Breadth-First Numbering:
Lessons from a Small Exercise in Algorithm Design

(Functional Pearl)

Chris Okasaki
Department of Computer Science
Columbia University

cdo@cs.columbia.edu

ABSTRACT

Every programmer has blind spots. Breadth-first numbering
is an interesting toy problem that exposes a blind spot com-
mon to many—perhaps most—functional programmers.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming

General Terms
Algorithms, Design

Keywords

Breadth-first numbering, breadth-first traversal, views

1. INTRODUCTION

Breadth-first traversal of a tree is easy, but rebuilding the
tree afterwards seems to be much harder, at least to func-
tional programmers. At ICFP’98, John Launchbury chal-
lenged me with the following problem:

Given a tree T, create a new tree of the same
shape, but with the values at the nodes replaced
by the numbers 1...|T| in breadth-first order.

For example, breadth-first numbering of the tree

a
b/ \d
./ \c ./ \.
./ \.

Permission to make digital or hard copies of all or part o§ thiork for
personal or classroom use is granted without fee providatddbpies are
not made or distributed for profit or commercial advantagéhat copies
bear this notice and the full citation on the first page. Toyomherwise, to
republish, to post on servers or to redistribute to listgunes prior specific
permission and/or a fee.

ICFP'00, Montreal, Canada

Copyright 2000 ACM 1-58113-202-6/00/00095.00

should yield the tree

1
2 Ny
./ \4 ./ \.

./ \.

Launchbury knew of a solution by Jones and Gibbons [5]
that depended on lazy evaluation, but wondered how one
would solve the problem in a strict language like Standard
ML [6]. I quickly scribbled what seemed to me to be a
mostly straightforward answer and showed it to him at the
next break.

Over the next year, I presented the problem to many other
functional programmers and was continually amazed at the
baroque solutions I received in reply. With only a single
exception, everyone who came near a workable answer went
in a very different direction from my solution right from the
very beginning of the design process. I gradually realized
that I was witnessing some sort of mass mental block, a
communal blind spot, that was steering programmers away
from what seemed to be a very natural solution. I make no
claims that mine is the best solution, but I find it fascinating
that something about my solution makes it so difficult for
functional programmers to conceive of in the first place.

STOP!

Before reading further, spend ten or fifteen minutes sketch-
ing out a solution. For concreteness, assume that you have
a type of labeled binary trees

datatype ’a Tree = E
| T of ’a * ’a Tree * ’a Tree

and that you are to produce a function

bfnum : ’a Tree -> int Tree

2. BREADTH-FIRST TRAVERSAL

When attempting to solve any non-trivial problem, the
first step should always be to review solutions to related
problems. In algorithm design, as in programming in gen-
eral, theft of ideas is to be applauded rather than con-
demned. In this case, the most obvious candidate for plun-
der is the well-known queue-based algorithm for breadth-first

traversal, that is, producing a list of the labels in a tree, in
breadth-first order [5]. For example, breadth-first traversal
of the tree

PERN
b d
/ N\ / \
° c ° °
/ \
[] []
should yield the list [a, b, d, c].

The key step in developing an algorithm for breadth-first
traversal is to generalize the problem, illustrating the para-
doxical, yet common, phenomenon that a more general prob-
lem is often easier to solve. In particular, we generalize the

problem from breadth-first traversal of a tree to breadth-
first traversal of a forest, that is, from
bftrav : ’a Tree -> ’a list
to
bftrav’ ’a Tree Seq -> ’a list

where Seq is some as-yet-undetermined type of sequences
used to represent forests. For example, breadth-first traver-
sal of the forest

a d e
VN /N /N
b c . . .
/ \ / \
[] [] [] []
should yield the list [a,d, e, b, ¢, f].
Then, bftrav can be specified by the equation

!
0/ \0

bftrav t = bftrav’ (t)

where {(t} denotes the singleton forest containing t.
Now, bftrav’ is easy to specify with the following three
equations:

bftrav’ () = []
bftrav’ (E < ts) = bftrav’ ts
bftrav’ (T (x,a,b) < ts) =

X :: bftrav’ (ts > a > b)

The last equation takes the children of the first tree and
adds them to the end of the sequence. The empty sequence
is denoted { }, and the symbols <] and [> denote infix “cons”
and “snoc”, respectively. Since this is a specification rather
than an implementation, I feel free to use {), <1, and [> on
both sides of the equations.

