
LECTURE 21

NOVEMBER 3, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug–Nov 2015

Arrays in Haskell

Lists store a collection of elements

Accessing the i-th element takes i steps

Would be useful to access any element in constant time

Arrays in Haskell offer this feature

The module Data.Array has to be imported to use arrays

Arrays in Haskell

import Data.Array  
myArray :: Array Int Char

The indices of the array come from Int  
The values stored in the array come from Char

myArray = listArray (0,2) ['a','b','c']

Index 0 1 2

Value 'a' 'b' 'c'

Creating arrays: listArray

listArray ::  
 Ix i => (i,i) -> [e] -> Array i e

Ix is the class of all index types, those that can be used as
indices in arrays

If Ix a, x and y are of type a and x < y, then the range of
values between x and y is defined and finite

Creating arrays: listArray

The class Ix includes Int, Char, (Int,Int), (Int,Int,Char)
etc. but not Float or [Int]

The first argument of listArray specifies the smallest
and largest index of the array

The second argument is the list of values to be stored in
the array

Creating arrays: listArray

listArray (1,1) [100..199]  
array (1,1) [(1,100)]

listArray ('m','p') [0,2..]  
array ('m','p') [('m',0),('n',2),('o',4),('p',6)]

listArray ('b','a') [1..]  
array ('b','a') []

listArray (0,4) [100..]  
array (0,4) [(0,100),(1,101),(2,102),(3,103),(4,104)]

listArray (1,3) ['a','b']  
array (1,3) [(1,'a'),(2,'b'),(3,*** Exception:
(Array.!): undefined array element

Creating arrays: listArray

The value at index i of array arr is accessed using arr!i
(unlike !! for list access)

arr!i returns an exception if no value has been defined
for index i

myArr = listArray (1,3) ['a','b','c']

myArr ! 4  
*** Exception: Ix{Integer}.index: Index (4) out of
range ((1,3))

Creating arrays: listArray

Haskell arrays are lazy: the whole array need not be
defined before some elements are accessed

For example, we can fill in locations 0 and 1 of arr, and
define arr!i in terms of arr!(i-1) and arr!(i-2), for i
>= 2

listArray takes time proportional to the range of indices

First example: Fibonacci

Recall the function fib, which computes the n-th
Fibonacci number F(n)

fib 0 = 1  
fib 1 = 1  
fib n = fib (n-1) + fib (n-2)

Lots of recursive calls, computing the same value over
and over again

Computes F(n) in unary, in effect

Fibonacci using arrays

import Data.Array  
fib :: Int -> Integer  
fib n = fibA!n  
 where  
 fibA :: Array Int Integer  
 fibA = listArray (0,n) [f i | i <-[0..n]]  
 f 0 = 1  
 f 1 = 1  
 f i = fibA!(i-1) + fibA!(i-2)

The fibA array is used even before it is completely defined, thanks
to Haskell's laziness

Works in O(n) time

Creating arrays: array

array :: Ix i => (i, i) -> [(i, e)] -> Array i e  
Creates an array from an associative list

The associative list need not be in ascending order of
indices 
myArray = array (0,2)  
 [(1,"one"),(0,"zero"),(2,"two")]

The associative list may also omit elements 
myArray = array (0,2) [(0,"abc"), (2,"xyz")]

array also takes time proportional to the range of indices

More on indices

Any type a belonging to the type class Ix must provide
the functions 
range :: (a,a) -> [a]  
index :: (a,a) -> a -> Int  
inRange :: (a,a) -> a -> Bool  
rangeSize :: (a,a) -> Int

More on indices

range :: (a,a) -> [a]  
range gives the list of indices in the subrange defined by
the bounding pair

range (1,2) = [1,2]  
range ('m','p') = "mnop"  
range ('z','a') = ""

More on indices

index :: (a,a) -> a -> Int  
The position of a subscript in the subrange

index (-50,60) (-50) = 0  
index (-50,60) 35 = 85  
index ('m','p') 'o' = 2  
index ('m','p') 'a'  
 *** Exception: Ix{Char}.index: Index ('a')
out of range (('m','p'))

More on indices

inRange :: (a,a) -> a -> Bool  
Returns True if the given subscript lies in the range
defined by the bounding pair

inRange (-50,60) (-50) = True  
inRange (-50,60) 35 = True  
inRange ('m','p') 'o' = True  
inRange ('m','p') 'a' = False

