
Spiders, crawlers,
harvesters, bots

Thanks to
B. Arms

R. Mooney
P. Baldi

P. Frasconi
P. Smyth

C. Manning

Last time

• Evaluation of IR/Search systems
– Quality of evaluation – Relevance
– Evaluation is empirical
– Measurements of Evaluation

• Precision vs recall
• F measure

– Test Collections/TREC

This time

• Web crawlers
• Crawler policy
• Robots.txt
• Scrapy

Interface

Query Engine

Indexer

Index

Crawler

Users

Web

A Typical Web Search Engine

Evaluation

Interface

Query Engine

Indexer

Index

Crawler

Users

Web

A Typical Web Search Engine

What is a Web Crawler?
• The Web crawler is a foundational species!

• Without crawlers, search engines would not exist.

• But they get little credit!

• Outline:

What is a crawler

How they work

How they are controlled
Robots.txt

Issues of performance

Research

What a web crawler does
• Gets data!!!

• Can get fresh data.

• Gets data for search engines:

• Creates and repopulates search engines data by
navigating the web, downloading documents and
files

• Follows hyperlinks from a crawl list and
hyperlinks in the list

• Without a crawler, there would be nothing to
search

Web crawler policies
• The behavior of a Web crawler is the outcome of a

combination of policies:

• a selection policy that states which pages to
download,

• a re-visit policy that states when to check for changes
to the pages,

• a duplication policy

• a politeness policy that states how to avoid
overloading Web sites, and

• a parallelization policy that states how to coordinate
distributed Web crawlers.

Crawlers vs Browsers vs
Scrapers

• Crawlers automatically harvest all files on the web

• Browsers are manual crawlers

• Web Scrapers automatically harvest the visual files
for a web site, are manually directed, and are limited
crawlers (sometimes called “screen scrapers”)

Open source crawlers

Heritrix

Beautiful Soup – scraper

Why use a scrapper

Web Crawler vs web scraper

Open source crawlers

Open source crawlers

Open source crawlers

Web Scrapers

• Web scraping deals with the gathering of unstructured
data on the web, typically in HTML format, putting it
into structured data that can be stored and analyzed in
a central local database or spreadsheet.

• Usually a manual process

• Usually does not go down into the url links

Web Crawler Specifics

• A program for downloading web pages.

• Given an initial set of seed URLs, it recursively
downloads every page that is linked from pages in
the set.

• A focused web crawler downloads only those
pages whose content satisfies some criterion.

Also known as a web spider, bot, harvester.

Crawling the web

Web

URLs crawled
and parsed

URLs frontier

Unseen Web

Seed
pages

Simple picture – complications
Web crawling difficult with one machine

All of the above steps can be distributed
Malicious pages

Spam pages
Spider traps – incl dynamically generated

Even non-malicious pages pose challenges
Latency/bandwidth to remote servers vary
Webmasters� stipulations

How �deep� should you crawl a site�s URL hierarchy?
Site mirrors and duplicate pages

Politeness – don�t hit a server too often

Sec. 20.1.1

What any crawler must do

Be Polite: Respect implicit and explicit
politeness considerations
Only crawl allowed pages
Respect robots.txt (more on this shortly)

Be Robust: Be immune to spider traps and
other malicious behavior from web servers

Sec. 20.1.1

What any crawler should do

Be capable of distributed operation: designed to
run on multiple distributed machines

Be scalable: designed to increase the crawl rate by
adding more machines

Performance/efficiency: permit full use of available
processing and network resources

Sec. 20.1.1

25

What any crawler should do

Fetch pages of �higher quality� first
Continuous operation: Continue fetching

fresh copies of a previously fetched page
Extensible: Adapt to new data formats,

protocols

Sec. 20.1.1

26

More detail

URLs crawled
and parsed

Unseen Web

Seed
Pages

URL frontier

Crawling thread

URL frontier

The next node to crawl
• Can include multiple pages from the

same host
• Must avoid trying to fetch them all at

the same time
• Must try to keep all crawling threads

busy

Explicit and implicit politeness

Explicit politeness: specifications from
webmasters on what portions of site can be
crawled
robots.txt

Implicit politeness: even with no
specification, avoid hitting any site too
often

Sec. 20.2

Robots.txt

Protocol for giving spiders (�robots�) limited access
to a website, originally from 1994
www.robotstxt.org/wc/norobots.html

Website announces its request on what can(not) be
crawled
For a server, create a file /robots.txt
This file specifies access restrictions

Sec. 20.2.1

http://www.robotstxt.org/wc/norobots.html

Robots.txt example

No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
�searchengine":

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine
Disallow:

Sec. 20.2.1

Processing steps in crawling
Pick a URL from the frontier
Fetch the document at the URL
Parse the URL

Extract links from it to other docs (URLs)
Check if URL has content already seen

If not, add to indexes
For each extracted URL

Ensure it passes certain URL filter tests
Check if it is already in the frontier (duplicate URL

elimination)

E.g., only crawl .edu,
obey robots.txt, etc.

