
Worst-Case Analysis of Set Union Algorithms

ROBERT E. TAR JAN

AT&T Bell Laboratories, Murray Hdl, New Jersey

AND

JAN VAN LEEUWEN

Universtty of Utrecht. Utrecht. The Netherlands

Abstract. This paper analyzes the asymptotic worst-case running time of a number of variants of the
well-known method of path compression for maintaining a collection of disjoint sets under union. We
show that two one-pass methods proposed by van Leeuwen and van der Weide are asymptotically
optimal, whereas several other methods, including one proposed by Rein and advocated by Dijkstra,
are slower than the best methods.

Categories and Subject Descriptors: E. 1 [Data Structures]: Trees; F2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems---computations on discrete structures;
G2.1 [Discrete Mathematics]: Combinatories---combinatorial algorithms; (32.2 [Disertqe Mathemat-
ics]: Graph Theory--graph algortthms
General Terms: Algorithms, Theory

Additional Key Words and Phrases: Equivalence algorithm, set union, inverse Aekermann's function

1. Introduction

A well-known problem in data structures is the set union problem, defined as
follows: Carry out a sequence o f intermixed operat ions o f the following three kinds
on labeled sets:

make set(e, l): Create a new set with label l containing the single e lement e. This
operat ion requires that e initially be in no set.

f ind label(e): Return the label o f the set containing e lement e.

unite(e, f) : Combine the sets containing elements e and f i n t o a single set, whose
label is the label o f the old set containing e lement e. This operat ion requires that
elements e and f in i t i a l l y be in different sets.

Because of the constraint on make set, the sets existing at any t ime are disjoint
and define a parti t ion of the d e m e n t s into equivalence classes. For this reason the
set union problem has been called the equivalence problem by some authors. A
solution to the set union problem can be used in the compil ing o f F O R T R A N

Authors addre ,sses: R. E. Tarjan, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974; J. van Leeuwen, Department of Computer Science, University of Utrecht, Utrecht, The
Netherlands.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0004-5411/84/0400-0245 $00.75

Journal of the Assoaatton for Computmg Machinery, Vot. 31, No. 2, April 1984, pp 245--281.

246 R . E . TARJAN AND J. VAN LEEUWEN

EQUIVALENCE statements [7] and in finding minimum spanning trees [2]. A
generalization of the problem arises in the compiling of FORTRAN COMMON
statements [2, 7] and in various graph problems [12].

All algorithms for the set union problem appearing in the literature can be
regarded as versions of a general method that we shall call the canonical element
method. Within each set, we distinguish an arbitrary but unique element called the
canonical element, which serves to represent the set. We store the label of a set
with its canonical dement in a field called label. We carry out find label and unite
using two lower level operations that manipulate canonical elements:

find(e): Return the canonical element of the set containing dement e.
rink(e, f): Combine the sets whose canonical dements are e a n d f i n t o a single set,
and make either e or f t h e canonical element of the new set. The label of the new
set is the label of the old set containing element e. This operation requires that
e ÷ f .

The following procedures, written in a version of Dijkstra's guarded command
language [4], implement find label and unite:

function find label(e);
return label(find(e))

end find label;
procedure unite(e, f);

link(find(e), find(f))
end unite;

To make finds possible, we represent each set by a rooted tree whose nodes are
the dements of the set. The tree has an arbitrary structure except that the root is
the canonical element. Each node x contains a pointer p(x) to its parent in the
tree; the root points to itself. This compressed tree representation (so-called because
of the compression operation defined in Section 3) was invented by Galler and
Fischer [7]. To carry out find(e), we follow parent pointers from e until repeating
a node; then we return the repeated node. To carry out rink(e, f), we makefpo in t
to e; e becomes the canonical dement of the new set. The following procedures
implement make set, link, and .find:

procedure make set(e, 1);
p(e) :-- ~, label(e) := l

end make set;
procedure link(e, JO;

/ ~ f) :---- e
end link;,
function find(e);

return if p(e) = e ---, e
fl p(e) ~ e --~ find(p(e))
fi

end find;

In analyzing this method (and its more sophisticated variants), we shall regard
make set, rink, and find as the fundamental operations. We shall denote by n the
number of make set operations and by m the number of find operations. If k is the
number of links, k _< n - 1. We shall assume that k >_ n/2. This entails no loss of
generality, since there are at most 2k elements that are ever in sets containing more
than one element, and finds on elements in singleton sets require 0(I) time. In a
sequence of make set, link, and .find operations that arises from a sequence of

Worst-Case Analysis of Set Union Algorithms 247

make set, unite, and find label operations, there are two finds per l ink and m __, n.
However, our analysis will be valid for an arbitrary sequence of make set, link, and
find operations, and, we shall not, in general, assume that m _> n.

