
Beautiful concurrency

to appear in “Beautiful code”, ed Greg Wilson, O’Reilly 2007

Simon Peyton Jones, Microsoft Research, Cambridge

May 1, 2007

1 Introduction

The free lunch is over [11]. We have grown used to the idea that our programs
will go faster when we buy a next-generation processor, but that time has passed.
While that next-generation chip will have more CPUs, each individual CPU will
be no faster than the previous year’s model. If we want our programs to run
faster, we must learn to write parallel programs [12].

Parallel programs execute in a non-deterministic way, so they are hard to test
and bugs can be almost impossible to reproduce. For me, a beautiful program
is one that is so simple and elegant that it obviously has no mistakes, rather
than merely having no obvious mistakes1. If we want to write parallel programs
that work reliably, we must pay particular attention to beauty. Sadly, parallel
programs are often less beautiful than their sequential cousins; in particular
they are, as we shall see, less modular.

In this chapter I’ll describe Software Transactional Memory (STM), a promising
new approach to programming shared-memory parallel processors, that seems
to support modular programs in a way that current technology does not. By
the time we are done, I hope you will be as enthusiastic as I am about STM. It
is not a solution to every problem, but it is a beautiful and inspiring attack on
the daunting ramparts of concurrency.

2 A simple example: bank accounts

Here is a simple programming task.

Write a procedure to transfer money from one bank account to an-
other. To keep things simple, both accounts are held in memory: no

1This turn of phrase is due to Tony Hoare

1

interaction with databases is required. The procedure must operate
correctly in a concurrent program, in which many threads may call
transfer simultaneously. No thread should be able to observe a
state in which the money has left one account, but not arrived in
the other (or vice versa).

This example is somewhat unrealistic, but its simplicity allows us to focus on
what is new: the language Haskell (Section 3.1), and transactional memory
(Sections 3.2 onwards). But first let us briefly look at the conventional approach.

2.1 Bank accounts using locks

The dominant technology for coordinating concurrent programs today is the use
of locks and condition variables. In an object-oriented language, every object
has an implicit lock and the locking is done by synchronised methods, but the
idea is the same. So one might define a class for bank accounts something like
this:

class Account {

Int balance;

synchronized void withdraw(int n) {

balance = balance - n; }

void deposit(int n) {

withdraw(-n); }

}

We must be careful to use a synchronized method for withdraw, so that we do
not get any missed decrements if two threads call withdraw at the same time.
The effect of synchronized is to take a lock on the account, run withdraw, and
then release the lock.

Now, here is how we might write the code for transfer:

void transfer(Account from, Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount); }

This code is fine for a sequential program, but in a concurrent program another
thread could observe an intermediate state in which the money has left account
from, but not arrived in to. The fact that both methods are synchronized

does not help us at all. Account from is first locked and then unlocked by the
call to method withdraw, and then to is locked and unlocked by deposit. In
between the two calls, the money is (visibly) absent from both accounts.

In a finance program, that might be unacceptable. How do we fix it? The usual
solution would be to add explicit locking code thus:

void transfer(Account from, Account to, Int amount) {

2

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock(); }

But this program is fatally prone to deadlock. In particular, consider the (un-
likely) situation in which another thread is transferring money in the opposite
direction between the same two accounts. Then each thread might get one lock
and then block indefinitely waiting for the other.

Once recognised – and the problem is not always so obvious – the standard fix is
to put an arbitrary global order on the locks, and to acquire them in increasing
order. The locking code would then become

if from < to

then { from.lock(); to.lock(); }

else { to.lock(); from.lock(); }

That works fine when the full set of required locks can be predicted in advance,
but that is not always the case. For example, suppose from.withdraw is im-
plemented by transferring money out of account from2 if from does not have
enough funds. We don’t know whether to acquire from2’s lock until we have
read from, and by then it is too late to acquire the locks in the “right” order.
Furthermore, the very existence of from2 may be a private matter that should
be known by from, but not by transfer. And even if transfer did know about
from2, the locking code must now take three locks, presumably by sorting them
into the right order.

Matters become even more complicated when we want to block. For example,
suppose that transfer should block if from has insufficient funds. This is
usually done by waiting on a condition variable, while simultaneously releasing
from’s lock. It gets much trickier if we want to block until there are sufficient
funds in from and from2 considered together.

2.2 Locks are bad

To make a long story short, today’s dominant technology for concurrent pro-
gramming – locks and condition variables – is fundamentally flawed. Here are
some standard difficulties, some of which we have seen above:

Taking too few locks. It is easy to forget to take a lock and thereby end up
with two threads that modify the same variable simultaneously.

Taking too many locks. It is easy to take too many locks and thereby inhibit
concurrency (at best) or cause deadlock (at worst).

Taking the wrong locks. In lock-based programming, the connection be-
tween a lock and the data it protects often exists only in the mind of

3

the programmer, and is not explicit in the program. As a result, it is all
too easy to take or hold the wrong locks.

Taking locks in the wrong order. In lock-based programming, one must be
careful to take locks in the “right” order. Avoiding the deadlock that
can otherwise occur is always tiresome and error-prone, and sometimes
extremely difficult.

Error recovery can be very hard, because the programmer must guarantee
that no error can leave the system in a state that is inconsistent, or in
which locks are held indefinitely.

Lost wake-ups and erroneous retries. It is easy to forget to signal a con-
dition variable on which a thread is waiting; or to re-test a condition after
a wake-up.

But the fundamental shortcoming of lock-based programming is that locks and
condition variables do not support modular programming. By “modular pro-
gramming” I mean the process of building large programs by gluing together
smaller programs. Locks make this impossible. For example, we could not use
our (correct) implementations of withdraw and deposit unchanged to imple-
ment transfer; instead we had to expose the locking protocol. Blocking and
choice are even less modular. For example suppose we had a version of withdraw
that blocks if the source account has insufficient funds. Then we would not be
able to use withdraw directly to withdraw money from A or B (depending on
which has sufficient funds), without exposing the blocking condition — and even
then it’s not easy. This critique is elaborated elsewhere [7, 8, 4].