Which one?

Sec. 20.2.1

Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

Sec. 20.2.1

Crawling Algorithm

Initialize queue (Q) with initial set of known URL’s.
Until Q empty or page or time limit exhausted:

Pop URL, L, from front of Q.
If L is not to an HTML page (.gif, .jpeg, .ps, .pdf, .ppt…)

continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)

continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
Append N to the end of Q.

Web Crawler

• A crawler is a program that picks up a
page and follows all the links on that page

• Crawler = Spider = Bot = Harvester
• Usual types of crawler:

– Breadth First
– Depth First
– Combinations of the above

Breadth First Crawlers

Use breadth-first search (BFS) algorithm
• Get all links from the starting page, and

add them to a queue
• Pick the 1st link from the queue, get all

links on the page and add to the queue
• Repeat above step till queue is empty

Search Strategies BF

Breadth-first Search

Breadth First Crawlers

Depth First Crawlers

Use depth first search (DFS) algorithm
• Get the 1st link not visited from the start

page
• Visit link and get 1st non-visited link
• Repeat above step till no no-visited links
• Go to next non-visited link in the previous

level and repeat 2nd step

Search Strategies DF

Depth-first Search

Depth First Crawlers

Search Strategy Trade-Off’s
Breadth-first explores uniformly outward from the

root page but requires memory of all nodes on
the previous level (exponential in depth).
Standard spidering method.

Depth-first requires memory of only depth times
branching-factor (linear in depth) but gets “lost”
pursuing a single thread.

Both strategies implementable using a queue of
links (URL’s).

Avoiding Page Duplication
Must detect when revisiting a page that has already been

spidered (web is a graph not a tree).
Must efficiently index visited pages to allow rapid

recognition test.
Tree indexing (e.g. trie)
Hashtable

Index page using URL as a key.
Must canonicalize URL’s (e.g. delete ending “/”)
Not detect duplicated or mirrored pages.

Index page using textual content as a key.
Requires first downloading page.

Solr/Lucene Deduplication

http://wiki.apache.org/solr/Deduplication

Queueing Strategy
How new links added to the queue determines

search strategy.
FIFO (append to end of Q) gives breadth-first

search.
LIFO (add to front of Q) gives depth-first search.
Heuristically ordering the Q gives a “focused

crawler” that directs its search towards
“interesting” pages.

Restricting Spidering

Restrict spider to a particular site.
Remove links to other sites from Q.

Restrict spider to a particular directory.
Remove links not in the specified directory.

Obey page-owner restrictions (robot
exclusion).

Link Extraction
Must find all links in a page and extract URLs.

Must complete relative URL’s using current page
URL:
 to

http://clgiles.ist.psu.edu/courses/ist441/projects
 to http://

clgiles.ist.psu.edu/courses/ist441/syllabus.html

URL Syntax

A URL has the following syntax:
<scheme>://<authority><path>?<query>#<fragment>

An authority has the syntax:
<host>:<port-number>

A query passes variable values from an HTML form and
has the syntax:
<variable>=<value>&<variable>=<value>…

A fragment is also called a reference or a ref and is a
pointer within the document to a point specified by an
anchor tag of the form:
<A NAME=“<fragment>”>

Robot Exclusion

How to control those robots!
Web sites and pages can specify that robots

should not crawl/index certain areas.
Two components:

Robots Exclusion Protocol (robots.txt): Site
wide specification of excluded directories.