The final step before actually producing code is to choose
an implementation for the sequence ADT. The main opera-
tions we need on these sequences are adding trees to the end
of the sequence and removing trees from the beginning of
the sequence. Therefore, we choose queues as our sequence
representation. Figure 1 gives a concrete implementation in
Standard ML.

The use of queues as an ADT makes this code look rather
ugly to an eye accustomed to the cleanliness of pattern
matching, especially the if-then-else and case expressions
in bftrav’. The problem is that pattern matching cannot
normally be performed on ADTs. Views [10] offer a way
around this problem. Figure 2 reimplements breadth-first
traversal more cleanly using the syntax for views proposed
in [9]. Note that the definition of bftrav’ is now nearly
identical to the specification.

signature QUEUE =

sig
type ’a Queue
val empty ’a Queue

val isEmpty : ’a Queue -> bool

val enq : ’a Queue * ’a -> ’a Queue
val deq : ’a Queue -> ’a * ’a Queue
end

signature BFTRAV =
sig

val bftrav :
end

’a Tree -> ’a list

functor BreadthFirstTraversal (Q:QUEUE)
struct
open Q

: BFTRAV =

fun bftrav’ q =
if isEmpty g then []
else case deq q of
(E, ts) => bftrav’ ts
| (T (x,a,b), ts) =>
x :: bftrav’ (enq (enq (ts,a),b))

fun bftrav t = bftrav’ (enq (empty, t))
end

Figure 1: Breadth-first traversal in SML.

signature QUEUE =

sig
type ’a Queue
val empty : ’a Queue
val >> ’a Queue * ’a -> ’a Queue

viewtype ’a Queue = Empty | << of ’a * ’a Queue
end
functor BreadthFirstTraversal (Q:QUEUE) : BFTRAV =
struct

open Q

infix >>

infixr <<

fun bftrav’ Empty = []
| bftrav’ (E << ts) = bftrav’ ts
| bftrav’ (T (x,a,b) << ts) =
x :: bftrav’ (ts >> a >> b)

fun bftrav t = bftrav’ (empty >> t)
end

Figure 2: Breadth-first traversal using views.

Provided each queue operation runs in O(1) time, this
algorithm runs in O(n) time altogether. A good implemen-
tation of queues for this application would be the usual im-
plementation as a pair of lists [1, 2, 3]. Since this application
does not require persistence, fancier kinds of queues (e.g., [3,

7]) would be overkill.

3. BREADTH-FIRST NUMBERING

We next attempt to extend the solution to breadth-first
traversal to get a solution to breadth-first numbering. As
in breadth-first traversal, we will begin by generalizing the
problem. Instead of breadth-first numbering of a tree, we
will consider breadth-first numbering of a forest. In other
words, we introduce a helper function that takes a forest and
returns a numbered forest of the same shape. It will also be
helpful for the helper function to take the current index, so
its signature will be

bfnum’ int -> ’a Tree Seq -> int Tree Seq

Then bfnum can be specified in terms of bfnum’ as

bfnum t = ¢’
where (t’) = bfnum’ 1 (t)

Extending the equations for bftrav’ to bfnum’ is fairly
straightforward, remembering that the output forest must
always have the same shape as the input forest.

bfnum’ i () = ()
bfnum’ i (E < ts) = E < ts’
where ts’ = bfnum’ i ts
bfnum’ i (T (x,a,b) < ts) =T (i,a’,b’) < ts’

where ts’ > a’ > b’ = bfnum’ (i+1) (ts > a > b)

Notice how every equation textually preserves the shape of
the forest.