More on indices

rangeSize :: (a,a) -> Int  
The size of the subrange defined by the bounding pair

rangeSize (-50,60) = 111  
rangeSize ('m','p') = 4  
rangeSize (50,0) = 0

Functions on arrays

(!) :: Ix i => Array i e -> i -> e  
The value at the given index in an array

bounds :: Ix i => Array i e -> (i,i)  
The bounds with which an array was constructed

indices :: Ix i => Array i e -> [i]  
The list of indices of an array in ascending order

Functions on arrays

elems :: Ix i => Array i e -> [e]  
The list of elements of an array in index order

assocs :: Ix i => Array i e -> [(i,e)]  
The list of associations of an array in index order

(//) :: Ix i => Array i e -> [(i,e)] -> Array i e 
Update the array using the association list provided

Second example: lcss

Given two strings str1 and str2, find the length of the
longest common subsequence of str1 and str2

lcss "agcat" "gact" = 3  
 – "gat" is the subsequence  
lcss "abracadabra" "bacarrat" = 6  
 – "bacara" is the subsequence

Second example: lcss
lcss "" _ = 0  
lcss _ "" = 0  
lcss (c:cs) (d:ds)  
 | c == d = 1 + lcss cs ds  
 | otherwise = max (lcss (c:cs) ds)  
 (lcss cs (d:ds))

lcss cs ds takes time >= 2n, when cs and ds are of length n

Similar problem to fib, same recursive call made multiple
times

Store the computed values for efficiency

lcss using arrays

We restate the recursive lcss in terms of indices

lcss :: String -> String -> Int  
lcss str1 str2 = lcss' 0 0  
 where  
 m = length str1  
 n = length str2  
 lcss' i j  
 | i >= m || j >= n = 0  
 | str1!!i == str2!!j = 1 + lcss' (i+1) (j+1)  
 | otherwise = max (lcss' i (j+1))  
 (lcss' (i+1) j)

lcss using arrays

lcss :: String -> String -> Int  
lcss str1 str2 = lcssA!(0,0)  
 where  
 m = length str1  
 n = length str2  
 lcssA = array ((0,0),(m,n))  
 [((i,j),f i j) | i <- [0..m],j <- [0..n]]  
 f i j  
 | i >= m || j >= n = 0  
 | str1!!i == str2!!j = 1 + lcssA!((i+1),(j+1))  
 | otherwise = max (lcssA ! (i,(j+1)))  
 (lcssA ! ((i+1),j))

lcss using arrays

lcss :: String -> String -> Int  
lcss str1 str2 = lcssA!(0,0)  
 where  
 m = length str1  
 n = length str2  
 lcssA = array ((0,0),(m,n))  
 [((i,j),f i j) | i <- [0..m],j <- [0..n]]

lcssA is a two-dimensional array. Indices are of type (Int,Int)

Drawback?? The repeated use of (!!) in accessing str1 and
str2

Solution? Turn the strings to arrays!

lcss using arrays
lcss :: String -> String -> Int  
lcss str1 str2 = lcssA!(0,0)  
 where  
 m = length str1  
 n = length str2  
 ar1 = listArray (0,m-1) str1  
 ar2 = listArray (0,n-1) str2  
 lcssA = array ((0,0),(m,n))  
 [((i,j),f i j) | i <- [0..m],j <- [0..n]]  
 f i j  
 | i >= m || j >= n = 0  
 | ar1!i == ar2!j = 1 + lcssA ! ((i+1),(j+1))  
 | otherwise = max (lcssA ! (i,(j+1)))  
 (lcssA ! ((i+1),j))

This program runs in time O(mn)

lcss using arrays

The first call to  
f i j stores the value
in lcssA!(i,j)

Subsequent calls
with the same values
of i and j return the
value from the array

Memoization:
important technique
in algorithm design

Call tree for m = n = 3

(0,0)

(0,1) (1,0)

(0,2) (1,1)

(0,3) (1,2)

(1,3) (2,2)

(2,3) (3,2)

(2,1)(1,2)

(2,2) (3,1)

(1,1) (2,0)

(2,1) (3,0)

Repeat calls, 
values are picked 
up from the array

Creating arrays: accumArray

accumArray  
 :: Ix i  
 => (e -> a -> e) – accumulating function 
 -> e – initial entry (at each index) 
 -> (i,i) – bounds of the array 
 -> [(i,a)] – association list 
 -> Array i e – array

Creating arrays: accumArray

accumArray (*) 1 ('a','d')  
 [('a',2),('b',3),('c',0),('a',2),('c',4)]  
array ('a','d') [('a',4),('b',3),('c',0),('d',1)]

accumArray (+) 0 (1,3)  
 [(1,1),(2,1),(2,1),(1,1),(3,1),(2,1)]  
array (1,3) [(1,2),(2,3),(3,1)]

accumArray (flip (:)) [] (1,3)  
 [(1,2),(2,3),(2,8),(1,6),(3,5),(2,4)]  
array (1,3) [(1,[6,2]),(2,[4,8,3]),(3,[5])]

