthFirstTraversal (Q:QUEUE) : BFTRAV =stru
topen Qinfix >>infixr <<fun bftrav' Empty = [℄| bftrav' (E << ts) = bftrav' ts| bftrav' (T (x,a,b) << ts) =x :: bftrav' (ts >> a >> b)fun bftrav t = bftrav' (empty >> t)endFigure 2: Breadth-�rst traversal using views.



Provided ea
h queue operation runs in O(1) time, thisalgorithm runs in O(n) time altogether. A good implemen-tation of queues for this appli
ation would be the usual im-plementation as a pair of lists [1, 2, 3℄. Sin
e this appli
ationdoes not require persisten
e, fan
ier kinds of queues (e.g., [3,7℄) would be overkill.
3. BREADTH-FIRST NUMBERINGWe next attempt to extend the solution to breadth-�rsttraversal to get a solution to breadth-�rst numbering. Asin breadth-�rst traversal, we will begin by generalizing theproblem. Instead of breadth-�rst numbering of a tree, wewill 
onsider breadth-�rst numbering of a forest. In otherwords, we introdu
e a helper fun
tion that takes a forest andreturns a numbered forest of the same shape. It will also behelpful for the helper fun
tion to take the 
urrent index, soits signature will bebfnum' : int -> 'a Tree Seq -> int Tree SeqThen bfnum 
an be spe
i�ed in terms of bfnum' asbfnum t = t'where ht'i = bfnum' 1 htiExtending the equations for bftrav' to bfnum' is fairlystraightforward, remembering that the output forest mustalways have the same shape as the input forest.bfnum' i h i = h ibfnum' i (E � ts) = E � ts'where ts' = bfnum' i tsbfnum' i (T (x,a,b) � ts) = T (i,a',b') � ts'where ts' � a' � b' = bfnum' (i+1) (ts � a � b)Noti
e how every equation textually preserves the shape ofthe forest.Given these spe
i�
ations, we need to 
hoose a representa-tion for sequen
es. The main operations we need on forestsare adding and removing trees at both the front and theba
k. Therefore, we 
ould 
hoose double-ended queues asour sequen
e representation (perhaps using Hoogerwoord'simplementation of double-ended queues [4℄). However, a
loser inspe
tion reveals that we treat the input forest andthe output forest di�erently. In parti
ular, we add trees tothe ba
k of input forests and remove them from the front,whereas we add trees to the front of output forests and re-move them from the ba
k. If we remove the arti�
ial 
on-straint that input forests and output forests should be rep-resented with the same kind of sequen
e, then we 
an repre-sent input forests as ordinary queues and output forests asba
kwards queues.If we want to represent both input forests and outputforests as ordinary queues (perhaps be
ause our library doesn'tin
lude ba
kwards queues), then we 
an 
hange the spe
i-�
ation of bfnum' to return the numbered forest in reverseorder. Then, the equations be
omebfnum' i h i = h ibfnum' i (E � ts) = ts' � Ewhere ts' = bfnum' i tsbfnum' i (T (x,a,b) � ts) = ts' � T (i,a',b')where b' � a' � ts' = bfnum' (i+1) (ts � a � b)Now it is a simple matter to turn this spe
i�
ation intorunning 
ode, either with views (Figure 4) or without (Fig-ure 3). Either way, assuming ea
h queue operation runs in

signature BFNUM =sigval bfnum : 'a Tree -> int Treeendfun
tor BreadthFirstNumbering (Q:QUEUE) : BFNUM =stru
topen Qfun bfnum' i q =if isEmpty q then emptyelse 
ase deq q of(E, ts) => enq (bfnum' i ts, E)| (T (x,a,b), ts) =>let val q = enq (enq (ts, a), b)val q' = bfnum' (i+1) qval (b', q'') = deq q'val (a', ts') = deq q''in enq (ts', T (i,a',b')) endfun bfnum t =let val q = enq (empty, t)val q' = bfnum' 1 qval (t',_) = deq q'in t' endend Figure 3: Breadth-�rst numbering in SML.fun
tor BreadthFirstNumbering (Q:QUEUE) : BFNUM =stru
topen Qinfixr <<infix >>fun bfnum' i Empty = empty| bfnum' i (E << ts) = bfnum' i ts >> E| bfnum' i (T (x,a,b) << ts) =let val b' << a' << ts' =bfnum' (i+1) (ts >> a >> b)in ts' >> T (i,a',b') endfun bfnum t =let val t' << Empty = bfnum' 1 (empty >> t)in t' endendFigure 4: Breadth-�rst numbering using views.