Given these specifications, we need to choose a representa-
tion for sequences. The main operations we need on forests
are adding and removing trees at both the front and the
back. Therefore, we could choose double-ended queues as
our sequence representation (perhaps using Hoogerwoord’s
implementation of double-ended queues [4]). However, a
closer inspection reveals that we treat the input forest and
the output forest differently. In particular, we add trees to
the back of input forests and remove them from the front,
whereas we add trees to the front of output forests and re-
move them from the back. If we remove the artificial con-
straint that input forests and output forests should be rep-
resented with the same kind of sequence, then we can repre-
sent input forests as ordinary queues and output forests as
backwards queues.

If we want to represent both input forests and output

forests as ordinary queues (perhaps because our library doesn’t

include backwards queues), then we can change the speci-
fication of bfnum’ to return the numbered forest in reverse
order. Then, the equations become

bfnum’ i () = ()
bfnum’ i (E < ts) = ts’ > E
where ts’ = bfnum’ i ts
bfnum’ i (T (x,a,b) < ts) =ts’ > T (i,a’,b’)

where b’ < a’ < ts’ = bfnum’ (i+1) (ts > a > b)

Now it is a simple matter to turn this specification into
running code, either with views (Figure 4) or without (Fig-
ure 3). Either way, assuming each queue operation runs in

signature BFNUM =
sig

val bfnum :
end

’a Tree -> int Tree

functor BreadthFirstNumbering (Q:QUEUE) : BFNUM =
struct

open Q

fun bfnum’ i q =
if isEmpty q then empty
else case deq q of
(E, ts) => eng (bfnum’ i ts, E)
| (T (x,a,b), ts) =>
let val g = enq (enq (ts, a), b)
val g’ = bfnum’ (i+1) q
val (b’, q’’) = deq q’
val (a’, ts’) = deq q’’
in eng (ts’, T (i,a’,b’)) end

fun bfnum %
let val q = enq (empty, t)
val 9’ = bfnum’ 1 g
val (t’,_) = deq q’
in t’ end
end

Figure 3: Breadth-first numbering in SML.

functor BreadthFirstNumbering (Q:QUEUE) : BFNUM =
struct

open Q

infixr <<

infix >>

fun bfnum’ i Empty = empty
| bfnum’ i (E << ts) = bfnum’ i ts >> E
| bfnum’ i (T (x,a,b) << ts) =
let val b’ << a’ << tsg’ =
bfnum’ (i+1) (ts >> a >> b)
in ts’ >> T (i,a’,b’) end

fun bfnum t =
let val t’ << Empty = bfnum’ 1 (empty >> t)
in t’ end
end

Figure 4: Breadth-first numbering using views.

O(1) time, the entire algorithm runs in O(n) time. Once
again, the usual implementation of queues as a pair of lists
would be a good choice for this algorithm.

4. LEVEL-ORIENTED SOLUTIONS

Nearly all the alternative solutions I received from other
functional programmers are level oriented, meaning that they
explicitly process the tree (or forest) level by level. In con-
trast, my queue-based solutions do not make explicit the
transition from one level to the next. The main advantage of
the level-oriented approach is that it relies only on lists, not
on fancier data structures such as queues or double-ended
queues.

I will not attempt to describe all the possible level-oriented
solutions. Instead, to provide a fair comparison to my queue-
based approach, I will describe only the cleanest of these de-
signs. (For completeness, I also review Jones and Gibbons’
algorithm in Appendix A, but their algorithm is not directly
comparable to mine since it depends on lazy evaluation.)

Given a list of trees, where the roots of those trees form
the current level, we can extract the next level by collecting
the subtrees of any non-empty nodes in the current level, as
in

concat (map children lvl)
where

fun children E = []
| children (T (x,a,b)) = [a,b]

Later, after a recursive call has numbered all the trees in
the next level, we can number the current level by walking
down both lists simultaneously, taking two numbered trees
from the next level for every non-empty node in the current
level.

fun rebuild i [1 [1 = []
| rebuild i (E :: ts) cs = E :: rebuild i ts cs
| rebuild i1 (T (_,_,_) :: ts) (a :: b :: cs) =
T (i,a,b) :: rebuild (i+l1) ts cs

The last tricky point is how to compute the starting index
for numbering the next level from the starting index for the
current level. We cannot simply add the length of the list
representing the current level to the current index, because
the current level may contain arbitrarily many empty nodes,
which should not increase the index. Instead, we need to
find the number of non-empty nodes in the current level.
Although we could define a custom function to compute that
value, we can instead notice that each non-empty node in
the current level contributes two nodes to the next level, and
therefore merely divide the length of the next level by two.
The complete algorithm appears in Figure 5.