3 Software Transactional Memory

Software Transactional Memory is a promising new approach to the challenge of
concurrency, as I will explain in this section. I shall explain STM using Haskell,
the most beautiful programming language I know, because STM fits into Haskell
particularly elegantly. If you don’t know any Haskell, don’t worry; we’ll learn
it as we go.

3.1 Side effects and input/output in Haskell

Here is the beginning of the code for transfer in Haskell:

transfer :: Account -> Account -> Int -> IO ()

-- Transfer ’amount’ from account ’from’ to account ’to’

transfer from to amount = ...

4

The second line of this definition, starting “--”, is a comment. The first line
gives the type signature for transfer. This signature says that transfer takes
as its arguments2 two values of type Account (the source and destination ac-
counts), and an Int (the amount to transfer), and returns a value of type IO ().
This result type says “transfer returns an action that, when performed, may
have some side effects, and then returns a value of type ()”. The type (), pro-
nounced “unit”, has just one value, which is also written (); it is akin to void

in C. So transfer’s result type IO () announces that its side effects constitute
the only reason for calling it. Before we go further, we must explain how side
effects are handled in Haskell.

A “side effect” is anything that reads or writes mutable state. Input/output is
a prominent example of a side effect. For example, here are the signatures of
two Haskell functions with input/output effects:

hPutStr :: Handle -> String -> IO ()

hGetLine :: Handle -> IO String

We call any value of type IO t an “action”. So (hPutStr h "hello")3 is an
action that, when performed, will print "hello" on handle4 h and return the
unit value. Similarly, (hGetLine h) is an action that, when performed, will
read a line of input from handle h and return it as a String. We can glue
together little side-effecting programs to make bigger side-effecting programs
using Haskell’s “do” notation. For example, hEchoLine reads a string from the
input and prints it:

hEchoLine :: Handle -> IO String

hEchoLine h = do { s <- hGetLine h

; hPutStr h ("I just read: " ++ s)

; return s }

The notation do { a1; . . .;an} constructs an action by gluing together the
smaller actions a1 . . . an in sequence. So hEchoLine h is an action that, when
performed, will first perform hGetLine h to read a line from h, naming the re-
sult s. Then it will perform hPutStr to print s, preceded5 by “I just read: ”.
Finally, it returns the string s. This last line is interesting, because return is
not a built-in language construct: rather, it is a perfectly ordinary function with
type

return :: a -> IO a

2You may think it odd that there are three function arrows in this type signature, rather
than one. That’s because Haskell supports currying, which you can find described in any
book about Haskell (e.g. [13]), or on Wikipedia. For the purposes of this paper, simply treat
all the types except the final one as arguments.

3In Haskell we write function application using simple juxtaposition. In most languages you
would write “hPutStr(h,"hello")”, but in Haskell you write simply (hPutStr h "hello").

4A Handle in Haskell plays the role of a file descriptor in C: it says which file or pipe to
read or write. As in Unix, there are three pre-defined handles, stdin, stdout, and stderr.

5The (++) operator concatenates two strings.

5

The action return v, when performed, returns v without having caused any
side effects6. This function works on values of any type, and we indicate this
by using a type variable a in its type.

Input/output is one important sort of side effect. Another is the act of reading
or writing a mutable variable. For example, here is a function that increments
the value of a mutable variable:

incRef :: IORef Int -> IO ()

incRef var = do { val <- readIORef var

; writeIORef var (val+1) }

Here, incRef var is an action that first performs readIORef var to read the
value of the variable, naming its value val, and then performs writeIORef

to write the value (val+1) into the variable. The types of readIORef and
writeIORef are as follows:

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

A value of type IORef t should be thought of as a pointer, or reference, to a
mutable location containing a value of type t, a bit like the type (t *) in C.
In the case of incRef, the argument has type IORef Int because incRef only
applies to locations that contain an Int.

So far I have explained how to build big actions by combining smaller ones
together — but how does an action ever actually get performed? In Haskell,
the whole program defines a single IO action, called main. To run the program
is to perform the action main. For example, here is a complete program:

main :: IO ()

main = do { hPutStr stdout "Hello"

; hPutStr stdout " world\n" }

This program is a sequential program, because the do-notation combines IO

actions in sequence. To construct a concurrent program we need one more
primitive, forkIO:

forkIO :: IO a -> IO ThreadId

The function forkIO, which is built into Haskell, takes an IO action as its
argument, and spawns it as a concurrent Haskell thread. Once created, it is run
concurrently with all the other Haskell threads, by the Haskell runtime system.
For example, suppose we modified our main program thus7:

main :: IO ()

main = do { forkIO (hPutStr stdout "Hello")

; hPutStr stdout " world\n" }

6The IO type indicates the possibility of side effects, not the certainty!
7In the first line of main, we could instead have written tid <- forkIO (hPutStr ...),

to bind the ThreadId returned by forkIO to tid. However, since we do not use the returned
ThreadId, we are free to discard it by omitting the “tid <-” part.

6

Now the two hPutStr actions would run concurrently. Which of them would
“win” (by printing its string first) is unspecified. Haskell threads spawned by
forkIO are extremely lightweight: they occupy a few hundred bytes of memory,
and it is perfectly reasonable for a single program to spawn thousands of them.

Gentle reader, you may by now be feeling that Haskell is a very clumsy and
verbose language. After all, our three-line definition of incRef accomplishes
no more than x++ does in C! Indeed, in Haskell side effects are extremely ex-
plicit and somewhat verbose. However, remember first that Haskell is primarily
a functional language. Most programs are written in the functional core of
Haskell, which is rich, expressive, and concise. Haskell thereby gently encour-
ages you to write programs that make sparing use of side effects.