Creating arrays: accumArray

accumArray  
 :: Ix i  
 => (e -> a -> e) -> e -> (i,i) -> [(i,a)]  
 -> Array i e

accumArray f e (l,u) list creates an array with indices
l..u, in time proportional to u-l, provided f can be
computed in constant time

Creating arrays: accumArray

For a particular i between l and u, if (i,a1), (i,a2), ...,
(i,an) are all the elements with index i appearing in
list, the value for i in the array is f (...(f (f e a1)
a2)...) an

The entry at index i thus accumulates (using f) all the ai
associated with i in list

Linear-time sort

Given a list of n integers, each between 0 and 9999, sort
the list

Easy to do with arrays

Count the number of occurrences of each j ∈ {0, ..., 9999}
in the list, storing in an array counts

Output count[j] copies of j, j ranging from 0 to 9999

Sorting with accumArray

[2,3,4,1,2,5,7,8,1,3,1]  
 
➾ zip [2,3,4,1,2,5,7,8,1,3,1] [1,1,1,1,1,1,1,...]  
= [(2,1),(3,1),(4,1),(1,1),(2,1),(5,1),(7,1),(8,1),
(1,1),(3,1),(1,1)]  
 
(repeat 1 = [1, 1, 1, 1,...]) 
 
➾ array (1,8) [(1,3),(2,2),(3,2),(4,1),(5,1),(6,0),
(7,1),(8,1)] – counts number of repetitions of each entry 
 

Sorting with accumArray

array (1,8) [(1,3),(2,2),(3,2),(4,1),(5,1),(6,0),(7,1),
(8,1)]  
 – counts number of repetitions of each entry  
 
➾ [(1,3),(2,2),(3,2),(4,1),(5,1),(6,0),(7,1),(8,1)]  
 
➾ replicate 3 1 ++ replicate 2 2 ++ replicate 2 3 ++
replicate 1 4 ++ replicate 1 5 ++ replicate 0 6 ++
replicate 1 7 ++ replicate 1 8  
= [1,1,1]++[2,2]++[3,3]++[4]++[5]++[]++[7]++[8]  
= [1,1,1,2,2,3,3,4,5,7,8]  

Sorting with accumArray

counts :: [Int] -> [(Int,Int)]  
counts xs = assocs ( 
 accumArray (+) 0 (l,u) (zip xs ones)  
)  
 where  
 ones = repeat 1  
 l = minimum xs  
 u = maximum xs

arraysort :: [Int] -> [Int]  
arraysort xs = concat [replicate n i | (i,n) <- ys]  
 where  
 ys = counts xs

Example: minout

Assuming that all entries in l are distinct and non-
negative numbers, find the minimum non-negative
number not in l

minout :: [Int] -> Int  
minout [3,1,2] = 0  
minout [1,5,3,0,2] = 4  
minout [11,5,3,0] = 1

Final example: minout

minout :: [Int] -> Int  
minout = minoutAux 0  
 where  
 minoutAux :: Int -> [Int] -> Int  
 minoutAux i l  
 | i `elem` l = minoutAux (i+1) l  
 | otherwise = i

This program takes O(N2) time, where N is the length l
(Why?)

Final example: minout

minout :: [Int] -> Int  
minout l = minout' 0 (sort l)  
 where  
 minout' n [] = n  
 minout' n (x:xs)  
 | n == x = minout' (n+1) xs  
 | otherwise = n

This program takes O(N logN) time to sort, and O(N)
time for minout', where N is the length of the list

minout using arrays

We can use arrays for an O(N) solution, where N is the
length of the list

The minimum element outside the list l has to lie between 0
and N

Select all elements from l that are ≤ N

Count the number of occurrences of each in l in O(N) time
(using accumArray)

Pick the smallest number with count 0

minout using arrays

minout :: [Int] -> Int  
minout l = search countlist  
 where  
 n = length l  
 ones = repeat 1  
 
 countlist :: [(Int,Int)]  
 countlist = assocs (accumArray (+) 0 (0,n)  
 (zip (filter (<=n) l) ones))  
 
 search :: [(Int,Int)] -> Int  
 search ((x,y):l) = if (y == 0) then x  
 else search l

Summary

Recursive programs can sometimes be very inefficient,
recomputing the same value again and again

Memoization is a technique that renders this process
efficient, by storing values the first time they are
computed

Haskell arrays provides an efficient implementation of
these techniques

Important tool to keep in our arsenal