This algorithm makes three passes over each level, first
computing its length, then collecting its children, and finally
rebuilding the level. At the price of slightly messier code, we
could easily combine the first two passes, but there seems
to be no way to accomplish all three tasks in a single pass
without lazy evaluation.

5. DISCUSSION

Comparing my queue-based solution with the level-oriented
solution in the previous section, I see no compelling reason

structure BreadthFirstNumberingByLevels : BFNUM =
struct
fun children E = []

| children (T (x,a,b)) = [a,b]

fun rebuild i [1 [1 = []
| rebuild i (E :: ts) cs = E :: rebuild i ts cs
| rebuild i1 (T (_,_,_) :: ts) (a :: b :: cs) =
T (i,a,b) :: rebuild (i+l1) ts cs

fun bfnum’ i [] = []
| bfnum’> i 1vl =
let val nextLvl = concat (map children 1vl)
val j = 1 + (length nextLvl div 2)
val nextLvl’ = bfnum’ j nextLvl
in rebuild i 1vl nextLvl’ end

fun bfnum t = hd (bfnum’ 1 [t])
end

Figure 5: Level-oriented breadth-first numbering.

to prefer one over the other. The level-oriented solution
is perhaps slightly easier to design from scratch, but the
queue-based algorithm is only a modest extension of the
queue-based algorithm for breadth-first traversal, which is
quite well-known (more well-known, in fact, than the level-
oriented algorithm for breadth-first traversal). Informal tim-
ings indicate that the level-oriented solution to breadth-first
numbering is slightly faster than the queue-based one, but
the difference is minor and is not in any case an a priori
justification for favoring the level-oriented approach.

Why is it then that functional programmers faced with
this problem so overwhelmingly commit to a level-oriented
approach right from the beginning of the design process?
I can only speculate, armed with anecdotal responses from
those programmers who have attempted the exercise. I have
identified four potential explanations:

o Unfamiliarity with the underlying traversal algorithm.
A programmer unfamiliar with the queue-based algo-
rithm for breadth-first traversal would be exceedingly
unlikely to come up with the queue-based algorithm
for breadth-first numbering. However, this accounts
for only a small fraction of participants in the exer-
cise.

o Unfamiliarity with functional queues and double-ended
queues. A programmer unfamiliar with the fact that
such data structures can be implemented functionally
would be unlikely to design an algorithm that required
their use. In this category, 1 perhaps have an un-
fair advantage, having invented a variety of new im-
plementations of functional queues and double-ended
queues [8]. But most programmers profess an aware-
ness that these data structures are available off-the-
shelf, even if they couldn’t say offhand how those im-
plementations worked.

o Premature commitment to a data structure. Most func-
tional programmers immediately reach for lists, and
try something fancier only if they get stuck. Even the
programmer who initially chooses queues is likely to

run into trouble because of the opposite orientations
of the input and output queues. The queue-based algo-
rithm is easiest to develop if you begin with an abstract
notion of sequences and commit to a particular repre-
sentation of sequences only at the end of the process.

o Premature commitment to a programming language.
Or, to be more precise, premature commitment to a
single programming language feature: pattern match-
tng. This ties back into the previous reason. Func-
tional languages such as Standard ML and Haskell
do not permit pattern matching on abstract types,
thereby encouraging early commitment to a partic-
ular concrete type, in particular to a concrete type
such as lists that blends nicely with pattern matching.
Because of their more complicated internal structure,
queues and double-ended queues do not blend nearly as
well with pattern matching. Views offer a way around
this problem, but because Standard ML and Haskell
do not support views, they do not help the program-
mer who commits to writing legal code right from the
beginning of the design process. (Again, I perhaps
have an unfair advantage, having earlier proposed a
notation for adding views to Standard ML [9].)