Second, notice that being explicit about side effects reveals a good deal of useful
information. Consider two functions:

f :: Int -> Int

g :: Int -> IO Int

From looking only at their types we can see that f is a pure function: it has
no side effects. Given a particular Int, say 42, the call (f 42) will return the
same value every time it is called. In contrast, g has side effects, and this is
apparent in its type. Each time g is performed it may give a different result —
for example it may read from stdin, or modify a mutable variable — even if its
argument is the same every time. This ability to make side effects explicit will
prove very useful in what follows.

Lastly, actions are first-class values: they may be passed as arguments as well
as returned as results. For example, here is the definition of a (simplified) for

loop function, written entirely in Haskell rather than being built in:

nTimes :: Int -> IO () -> IO ()

nTimes 0 do_this = return ()

nTimes n do_this = do { do_this; nTimes (n-1) do_this }

This recursive function takes an Int saying how many times to loop, and an ac-
tion do_this; it returns an action that, when performed, performs the do_this

action n times. Here is an example of a use of nTimes to print “Hello” 10 times:

main = nTimes 10 (hPutStr stdout "Hello\n")

In effect, by treating actions as first-class values, Haskell supports user-defined
control structures.

This chapter is not the place for a full introduction to Haskell, or even to side
effects in Haskell. A good starting point for further reading is the tutorial
“Tackling the awkward squad” [9].

3.2 Transactions in Haskell

Now we can return to our transfer function. Here is its code:

7

transfer :: Account -> Account -> Int -> IO ()

-- Transfer ’amount’ from account ’from’ to account ’to’

transfer from to amount

= atomically (do { deposit to amount

; withdraw from amount })

The inner do-block should by now be fairly self-explanatory: we call deposit
to deposit amount in to, and withdraw to withdraw amount from account from.
We will write these auxiliary functions in a moment, but first look at the call
to atomically. It takes an action as its argument, and performs it atomically.
More precisely, it makes two guarantees:

Atomicity: the effects of atomically act become visible to another thread
all at once. This ensures that no other thread can see a state in which
money has been deposited in to but not yet withdrawn from from.

Isolation: during a call atomically act, the action act is completely unaf-
fected by other threads. It is as if act takes a snapshot of the state of the
world when it begins running, and then executes against that snapshot.

Here is a simple execution model for atomically. Suppose there is a single,
global lock. Then atomically act grabs the lock, performs the action act,
and releases the lock. This implementation brutally ensures that no two atomic
blocks can be executed simultaneously, and thereby ensures atomicity.

There are two problems with this model. First, it does not ensure isolation
at all: while one thread is accessing an IORef inside an atomic block (holding
the Global Lock), there is nothing to stop another thread writing the same
IORef directly (i.e. outside atomically, without holding the Global Lock),
thereby destroying the isolation guarantee. Second, performance is dreadful,
because every atomic block would be serialised even if no actual interference
was possible.

I will discuss the second problem shortly, in Section 3.3. Meanwhile, the first
objection is easily addressed with the type system. We give atomically the
following type:

atomically :: STM a -> IO a

The argument of atomically is an action of type STM a. An STM action is like
an IO action, in that it can have side effects, but the range of side effects for STM
actions is much smaller. The main thing you can do in an STM action is read
or write a transactional variable, of type (TVar a), much as we could read or
write IORefs in an IO action8.

8The nomenclature is inconsistent here: it would be more consistent to use either TVar and
IOVar, or TRef and IORef. But it would be disruptive to change at this stage; for better or
worse we have TVar and IORef.

8

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

STM actions can be composed together with the same do-notation as IO actions
— the do-notation is overloaded to work on both types, as is return9. Here,
for example, is the code for withdraw:

type Account = TVar Int

withdraw :: Account -> Int -> STM ()

withdraw acc amount

= do { bal <- readTVar acc

; writeTVar acc (bal - amount) }

We represent an Account by a transactional variable containing an Int for the
account balance. Then withdraw is an STM action that decrements the balance
in the account by amount.

To complete the definition of transfer we can define deposit in terms of
withdraw:

deposit :: Account -> Int -> STM ()

deposit acc amount = withdraw acc (- amount)

Notice that, transfer ultimately performs four primitive read/write actions: a
read and then write on account to, followed by a read and then write on account
from. These four actions execute atomically, and that meets the specification
given at the start of Section 2.

The type system neatly prevents us from reading or writing a TVar outside of a
transaction. For example, suppose we tried this:

bad :: Account -> IO ()

bad acc = do { hPutStr stdout "Withdrawing..."

; withdraw acc 10 }

This program is rejected because the hPutStr is an IO action, while the
withdraw is an STM action, and the two cannot be combined in a single do

block. If we wrap a call to atomically around the withdraw, all is well:

good :: Account -> IO ()

good acc = do { hPutStr stdout "Withdrawing..."

; atomically (withdraw acc 10) }

9This overloading of do-notation and return is not an ad-hoc trick to support IO and
STM. Rather, IO and STM are both examples of a common pattern, called a monad [15], and
the overloading is achieved by expressing that common pattern using Haskell’s very general
type-class mechanism [16, 10].

9

3.3 Implementing transactional memory

The guarantees of atomicity and isolation that I described earlier should be all
that a programmer needs in order to use STM. Even so, I often find it helpful
to have a reasonable implementation model to guide my intuitions, and I will
sketch one such implementation in this section. But remember that this is just
one possible implementation. One of the beauties of the STM abstraction is
that it presents a small, clean interface that can be implemented in a variety of
ways, some simple and some sophisticated.