The naive version of the canonical element method spends most of its time
following parent pointers. Each make set operation requires O(1) time, as does
each link. A find takes time proportional to the number of nodes on the find path,
which is at most n. Thus the total time is O(n + mn). The following class of
examples shows that this bound is tight. By means of n - 1 links, we can build a
tree that is a path of n nodes; if we then repeatedly perform a find on this path, we
use a total of f~(n + mn) time.

THEOREM 1 [5]. The naive set union algorithm runs in O(n + mn) time in the
worst case.

By changing the structure of the trees to reduce the length of find paths, we can
speed up the algorithm considerably. In this paper we analyze several variants of
the canonical element method, with the aim of ascertaining which are both easy to
implement and efficient in theory and in practice. In Section 2 we study two ways
to implement the link operation, called linking by. size and linking by rank. Both
methods reduce the maximum length of a find path to O(log n). In Section 3 we
study a way to improve subsequent finds by compressing each find path. In
combination with either linking by rank or linking by size, compression gives an
asymptotically optimal method (in the sense defined below). However, compression
requires two passes over a find path. We discuss two one-pass variants of compres-
sion that also are asymptotically optimal. In Section 4 we study an appealing but
inferior variant of compression called reversal In Section 5 we study two ways to
speed up the canonical element method by doing more work during link and unite
operations. Section 6 contains some concluding remarks.

There is a general lower bound for the set union problem that applies to many
versions of the canonical element method. The algorithms to which this bound
applies are called the separable algorithms. Consider an arbitrary sequence of
intermixed make set, link, and find operations. A separable algorithm begins with
a list structure L representing the sets defined by the make set operations. L
contains a distinct node representing each element and may contain an arbitrary
number of auxiliary nodes. (We do not distinguish between an element and the
node representing it.) Each node contains an arbitrary number of pointers to other
nodes. The nodes are partitioned into accessed nodes and unaccessed nodes; this
partition changes as the operations are performed. The algorithm has two kinds of
steps:

(i) Follow a pointer x ~ y from an accessed node x to an unaccessed node y. This
causes y to become accessed.

(ii) Put into an accessed node x a pointer to another accessed node y.

The algorithm carries out the set operations in the following way. The initiation
of an operation make set(e), find(e), or link(e, f) causes e (and f i n the case of
link(e, f)) to become accessed. The algorithm performs an arbitrary sequence of
steps, which in the case of find(e) must cause the canonical element of the set
containing e to become accessed. The completion of an operation causes all nodes
to become unaccessed.

We impose one more restriction on the algorithm, called separability: There
must be a partition of the nodes of the initial list structure L into n parts, such that

248 R. E. TAR JAN AND J. VAN LEEUWEN

each element is in a different part and no pointer leads from one part to another.
Because the algorithm has no global memory (all nodes become unaccessed after
each set operation), separability is preserved as the set operations are performed.
More precisely, after each set operation the nodes can be partitioned into i parts,
where i is the number of currently existing sets, so that each part contains the
elements in one set, and no pointer leads from one part to another.

Any correct separable algorithm must perform at least one pointer construction
step per link, since otherwise the canonical node of the new set is inaccessible from
the nodes in one of the two old sets. (Recall that the set operations are to be
performed on-line.) This gives an fl(n) lower bound on the number of steps needed
by any separable algorithm in the worst case. For m = f/(n), Tarjan [11] derived
an ~(ma(m, n)) lower bound, where ct is a functional inverse of Ackermann's
function [1] defined as follows: For i, j -> 1 let the function A(i, j) be defined by

A(l , j) = 2~ for j _> l,
A(i, 1) = A(i - 1, 2) for i >_ 2,
A(i, j) = A(i - 1, A(i, j - 1)) for i, j _> 2.

Let ~(m, n) = min{i _ 1 [A(i, Lm/nJ) > logn}.

Remark 1. The most important property of Ackermann's function is its explo-
sive growth. In the usual definition of this function A(1, j) = j + 1, and the
explosion does not occur quite so soon. However, this change only adds a constant
to the inverse function a.

Remark 2. The function tz grows very slowly. A(3, 1) = 16; thus a(m, n) _< 3
for n < 2 ~6 = 65,536. A(4, 1) = A(2, 16), which is very large. Thus, for all practical
purposes, a(m, n) is a constant no larger than four.

Remark 3. For fixed n, a(m, n) decreases as m/n increases. In particular, let
a(i, n) = minl j >- 1 IA(i, j) > log n}. Then [m/nJ >_ a(i, n) implies , (m, n) -< i. For
instance, Lm/nJ __. 1 + log log n implies a(m, n) _< 1; lm/nJ >_ log*log n implies
a(m, n) _< 2, where log*n is defined by

logt°)n = n, log(~+l)n ffi log log(i)n,
log*n ffi min{illog°)n < 1 }.

Tarjan's proof contains an error that was found and corrected by Banachowski
[3]. Combining the ~(n) and f~(ma(m, n)) lower bounds, we obtain the following
theorem:

THEOREM 2. Any separable algorithm for the set union problem requires
~(n + ma(m + n, n)) time in the worst case.