Robots META Tag: Individual document tag to
exclude indexing or following links inside a
page that would otherwise be indexed

Robots Exclusion Protocol
Site administrator puts a “robots.txt” file at the

root of the host’s web directory.
http://www.ebay.com/robots.txt
http://www.cnn.com/robots.txt
http://clgiles.ist.psu.edu/robots.txt
http://en.wikipedia.org/robots.txt

File is a list of excluded directories for a given
robot (user-agent).
Exclude all robots from the entire site:
User-agent: *
Disallow: /

New Allow:

Find some interesting robots.txt

http://en.wikipedia.org/wiki/Robots_exclusion_standard
http://www.ebay.com/robots.txt
http://www.cnn.com/robots.txt
http://clgiles.ist.psu.edu/robots.txt
http://en.wikipedia.org.robots.txt

Robot Exclusion Protocol
Examples

Exclude specific directories:
User-agent: *
Disallow: /tmp/
Disallow: /cgi-bin/
Disallow: /users/paranoid/

Exclude a specific robot:
User-agent: GoogleBot
Disallow: /

Allow a specific robot:
User-agent: GoogleBot
Disallow:

User-agent: *
Disallow: /

Robot Exclusion Protocol
Examples

Robot Exclusion Protocol Has Not Well
Defined Details

Only use blank lines to separate different
User-agent disallowed directories.

One directory per “Disallow” line.
No regex (regular expression) patterns in

directories.

• What about “robot.txt”?
• Ethical robots obey “robots.txt” as best as

they can interpret them

Robots META Tag
Include META tag in HEAD section of a specific

HTML document.
<meta name=“robots” content=“none”>

Content value is a pair of values for two aspects:
index | noindex: Allow/disallow indexing of this page.
follow | nofollow: Allow/disallow following links on this

page.

History of the Robots Exclusion Protocol

A consensus June 30, 1994 on the robots mailing list

Revised and Proposed to IETF in 1996 by M. Koster[14]

Never accepted as an official standard

Continues to be used and growing

Year

P
er
ce
n
ta
ge

200720062005200120001996

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

BotSeer - Robots.txt search engine

http://botseer.ist.psu.edu

Top 10 favored and disfavored robots –
Ranked by ∆P favorability.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

go
og
le
ya
ho
o
ms
n

sco
ote
r
lyc
os

ne
tm
ech
an
ic
ht
dig

teo
ma

oo
dle
bo
t*

mo
ms
pid
er

ast
eri
as

lin
kw
alk
er
wg
et

we
bz
ip
ps
bo
t

ro
ve
rb
ot

em
ail
sip
ho
n

ch
err
yp
ick
er

ia_
ar
ch
ive
r

ms
iec
ra
wl
er

_P
 f

av
or

ab
ili

ty

Comparison of Google, Yahoo and
MSN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Government News Company USA
University

European
University

Asian
University

_P

fa
vo

ra
bi

lit
y

Google
Yahoo
MSN

Search Engine Market Share vs. Robot
Bias

50.0%

23.4%

9.2%
2.7%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Google Yahoo MSN Ask

M
ar

ke
t S

ha
re

 P
er

ce
nt

ag
e

-0.01
0.04
0.09
0.14
0.19
0.24
0.29
0.34
0.39

_P
 f

av
or

ab
ili

ty

Market Share
_ P favorability

n Pearson product-moment correlation coefficient: 0.930, P-value < 0.001

* Search engine market share data is obtained from NielsenNetratings[16]

Robot Exclusion Issues
• META tag is newer and less well-adopted than

“robots.txt”. (growing in use – xml sitemaps)
• Standards are conventions to be followed by “good

robots.”
– Companies have been prosecuted for “disobeying” these

conventions and “trespassing” on private cyberspace.
• “Good robots” also try not to “hammer” individual sites

with lots of rapid requests.
– “Denial of service” attack.

T OR F: robots.txt file increases your pagerank?

http://en.wikipedia.org/wiki/Robots_exclusion_standard

Web bots
• Not all crawlers are ethical (obey robots.txt)
• Not all webmasters know how to write correct robots.txt

files
– Many have inconsistent Robots.txt

• Bots interpret these inconsistent robots.txt in many ways.
• Many bots out there!

– It’s the wild, wild west

Multi-Threaded Spidering
Bottleneck is network delay in downloading individual

pages.
Best to have multiple threads running in parallel each

requesting a page from a different host.
Distribute URL’s to threads to guarantee equitable

distribution of requests across different hosts to
maximize through-put and avoid overloading any single
server.

Early Google spider had multiple co-ordinated crawlers with
about 300 threads each, together able to download over
100 pages per second.

Directed/Focused Spidering

Sort queue to explore more “interesting”
pages first.

Two styles of focus:
Topic-Directed
Link-Directed

Simple Web Crawler Algorithm
Basic Algorithm

Let S be set of URLs to pages waiting to be
indexed. Initially S is the singleton, s, known as
the seed.