One particularly attractive implementation is well established in the database
world, namely optimistic execution. When (atomically act) is performed, a
thread-local transaction log is allocated, initially empty. Then the action act

is performed, without taking any locks at all. While performing act, each call
to writeTVar writes the address of the TVar and its new value into the log; it
does not write to the TVar itself. Each call to readTVar first searches the log
(in case the TVar was written by an earlier call to writeTVar); if no such record
is found, the value is read from the TVar itself, and the TVar and value read
are recorded in the log. In the meantime, other threads might be running their
own atomic blocks, reading and writing TVars like crazy.

When the action act is finished, the implementation first validates the log and,
if validation is successful, commits the log. The validation step examines each
readTVar recorded in the log, and checks that the value in the log matches the
value currently in the real TVar. If so, validation succeeds, and the commit step
takes all the writes recorded in the log and writes them into the real TVars.

These steps are performed truly indivisibly: the implementation disables inter-
rupts, or uses locks or compare-and-swap instructions — whatever is necessary
to ensure that validation and commit are perceived by other threads as com-
pletely indivisible. All of this is handled by the implementation, however, and
the programmer does not need to know or care how it is done.

What if validation fails? Then the transaction has had an inconsistent view of
memory. So we abort the transaction, re-initialise the log, and run act all over
again. This process is called re-execution. Since none of act’s writes have been
committed to memory, it is perfectly safe to run it again. However, notice that
it is crucial that act contains no effects other than reads and writes on TVars.
For example, consider

atomically (do { x <- readTVar xv

; y <- readTVar yv

; if x>y then launchMissiles

else return () })

where launchMissiles :: IO () causes serious international side-effects.
Since the atomic block is executed without taking locks, it might have an in-
consistent view of memory if other threads are concurrently modifying xv and
yv. If that happens, it would be a mistake to launch the missiles, and only then

10

discover that validation fails so the transaction should be re-run. Fortunately,
the type system prevents us running IO actions inside STM actions, so the above
fragment would be rejected by the type checker. This is another big advantage
of distinguishing the types of IO and STM actions.

3.4 Blocking and choice

Atomic blocks as we have introduced them so far are utterly inadequate to
coordinate concurrent programs. They lack two key facilities: blocking and
choice. In this section I’ll describe how the basic STM interface is elaborated
to include them in a fully-modular way.

Suppose that a thread should block if it attempts to overdraw an account (i.e.
withdraw more than the current balance). Situations like this are common in
concurrent programs: for example, a thread should block if it reads from an
empty buffer, or when it waits for an event. We achieve this in STM by adding
the single function retry, whose type is

retry :: STM a

Here is a modified version of withdraw that blocks if the balance would go
negative:

limitedWithdraw :: Account -> Int -> STM ()

limitedWithdraw acc amount

= do { bal <- readTVar acc

; if amount > 0 && amount > bal

then retry

else writeTVar acc (bal - amount) }

The semantics of retry are simple: if a retry action is performed, the current
transaction is abandoned and retried at some later time. It would be correct to
retry the transaction immediately, but it would also be inefficient: the state of
the account will probably be unchanged, so the transaction will again hit the
retry. An efficient implementation would instead block the thread until some
other thread writes to acc. How does the implementation know to wait on acc?
Because the transaction read acc on the way to the retry, and that fact is
conveniently recorded in the transaction log.

The conditional in limitedWithdraw has a very common pattern: check that a
boolean condition is satisfied and, if not, retry. This pattern is easy to abstract
as a function, check:

check :: Bool -> STM ()

check True = return ()

check False = retry

Now we can use check to re-express limitedWithdraw a little more neatly:

11

atomically :: STM a -> IO a

retry :: STM a

orElse :: STM a -> STM a -> STM a

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

Figure 1: The key operations of STM Haskell

limitedWithdraw :: Account -> Int -> STM ()

limitedWithdraw acc amount

= do { bal <- readTVar acc

; check (amount <= 0 || amount <= bal)

; writeTVar acc (bal - amount) }

We now turn our attention to choice. Suppose you want to withdraw money
from account A if it has enough money, but if not then withdraw it from account
B? For that, we need the ability to choose an alternative action if the first one
retries. To support choice, STM Haskell has one further primitive action, called
orElse, whose type is

orElse :: STM a -> STM a -> STM a

Like atomically itself, orElse takes actions as its arguments, and glues them
together to make a bigger action. Its semantics are as follows. The action
(orElse a1 a2) first performs a1; if a1 retries (i.e. calls retry), it tries a2

instead; if a2 also retries, the whole action retries. It may be easier to see how
orElse is used:

limitedWithdraw2 :: Account -> Account -> Int -> STM ()

-- (limitedWithdraw2 acc1 acc2 amt) withdraws amt from acc1,

-- if acc1 has enough money, otherwise from acc2.

-- If neither has enough, it retries.

limitedWithdraw2 acc1 acc2 amt

= orElse (limitedWithdraw acc1 amt) (limitedWithdraw acc2 amt)

Since the result of orElse is itself an STM action, you can feed it to another call
to orElse and so choose among an arbitrary number of alternatives.

3.5 Summary so far

In this section I have introduced all the key transactional memory operations
supported by STM Haskell. They are summarised in Figure 1. This figure
includes one operation that has not so far arisen: newTVar is the way in which
you can create new TVar cells, and we will use it in the following section.

12

4 The Santa Claus problem

I want to show you a complete, runnable concurrent program using STM. A
well-known example is the so-called Santa Claus problem10, originally due to
Trono [14]:

Santa repeatedly sleeps until wakened by either all of his nine rein-
deer, back from their holidays, or by a group of three of his ten elves.
If awakened by the reindeer, he harnesses each of them to his sleigh,
delivers toys with them and finally unharnesses them (allowing them
to go off on holiday). If awakened by a group of elves, he shows each
of the group into his study, consults with them on toy R&D and
finally shows them each out (allowing them to go back to work).
Santa should give priority to the reindeer in the case that there is
both a group of elves and a group of reindeer waiting.