O(1) time, the entire algorithm runs in O(n) time. On
eagain, the usual implementation of queues as a pair of listswould be a good 
hoi
e for this algorithm.
4. LEVEL-ORIENTED SOLUTIONSNearly all the alternative solutions I re
eived from otherfun
tional programmers are level oriented, meaning that theyexpli
itly pro
ess the tree (or forest) level by level. In 
on-trast, my queue-based solutions do not make expli
it thetransition from one level to the next. The main advantage ofthe level-oriented approa
h is that it relies only on lists, noton fan
ier data stru
tures su
h as queues or double-endedqueues.I will not attempt to des
ribe all the possible level-orientedsolutions. Instead, to provide a fair 
omparison to my queue-based approa
h, I will des
ribe only the 
leanest of these de-signs. (For 
ompleteness, I also review Jones and Gibbons'algorithm in Appendix A, but their algorithm is not dire
tly
omparable to mine sin
e it depends on lazy evaluation.)Given a list of trees, where the roots of those trees formthe 
urrent level, we 
an extra
t the next level by 
olle
tingthe subtrees of any non-empty nodes in the 
urrent level, asin 
on
at (map 
hildren lvl)wherefun 
hildren E = [℄| 
hildren (T (x,a,b)) = [a,b℄Later, after a re
ursive 
all has numbered all the trees inthe next level, we 
an number the 
urrent level by walkingdown both lists simultaneously, taking two numbered treesfrom the next level for every non-empty node in the 
urrentlevel.fun rebuild i [℄ [℄ = [℄| rebuild i (E :: ts) 
s = E :: rebuild i ts 
s| rebuild i (T (_,_,_) :: ts) (a :: b :: 
s) =T (i,a,b) :: rebuild (i+1) ts 
sThe last tri
ky point is how to 
ompute the starting indexfor numbering the next level from the starting index for the
urrent level. We 
annot simply add the length of the listrepresenting the 
urrent level to the 
urrent index, be
ausethe 
urrent level may 
ontain arbitrarily many empty nodes,whi
h should not in
rease the index. Instead, we need to�nd the number of non-empty nodes in the 
urrent level.Although we 
ould de�ne a 
ustom fun
tion to 
ompute thatvalue, we 
an instead noti
e that ea
h non-empty node inthe 
urrent level 
ontributes two nodes to the next level, andtherefore merely divide the length of the next level by two.The 
omplete algorithm appears in Figure 5.This algorithm makes three passes over ea
h level, �rst
omputing its length, then 
olle
ting its 
hildren, and �nallyrebuilding the level. At the pri
e of slightly messier 
ode, we
ould easily 
ombine the �rst two passes, but there seemsto be no way to a

omplish all three tasks in a single passwithout lazy evaluation.
5. DISCUSSIONComparing my queue-based solution with the level-orientedsolution in the previous se
tion, I see no 
ompelling reason

stru
ture BreadthFirstNumberingByLevels : BFNUM =stru
tfun 
hildren E = [℄| 
hildren (T (x,a,b)) = [a,b℄fun rebuild i [℄ [℄ = [℄| rebuild i (E :: ts) 
s = E :: rebuild i ts 
s| rebuild i (T (_,_,_) :: ts) (a :: b :: 
s) =T (i,a,b) :: rebuild (i+1) ts 
sfun bfnum' i [℄ = [℄| bfnum' i lvl =let val nextLvl = 
on
at (map 
hildren lvl)val j = i + (length nextLvl div 2)val nextLvl' = bfnum' j nextLvlin rebuild i lvl nextLvl' endfun bfnum t = hd (bfnum' 1 [t℄)endFigure 5: Level-oriented breadth-�rst numbering.to prefer one over the other. The level-oriented solutionis perhaps slightly easier to design from s
rat
h, but thequeue-based algorithm is only a modest extension of thequeue-based algorithm for breadth-�rst traversal, whi
h isquite well-known (more well-known, in fa
t, than the level-oriented algorithm for breadth-�rst traversal). Informal tim-ings indi
ate that the level-oriented solution to breadth-�rstnumbering is slightly faster than the queue-based one, butthe di�eren
e is minor and is not in any 
ase an a priorijusti�
ation for favoring the level-oriented approa
h.Why is it then that fun
tional programmers fa
ed withthis problem so overwhelmingly 
ommit to a level-orientedapproa
h right from the beginning of the design pro
ess?I 
an only spe
ulate, armed with ane
dotal responses fromthose programmers who have attempted the exer
ise. I haveidenti�ed four potential explanations:� Unfamiliarity with the underlying traversal algorithm.A programmer unfamiliar with the queue-based algo-rithm for breadth-�rst traversal would be ex
eedinglyunlikely to 
ome up with the queue-based algorithmfor breadth-�rst numbering. However, this a