Take an element u of S and retrieve the page, p,
that it references.

Parse the page p and extract the set of URLs L it
has links to.

Update S = S + L - u

Repeat as many times as necessary.

Not so Simple…

Performance -- How do you crawl
1,000,000,000 pages?

Politeness -- How do you avoid
overloading servers?

Failures -- Broken links, time outs,
spider traps.

Strategies -- How deep do we go?
Depth first or breadth first?

Implementations -- How do we store
and update S and the other data
structures needed?

What to Retrieve
No web crawler retrieves everything
Most crawlers retrieve only

HTML (leaves and nodes in the tree)
ASCII clear text (only as leaves in the tree)

Some retrieve
PDF
PostScript,…

Indexing after crawl
Some index only the first part of long files
Do you keep the files (e.g., Google cache)?

Building a Web Crawler: Links
are not Easy to Extract

Relative/Absolute
CGI

Parameters
Dynamic generation of pages

Server-side scripting
Server-side image maps
Links buried in scripting code

Crawling to build an historical
archive

Internet Archive:

http://www.archive.org

A non-for profit organization in San
Francisco, created by Brewster Kahle, to
collect and retain digital materials for future
historians.

Services include the Wayback Machine.

http://www.archive.org

http://spiders.must.die.net

http://spiders.must.die.net

Spider Traps
• A spider trap (or crawler trap) is a set of web pages that may

intentionally or unintentionally be used to cause a web crawler or
search bot to make an infinite number of requests or cause a poorly
constructed crawler to crash.

• Spider traps may be created to "catch" spambots or other crawlers
that waste a website's bandwidth. Common techniques used are:
• creation of indefinitely deep directory structures like

• http://foo.com/bar/foo/bar/foo/bar/foo/bar/.....

• dynamic pages like calendars that produce an infinite number of pages
for a web crawler to follow.

• pages filled with a large number of characters, crashing the lexical
analyzer parsing the page.

• pages with session-id's based on required cookies
• Others?

• There is no algorithm to detect all spider traps. Some classes of
traps can be detected automatically, but new, unrecognized traps
arise quickly.

Research Topics in Web
Crawling

Intelligent crawling - focused crawling
How frequently to crawl
What to crawl

What strategies to use.

• Identification of anomalies and crawling traps.
• Strategies for crawling based on the content of

web pages (focused and selective crawling).
• Duplicate detection.

Detecting Bots
It’s the wild, wild west out there!
Inspect Server Logs:
•User Agent Name - user agent name.
•Frequency of Access - A very large volume of accesses from

the same IP address is usually a tale-tell sign of a bot or spider.
•Access Method - Web browsers being used by human users

will almost always download all of the images too. A bot
typically only goes after the text.

•Access Pattern - Not erratic

Simple picture – complications
Search engine grade web crawling isn’t feasible

with one machine
All of the above steps distributed

Even non-malicious pages pose challenges
Latency/bandwidth to remote servers vary
Webmasters’ stipulations

How “deep” should you crawl a site’s URL hierarchy?
Site mirrors and duplicate pages

Malicious pages
Spam pages
Spider traps – incl dynamically generated

Politeness – don’t hit a server too often

What any crawler must do
Be Polite: Respect implicit and explicit

politeness considerations
Only crawl allowed pages
Respect robots.txt (more on this shortly)

Be Robust: Be immune to spider traps and
other malicious behavior from web servers

What any commercial grade
crawler should do

Be capable of distributed operation:
designed to run on multiple
distributed machines

Be scalable: designed to increase the
crawl rate by adding more machines

Performance/efficiency: permit full use
of available processing and network
resources

What any crawler should do
Fetch pages of “higher quality” first
Continuous operation: Continue

fetching fresh copies of a
previously fetched page

Extensible: Adapt to new data
formats, protocols

Crawling research issues

• Open research question
– Not easy
– Domain specific?

• No crawler works for all problems
– Evaluation

• Complexity
– Crucial for specialty search

Search Engine Web Crawling Policies

• Their policies determine what gets indexed
• Freshness

• How often the SE crawls
• What gets ranked and how

• SERP (search engine results page)
• Experimental SEO

• Make changes; see what happens

Web Crawling

• Web crawlers are foundational species
• No web search engines without them
• Scrapers subclass of crawlers

• Crawl policy
• Breath first
• Depth first

• Crawlers should be optimized for area of interest
• Focused crawlers

• robots.txt – gateway to web content
• Crawlers obey robots.txt