Using a well-known example allows you to directly compare my solution with
well-described solutions in other languages. In particular, Trono’s paper gives
a semaphore-based solution which is partially correct; Ben-Ari gives a solution
in Ada95 and in Ada [1]; Benton gives a solution in Polyphonic C# [2].

4.1 Reindeer and elves

The basic idea of the STM Haskell implementation is this. Santa makes one
“Group” for the elves and one for the reindeer. Each elf (or reindeer) tries to join
its Group. If it succeeds, it gets two “Gates” in return. The first Gate allows
Santa to control when the elf can enter the study, and also lets Santa know
when they are all inside. Similarly, the second Gate controls the elves leaving
the study. Santa, for his part, waits for either of his two Groups to be ready, and
then uses that Group’s Gates to marshal his helpers (elves or reindeer) through
their task. Thus the helpers spend their lives in an infinite loop: try to join
a group, move through the gates under Santa’s control, and then delay for a
random interval before trying to join a group again.

Rendering this informal description in Haskell gives the following code for an
elf11:

elf1 :: Group -> Int -> IO ()

elf1 group elf_id = do { (in_gate, out_gate) <- joinGroup group

; passGate in_gate

; meetInStudy elf_id

; passGate out_gate }

10My choice was influenced by the fact that I am writing these words on 22 December.
11I have given this function a suffix “1” because it only deals with one iteration of the elf,

whereas in reality the elves re-join the fun when they are done with their task. We will define
elf in Section 4.3.

13

The elf is passed its Group, and an Int that specifies its elfin identity. This
identity is used only in the call to meetInStudy, which simply prints out a
message to say what is happening12

meetInStudy :: Int -> IO ()

meetInStudy id = putStr ("Elf " ++ show id ++ " meeting in the study\n")

The elf calls joinGroup to join its group, and passGate to pass through each
of the gates:

joinGroup :: Group -> IO (Gate, Gate)

passGate :: Gate -> IO ()

The code for reindeer is identical, except that reindeer deliver toys rather than
meeting in the study:

deliverToys :: Int -> IO ()

deliverToys id = putStr ("Reindeer " ++ show id ++ " delivering toys\n")

Since IO actions are first-class, we can abstract over the common pattern, like
this:

helper1 :: Group -> IO () -> IO ()

helper1 group do_task = do { (in_gate, out_gate) <- joinGroup group

; passGate in_gate

; do_task

; passGate out_gate }

The second argument of helper1 is an IO action that is the helper’s task, which
the helper performs between the two passGate calls. Now we can specialise
helper1 to be either an elf or a reindeer:

elf1, reindeer1 :: Group -> Int -> IO ()

elf1 gp id = helper1 gp (meetInStudy id)

reindeer1 gp id = helper1 gp (deliverToys id)

4.2 Gates and Groups

The first abstraction is a Gate, which supports the following interface:

newGate :: Int -> STM Gate

passGate :: Gate -> IO ()

operateGate :: Gate -> IO ()

A Gate has a fixed capacity, n, which we specify when we make a new Gate, and a
mutable remaining capacity. This remaining capacity is decremented whenever
a helper calls passGate to go through the gate; if the remaining capacity is
zero, passGate blocks. A Gate is created with zero remaining capacity, so that

12The function putStr is a library function that calls hPutStr stdout.

14

no helpers can pass through it. Santa opens the gate with operateGate, which
sets its remaining capacity back to n.

Here, then, is a possible implementation of a Gate:

data Gate = MkGate Int (TVar Int)

newGate :: Int -> STM Gate

newGate n = do { tv <- newTVar 0; return (MkGate n tv) }

passGate :: Gate -> IO ()

passGate (MkGate n tv)

= atomically (do { n_left <- readTVar tv

; check (n_left > 0)

; writeTVar tv (n_left-1) })

operateGate :: Gate -> IO ()

operateGate (MkGate n tv)

= do { atomically (writeTVar tv n)

; atomically (do { n_left <- readTVar tv

; check (n_left == 0) }) }

The first line declares Gate to be a new data type, with a single data constructor
MkGate13. The constructor has two fields : an Int giving the gate capacity, and
a TVar whose contents says how many helpers can go through the gate before
it closes. If the TVar contains zero, the gate is closed.

The function newGate makes a new Gate by allocating a TVar, and building a
Gate value by calling the MkGate constructor. Dually, passGate uses pattern-
matching to take apart the MkGate constructor; then it decrements the contents
of the TVar, using check to ensure there is still capacity in the gate, as we
did with withdraw (Section 3.4). Finally, operateGate first opens the Gate

by writing its full capacity into the TVar, and then waits for the TVar to be
decremented to zero.

A Group has the following interface:

newGroup :: Int -> IO Group

joinGroup :: Group -> IO (Gate,Gate)

awaitGroup :: Group -> STM (Gate,Gate)

Again, a Group is created empty, with a specified capacity. An elf may join
a group by calling joinGroup, a call that blocks if the group is full. Santa
calls awaitGroup to wait for the group to be full; when it is full he gets the
Group’s gates, and the Group is immediately re-initialised with fresh Gates, so
that another group of eager elves can start assembling.

Here is a possible implementation:

13A data type declaration is not unlike a C struct declaration, with MkGate being the
structure tag.

15

data Group = MkGroup Int (TVar (Int, Gate, Gate))

newGroup n = atomically (do { g1 <- newGate n; g2 <- newGate n

; tv <- newTVar (n, g1, g2)

; return (MkGroup n tv) })

Again, Group is declared as a fresh data type, with constructor MkGroup and
two fields: the Group’s full capacity, and a TVar containing its number of empty
slots and its two Gates. Creating a new Group is a matter of creating new Gates,
initialising a new TVar, and returning a structure built with MkGroup.