ountsfor only a small fra
tion of parti
ipants in the exer-
ise.� Unfamiliarity with fun
tional queues and double-endedqueues. A programmer unfamiliar with the fa
t thatsu
h data stru
tures 
an be implemented fun
tionallywould be unlikely to design an algorithm that requiredtheir use. In this 
ategory, I perhaps have an un-fair advantage, having invented a variety of new im-plementations of fun
tional queues and double-endedqueues [8℄. But most programmers profess an aware-ness that these data stru
tures are available o�-the-shelf, even if they 
ouldn't say o�hand how those im-plementations worked.� Premature 
ommitment to a data stru
ture. Most fun
-tional programmers immediately rea
h for lists, andtry something fan
ier only if they get stu
k. Even theprogrammer who initially 
hooses queues is likely to



run into trouble be
ause of the opposite orientationsof the input and output queues. The queue-based algo-rithm is easiest to develop if you begin with an abstra
tnotion of sequen
es and 
ommit to a parti
ular repre-sentation of sequen
es only at the end of the pro
ess.� Premature 
ommitment to a programming language.Or, to be more pre
ise, premature 
ommitment to asingle programming language feature: pattern mat
h-ing. This ties ba
k into the previous reason. Fun
-tional languages su
h as Standard ML and Haskelldo not permit pattern mat
hing on abstra
t types,thereby en
ouraging early 
ommitment to a parti
-ular 
on
rete type, in parti
ular to a 
on
rete typesu
h as lists that blends ni
ely with pattern mat
hing.Be
ause of their more 
ompli
ated internal stru
ture,queues and double-ended queues do not blend nearly aswell with pattern mat
hing. Views o�er a way aroundthis problem, but be
ause Standard ML and Haskelldo not support views, they do not help the program-mer who 
ommits to writing legal 
ode right from thebeginning of the design pro
ess. (Again, I perhapshave an unfair advantage, having earlier proposed anotation for adding views to Standard ML [9℄.)The last two reasons, if true, are parti
ularly worrisome.We tell our students about the engineering bene�ts of ADTs,but then fail to use them. We nod at platitudes su
h as\Program into a language, not in it", but then ignore orfail to re
ognize the blinders imposed by our own favoritelanguage.Of 
ourse, one does not generally use a sledgehammer to
ra
k a walnut|when working on a toy problem, we oftenpermit ourselves a degree of sloppiness that we would nevertolerate on a large proje
t. Furthermore, ending up with alevel-oriented solution is not by itself eviden
e of any sloppi-ness whatsoever. Still, if you a

ept the 
laim that neithersolution is intrinsi
ally easier to design than the other, thenyou have to wonder what external fa
tor is 
ausing the dis-parity in proposed solutions.
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APPENDIX

A. BREADTH-FIRST NUMBERING WITH
LAZY EVALUATIONJones and Gibbons' original solution is a
tually for a slightlydi�erent problem known as breadth-�rst labelling [5℄. Tomake 
omparisons easier, I adapt their algorithm to thesomewhat simpler framework of breadth-�rst numbering.Suppose you are magi
ally given a list of integers repre-senting the �rst available index on ea
h level. The followingHaskell fun
tion produ
es a tree where ea
h level is num-bered beginning with the given index. It also produ
es alist 
ontaining the next available index at ea
h level. Thelist of indi
es a
ts as state that is threaded through the tree.bfn :: ([Int℄, Tree a) -> ([Int℄, Tree Int)bfn (ks, E) = (ks, E)bfn (k : ks, T x a b) = (k+1 : ks'', T k a' b')where (ks', a') = bfn (ks, a)(ks'', b') = bfn (ks', b)The e�e
t of this fun
tion is illustrated in Figure 6.But how do we 
reate the initial state? Clearly, the �rstavailable index on the �rst level should be 1, but what aboutthe other levels? The essential tri
k in Jones and Gibbons'solution is to realize that, when the entire tree has beenpro
essed, the next available index at the end of one levelis a
tually the �rst available index for the next level. Inother words, if ks is the �nal state, then we 
an 
onstru
tthe initial state as 1 : ks. The overall algorithm 
an thusbe expressed as



bfnum t = t'where (ks, t') = bfn (1 : ks, t)This tri
k of feeding the output of a fun
tion ba
k into theinput, as illustrated in Figure 7, is where lazy evaluation isrequired. Without lazy evaluation, you 
ould still use theirmain algorithm, but would need to 
al
ulate the initial listof indi
es in a separate pass. i����� QQQQQi��� SSS i��� SSSi i i i... ... ... ... ...... ... ... ...- -- - - -- - - - - - - - �
�Æ- �
�Æ- �
�Æ-Figure 7: Threading the output of one level into theinput of the next level.