The last two reasons, if true, are particularly worrisome.
We tell our students about the engineering benefits of ADTs,
but then fail to use them. We nod at platitudes such as
“Program into a language, not in it”, but then ignore or
fail to recognize the blinders imposed by our own favorite
language.

Of course, one does not generally use a sledgehammer to
crack a walnut—when working on a toy problem, we often
permit ourselves a degree of sloppiness that we would never
tolerate on a large project. Furthermore, ending up with a
level-oriented solution is not by itself evidence of any sloppi-
ness whatsoever. Still, if you accept the claim that neither
solution is intrinsically easier to design than the other, then
you have to wonder what external factor is causing the dis-
parity in proposed solutions.

Acknowledgments

Thanks to John Launchbury for originally proposing the
problem and to the many programmers who participated
in this experiment.

6. REFERENCES

[1] F. Warren Burton. An efficient functional
implementation of FIFO queues. Information
Processing Letters, 14(5):205-206, July 1982.

[2] David Gries. The Science of Programming. Texts and
Monographs in Computer Science. Springer-Verlag,
New York, 1981.

[3] Robert Hood and Robert Melville. Real-time queue
operations in pure Lisp. Information Processing
Letters, 13(2):50-53, November 1981.

[4] Rob R. Hoogerwoord. A symmetric set of efficient list
operations. Journal of Functional Programming,
2(4):505-513, October 1992.

[5] Geraint Jones and Jeremy Gibbons. Linear-time
breadth-first tree algorithms: An exercise in the
arithmetic of folds and zips. Technical Report No. 71,

4 —>—>ﬂ—>—> 6 —>—>’7‘—>—> 8
Figure 6: Threading a list of indices through a tree.

University of Auckland, 1993. (Also known as IFIP
Working Group 2.1 working paper 705 WIN-2.).

[6] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition of Standard ML (Revised).
The MIT Press, Cambridge, Massachusetts, 1997.

[7] Chris Okasaki. Simple and efficient purely functional
queues and deques. Journal of Functional
Programming, 5(4):583-592, October 1995.

[8] Chris Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.

[9] Chris Okasaki. Views for Standard ML. In Workshop
on ML, pages 14-23, September 1998.

[10] Philip Wadler. Views: A way for pattern matching to
cohabit with data abstraction. In ACM Symposium on
Principles of Programming Languages, pages 307-313,
January 1987.

APPENDIX

A. BREADTH-FIRST NUMBERING WITH
LAZY EVALUATION

Jones and Gibbons’ original solution is actually for a slightly
different problem known as breadth-first labelling [5]. To
make comparisons easier, | adapt their algorithm to the
somewhat simpler framework of breadth-first numbering.

Suppose you are magically given a list of integers repre-
senting the first available index on each level. The following
Haskell function produces a tree where each level is num-
bered beginning with the given index. It also produces a
list containing the next available index at each level. The
list of indices acts as state that is threaded through the tree.

bfn :: ([Int], Tree a) -> ([Int], Tree Int)
bfn (ks, E) = (ks, E)
bfn (k : ks, Tx ab) = (k+1 : ks’’, Tk a’ b’)
where (ks’, a’) = bfn (ks, a)
(ks’’, b’) = bfn (ks’, b)

The effect of this function is illustrated in Figure 6.

But how do we create the initial state? Clearly, the first
available index on the first level should be 1, but what about
the other levels? The essential trick in Jones and Gibbons’
solution is to realize that, when the entire tree has been
processed, the next available index at the end of one level
is actually the first available index for the next level. In
other words, if ks is the final state, then we can construct
the initial state as 1 : ks. The overall algorithm can thus
be expressed as

bfnum t = ¢’
where (ks, t’) = bfn (1 : ks, t)

This trick of feeding the output of a function back into the
input, as illustrated in Figure 7, is where lazy evaluation is
required. Without lazy evaluation, you could still use their
main algorithm, but would need to calculate the initial list
of indices in a separate pass.

Figure 7: Threading the output of one level into the
input of the next level.