The implementations of joinGroup and awaitGroup are now more or less de-
termined by these data structures:

joinGroup (MkGroup n tv)

= atomically (do { (n_left, g1, g2) <- readTVar tv

; check (n_left > 0)

; writeTVar tv (n_left-1, g1, g2)

; return (g1,g2) })

awaitGroup (MkGroup n tv)

= do { (n_left, g1, g2) <- readTVar tv

; check (n_left == 0)

; new_g1 <- newGate n; new_g2 <- newGate n

; writeTVar tv (n,new_g1,new_g2)

; return (g1,g2) }

Notice that awaitGroup makes new gates when it re-initialises the Group. This
ensures that a new group can assemble while the old one is still talking to Santa
in the study, with no danger of an elf from the new group overtaking a sleepy
elf from the old one.

Reviewing this section, you may notice that I have given some of the Group

and Gate operations IO types (e.g. newGroup, joinGroup), and some STM types
(e.g. newGate, awaitGroup). How did I make these choices? For example,
newGroup has an IO type, which means that I can never call it from within an
STM action. But this is merely a matter of convenience: I could instead have
given newGroup an STM type, by omitting the atomically in its definition. In
exchange, I would have had to write atomically (newGroup n) at each call
site, rather than merely newGroup n. The merit of giving newGate an STM type
is that it is more composable, a generality that newGroup did not need in this
program. In contrast, I wanted to call newGate inside newGroup, and so I gave
newGate an STM type.

In general, when designing a library, you should give the functions STM types
wherever possible. You can think of STM actions as Lego bricks that can be
glued together, using do {...}, retry, and orElse, to make bigger STM actions.
However, as soon as you wrap a block in atomically, making it an IO type, it
can no longer be combined atomically with other actions. There is a good reason

16

for that: a value of IO type can perform arbitrary, irrevocable input/output
(such as launchMissiles).

It is therefore good library design to export STM actions (rather than IO actions)
whenever possible, because they are composable; their type advertises that they
do no irrevocable effects. The library client can readily get from STM to IO (using
atomically), but not vice versa.

Sometimes, however, it is essential to use an IO action. Look at operateGate.
The two calls to atomically cannot be combined into one, because the first
has an externally-visible side effect (opening the gate), while the second blocks
until all the elves have woken up and gone through it. So operateGate must
have an IO type.

4.3 The main program

We will first implement the outer structure of the program, although we have
not yet implemented Santa himself. Here it is.

main = do { elf_group <- newGroup 3

; sequence_ [elf elf_group n | n <- [1..10]]

; rein_group <- newGroup 9

; sequence_ [reindeer rein_group n | n <- [1..9]]

; forever (santa elf_group rein_group) }

The first line creates a Group for the elves with capacity 3. The second line is
more mysterious: it uses a so-called list comprehension to create a list of IO ac-
tions and calls sequence_ to execute them in sequence. The list comprehension
[e|x<-xs] is read “the list of all e where x is drawn from the list xs”. So the
argument to sequence_ is the list

[elf elf_group 1, elf elf_group 2, ..., elf elf_group 10]

Each of these calls yields an IO action that spawns an elf thread. The function
sequence_ takes a list of IO actions and returns an action that, when performed,
runs each of the actions in the list in order14:

sequence_ :: [IO a] -> IO ()

An elf is built from elf1, but with two differences. First, we want the elf to
loop indefinitely, and second, we want it to run in a separate thread:

14The type [IO a] means “a list of values of type IO a”. You may also wonder about the
underscore in the name sequence : it’s because there is a related function sequence whose
type is [IO a] -> IO [a], that gathers the results of the argument actions into a list. Both
sequence and sequence are defined in the Prelude library, which is imported by default.

17

elf :: Group -> Int -> IO ThreadId

elf gp id = forkIO (forever (do { elf1 gp id; randomDelay }))

The forkIO part spawns its argument as a separate Haskell thread (Section 3.1).
In turn, forkIO’s argument is a call to forever, which runs its argument re-
peatedly (compare the definition of nTimes in Section 3.1):

forever :: IO () -> IO ()

-- Repeatedly perform the action

forever act = do { act; forever act }

Finally the expression (elf1 gp id) is an IO action, and we want to repeat
that action indefinitely, followed each time by a random delay:

randomDelay :: IO ()

-- Delay for a random time between 1 and 1,000,000 microseconds

randomDelay = do { waitTime <- getStdRandom (randomR (1, 1000000))

; threadDelay waitTime }

The rest of the main program should be self-explanatory. We make nine reindeer
in the same way that we made ten elves, except that we call reindeer instead
of elf:

reindeer :: Group -> Int -> IO ThreadId

reindeer gp id = forkIO (forever (do { reindeer1 gp id; randomDelay }))

The code for main finishes by re-using forever to run santa repeatedly. All
that remains is to implement Santa himself.

4.4 Implementing Santa

Santa is the most interesting participant of this little drama, because he makes
choices. He must wait until there is either a group of reindeer waiting, or a
group of elves. Once he has made his choice of which group to attend to, he
must take them through their task. Here is his code:

santa :: Group -> Group -> IO ()

santa elf_gp rein_gp

= do { putStr "----------\n"

; (task, (in_gate, out_gate))

<- atomically (orElse

(chooseGroup rein_gp "deliver toys")

(chooseGroup elf_gp "meet in my study"))

; putStr ("Ho! Ho! Ho! let’s " ++ task ++ "\n")

; operateGate in_gate

-- Now the helpers do their task

; operateGate out_gate }

18

where

chooseGroup :: Group -> String -> STM (String, (Gate,Gate))

chooseGroup gp task = do { gates <- awaitGroup gp

; return (task, gates) }

The choice is made by the orElse, which first attempts to choose the rein-
deer (thereby giving them priority), and otherwise choosing the elves. The
chooseGroup function does an awaitGroup call on the appropriate group, and
returns a pair consisting of a string indicating the task (delivering toys or meet-
ing in the study) and the gates that Santa must operate to take the group
through the task. Once the choice is made, Santa prints out a message and
operates the two gates in sequence.

This implementation works fine, but we will also explore an alternative, more
general version, because santa demonstrates a very common programming pat-
tern. The pattern is this: a thread (Santa in this case) makes a choice in one
atomic transaction, followed by one or more further consequential transactions.
Another typical example might be: take a message from one of several message
queues, act on the message, and repeat. In this case, the consequential action
was very similar for elves and reindeer — in both cases, Santa had to print a
message and operate two gates. But that would not work if Santa should do
very different things for elves and reindeer. One approach would be to return
a boolean indicating which was chosen, and dispatch on that boolean after the
choice; but that becomes inconvenient as more alternatives are added. Here is
another approach that works better:

santa :: Group -> Group -> IO ()

santa elf_gp rein_gp

= do { putStr "----------\n"

; choose [(awaitGroup rein_gp, run "deliver toys"),

(awaitGroup elf_gp, run "meet in my study")] }

where

run :: String -> (Gate,Gate) -> IO ()

run task (in_gate,out_gate)

= do { putStr ("Ho! Ho! Ho! let’s " ++ task ++ "\n")

; operateGate in_gate

; operateGate out_gate }

The function choose is like a guarded command: it takes a list of pairs, waits
until the first component of a pair is ready to “fire”, and then executes the
second component. So choose has this type15:

choose :: [(STM a, a -> IO ())] -> IO ()

The guard is an STM action delivering a value of type a; when the STM action
is ready (that is, does not retry), choose can pass the value to the second

15In Haskell, the type [ty] means a list whose elements have type ty. In this case choose’s
argument is a list of pairs, written (ty1,ty2); the first component of the pair has type STM a,
while the second is a function with type a->IO ().

19

component, which must therefore be a function expecting a value of type a.
With this in mind, santa should be easy reading. He uses awaitGroup to
wait for a ready Group; the choose function gets the pair of Gates returned by
awaitGroup and passes it to the run function. The latter operates the two gates
in succession – recall that operateGate blocks until all the elves (or reindeer)
have gone through the gate.

The code for choose is brief, but a little mind-bending:

choose :: [(STM a, a -> IO ())] -> IO ()

choose choices = do { act <- atomically (foldr1 orElse actions)

; act }

where

actions :: [STM (IO ())]

actions = [do { val <- guard; return (rhs val) }

| (guard, rhs) <- choices]

First, it forms a list, actions, of STM actions, which it then combines with
orElse. (The call foldr1 ⊕ [x1, . . . , xn] returns x1 ⊕ x2 ⊕ . . . ⊕ xn.) Each
of these STM actions itself returns an IO action, namely the thing to be done
when the choice is made. That is why each action in the list has the cool type
STM (IO ()). The code for choose first makes an atomic choice among the
list of alternatives, getting the action act, with type IO () in return; and then
performs the action act. The list actions is defined in the where clause by
taking each pair (guard,rhs) from the list choices, running the guard (an
STM action), and returning the IO action gotten by applying the rhs to the
guard’s return value.

4.5 Compiling and running the program

I have presented all the code for this example. If you simply add the appropriate
import statements at the top, you should be good to go16:

module Main where

import Control.Concurrent.STM

import Control.Concurrent

import System.Random

To compile the code, use the Glasgow Haskell Compiler, GHC17:

$ ghc Santa.hs -package stm -o santa

Finally you can run the program:

$./santa

16You can get the code online at http://research.microsoft.com/∼simonpj/papers/stm/

Santa.hs.gz
17GHC is available for free at http://haskell.org/ghc

20

Ho! Ho! Ho! let’s deliver toys

Reindeer 8 delivering toys

Reindeer 7 delivering toys

Reindeer 6 delivering toys

Reindeer 5 delivering toys

Reindeer 4 delivering toys

Reindeer 3 delivering toys

Reindeer 2 delivering toys

Reindeer 1 delivering toys

Reindeer 9 delivering toys

Ho! Ho! Ho! let’s meet in my study

Elf 3 meeting in the study

Elf 2 meeting in the study

Elf 1 meeting in the study

...and so on...

5 Reflections on Haskell

Haskell is, first and foremost, a functional language. Nevertheless, I think that
it is also the world’s most beautiful imperative language. Considered as an
imperative language, Haskell’s unusual features are that

• Actions (which have effects) are rigorously distinguished from pure values
by the type system.

• Actions are first-class values. They can be passed to functions, returned
as results, formed into lists, and so on, all without causing any side effects.

Using actions as first-class values, the programmer can define application-specific
control structures, rather than make do with the ones provided by the language
designer. For example, nTimes is a simple for loop, and choose implements a
sort of guarded command. We also saw other applications of actions as values.
In the main program we used Haskell’s rich expression language (in this case list
comprehensions) to generate a list of actions, which we then performed in order,
using sequence_. Earlier, when defining helper1, we improved modularity by
abstracting out an action from a chunk of code. To illustrate these points I
have perhaps over-used Haskell’s abstraction power in the Santa code, which is
a very small program. For large programs, though, it is hard to overstate the
importance of actions as values.

On the other hand, I have under-played other aspects of Haskell — higher
order functions, lazy evaluation, data types, polymorphism, type classes, and
so on — because of the focus on concurrency. Not many Haskell programs
are as imperative as this one! You can find a great deal of information about

21

Haskell at http://haskell.org, including books, tutorials, Haskell compilers
and interpreters, Haskell libraries, mailing lists and so on.

6 Conclusion

My main goal is to persuade you that you can write programs in a fundamentally
more modular way using STM than you can with locks and condition variables.
First, though, note that transactional memory allows us to completely avoid
many of the standard problems that plague lock-based concurrent programs
(Section 2.2). None of these problems arise in STM Haskell. The type system
prevents you reading or writing a TVar outside an atomic block, and since there
are no programmer-visible locks, the questions of which locks to take, and in
which order, simply do not arise. Other benefits of STM, which I lack the
space to describe here, include freedom from lost wake-ups and the treatment
of exceptions and error recovery.

However, as we also discussed in Section 2.2, the worst problem with lock-based
programming is that locks do not compose. In contrast, any function with an
STM type in Haskell can be composed, using sequencing or choice, with any other
function with an STM type to make a new function of STM type. Furthermore,
the compound function will guarantee all the same atomicity properties that the
individual functions did. In particular, blocking (retry) and choice (orElse),
which are fundamentally non-modular when expressed using locks, are fully
modular in STM. For example, consider this transaction, which uses functions
we defined in Section 3.4.

atomically (do { limitedWithdraw a1 10

; limitedWithdraw2 a2 a3 20 })

This transaction blocks until a1 contains at least 10 units, and either a2 or
a3 has 20 units. However, that complicated blocking condition is not written
explicitly by the programmer, and indeed if the limitedWithdraw functions are
implemented in a sophisticated library the programmer might have no idea what
their blocking conditions are. STM is modular: small programs can be glued
together to make larger programs without exposing their implementations.

There are many aspects of transactional memory that I have not covered in this
brief overview, including important topics such as nested transactions, excep-
tions, progress, starvation, and invariants. You can find many of them discussed
in papers about STM Haskell [4, 5, 3].

Transactional memory is a particularly good “fit” for Haskell. In STM, the im-
plementation potentially must track every memory load and store, but a Haskell
STM need only track TVar operations, and these form only a tiny fraction of
all the memory loads and stores executed by a Haskell program. Furthermore,
the treatment of actions as first-class values, and the rich type system, allow
us to offer strong static guarantees without extending the language in any way.

22

However, there is nothing to stop the adoption of transactional memory in main-
stream imperative languages, although it may be less elegant and require more
language support. Indeed doing so is a hot research topic: Larus and Rajwar
give a comprehensive summary [6].

Using STM is like using a high-level language instead of assembly code – you
can still write buggy programs, but many tricky bugs simply cannot occur, and
it is much easier to focus attention on the higher-level aspects of the program.
There is, alas, no silver bullet that will make concurrent programs easy to write.
But STM looks like a promising step forward, and one that will help you write
beautiful code.

Acknowledgements

I would like to thank those who helped me to improve the chapter with their
feedback: Bo Adler, Justin Bailey, Matthew Brecknell, Paul Brown, Conal El-
liot, Tony Finch, Kathleen Fisher, Greg Fitzgerald, Benjamin Franksen, Jeremy
Gibbons, Tim Harris, Robert Helgesson, Dean Herington, David House, Brian
Hulley, Dale Jordan, Marnix Klooster, Chris Kuklewicz, Evan Martin, Greg
Meredith, Neil Mitchell, Jun Mukai, Michal Palka, Zhang Ruochen, Sebas-
tian Sylvan, Johan Tibell, Aruthur van Leeuwen, Wim Vanderbauwhede, David
Wakeling, Dan Wang, Eric Willigers Peter Wasilko, Gaal Yahas, and Brian Zim-
mer. My special thanks go to Kirsten Chevalier, Andy Oram, and Greg Wilson,
for their particularly detailed reviews.

References

[1] Mordechai Ben-Ari. How to solve the Santa Claus problem. Concurrency:
Practice and Experience, 10(6):485–496, 1998.

[2] Nick Benton. Jingle bells: Solving the Santa Claus problem in Polyphonic
C#. Technical report, Microsoft Research, 2003.

[3] Anthony Discolo, Tim Harris, Simon Marlow, Simon Peyton Jones, and
Satnam Singh. Lock-free data structures using STMs in Haskell. In
Eighth International Symposium on Functional and Logic Programming
(FLOPS’06), April 2006.

[4] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy.
Composable memory transactions. In ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP’05), June 2005.

[5] Tim Harris and Simon Peyton Jones. Transactional memory with data
invariants. In First ACM SIGPLAN Workshop on Languages, Compilers,

23

and Hardware Support for Transactional Computing (TRANSACT’06), Ot-
towa, June 2006. ACM.

[6] James Larus and Ravi Rajwar. Transactional memory. Morgan & Claypool,
2006.

[7] Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–42,
May 2006.

[8] J. K. Ousterhout. Why threads are a bad idea (for most purposes), January
1996. Invited Talk, USENIX Technical Conference.

[9] Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. In CAR
Hoare, M Broy, and R Steinbrueggen, editors, Engineering Theories of
Software Construction, Marktoberdorf Summer School 2000, NATO ASI
Series, pages 47–96. IOS Press, 2001.

[10] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an ex-
ploration of the design space. In J Launchbury, editor, Haskell workshop,
Amsterdam, 1997.

[11] Herb Sutter. The free lunch is over: a fundamental turn toward concurrency
in software. Dr. Dobb’s Journal, March 2005.

[12] Herb Sutter and James Larus. Sofware and the concurrency revolution.
ACM Queue, 3, September 2005.

[13] SJ Thompson. Haskell: the craft of functional programming. Addison
Wesley, 1999.

[14] JA Trono. A new exercise in concurrency. SIGCSE Bulletin, 26:8–10, 1994.

[15] PL Wadler. The essence of functional programming. In 20th ACM Sym-
posium on Principles of Programming Languages (POPL’92), pages 1–14.
ACM, Albuquerque, January 1992.

[16] PL Wadler and S Blott. How to make ad-hoc polymorphism less ad hoc.
In Proc 16th ACM Symposium on Principles of Programming Languages,
Austin, Texas. ACM, January 1989.

24