PROOF. If m ----- n, the theorem follows from Tarjan's bound, since 1 - , (m +
n, n) _< a(m, n). If ma(n, n) <_ n, the theorem follows from the fl(n) bound. Finally,
if ma(n, n) > n but m < n, we obtain from Tarjan's result a lower bound of
~(m,(m, m)) if we ignore all but m elements. We have m 2 >-- n, and since ix(m, m)
_ a(n, n) _< ~t(m 2, m 2) _< o~(m, m) + 1, or(m, m) _> ix(n, n) - 1 _> tz(m + n, n) - 1,
implying the theorem in this case as well. []

Remark. For m < n, Theorem 2 improves Banachowski's lower bound [3] of
f~(n + ma(n, m)).

Theorem 2 provides a standard by which we shall judge set union algorithms:
We call an algorithm asymptotically optimal if its worst-case running time is

Worst-Case Analysis of Set Union Algorithms 249

O(n + ma(m + n, n)). Every algorithm considered in this paper is ~parable and
thus requires ~2(n + ma(m + n, n)) time; an upper bound of O(n + ma(m + n, n))
is therefore the best for which we can hope.

2. Linking by Size or Rank

One way to make find paths shorter is to use a freedom implicit in the link
operation: When performing link (e, f) , we are free either to makefpo in t to e or
to make e point to f. Galler and Fischer [7] proposed linking by size:. We make the
root of the smaller tree point to the root of the larger tree, breaking a tie arbitrarily.
The following versions of make set and link implement linking by size, using a
field size (x) to store the size of the tree rooted at x:

procedure make set(e, I);
p(e) := e; label(e) := 1; size(e) := 1

end make set;
procedure link(e, f);

if size(e) > size(f) --->
p(f) := e', size(e) := size(e) + size(f)

[] size(f) > size(e)
p(e) := f, size(f) := size(e) + size(f); label(f) := label(e)

fi
end link;

If we link by size, no find path has length exceeding log n) We shall prove a
stronger result that will be useful later. For any tree node x, we define rank(x) to
be the height of x. 2

LEMMA I. I f x is any node in a forest built from single nodes by a sequence of
link-by-size operations, size(x) >_ 2 rank(x).

PROOF. By induction on the number of links. The lemma is true before the
first link. The size of a node never decreases as links are performed. The only way
to increase the rank of a node x is to perform a link that causes a node y to point
to x, in the process making the new rank of x equal to the old rank of y plus one.
The new size of x is at least twice the old size of y. Thus, if the ie~mma holds before
the link, it also holds after the link. []

COROLLARY 1. In a forest built from single nodes by a sequence of links by
size, the number of nodes of rank i is at most n/2'.

PROOF. Ranks strictly increase along any path in the forest. Hence, any two
nodes of the same rank are unrelated; that is, they have disjoint sets of descendants.
By Lemma 1, any node of rank i has at least 2' descendants. Thus there are at most
n/2' such nodes. []

COROLLARY 2. In a forest built from single nodes by a sequence of links by
size, no path has length exceeding log n.

A linking method that achieves the same effect as linking by size while saving
space is linking by rank: We maintain with each node its rank, rather than its size.
When performing link(e, f) , we make the node of smaller rank point to the node

Throughout this paper we use base-two logarithms.
2 The height of a node x in a rooted tree is the length of the longest path from a leaf to x. (We adopt
the convention that an edge in a rooted tree is directed from child to parent.) Every node is a descendant
of itself.

250

B i •

Bt- I

(a)

if i=o

if i >o

R. E. TARJAN AND J. VAN LEEUWEN

i !

Bt •

FiG. 1.

2 3 4 5

(b)

Binomial trees. (a) Recursive definition. (b) Examples.

of larger rank. The following versions of make set and link implement linking by
rank:

procedure make set(e, 1);
p(e) := e', label(e) := l; rank(e) := 0

end make set;

procedure link(e, f);
if rank(e) > rank(f) --~ p(f) :-- e

rank(e) = rank(f) --~ p(f) := e; rank(e) := rank(e) + 1
rank(e) < rank(f) --~ p(e) := f; label(f) := label(e)

fi
end link;

LEMMA 2. L e m m a 1 holds for linking by rank. That is, size(x) > 2"a"~x) for all
nodes x. Thus Corollaries 1 and 2 also hold for linking by rank.

PROOF. By induction on the number of links. Suppose the lemma is true just
before link(e, f) . Let size and rank denote the appropriate functions before the
link and let size' and rank' denote the functions just after the link. Let x be any
node. There are two cases. If x # e or rank(e) ~ rank(f) , then size'(x) >_ size(x)
and rank'(x) = rank(x), which means the lemma is true after the link. I fx = e and
rank(e) = rank(f) , then size '(x) = size'(e) = size(e) + s i ze (f) > 2 rankte) + 2 rank(f) =

2 rank(e)+l = 2 rank'(x), and again the lemma is true after the link. []

TheOREM 2 [5]. With either linking by size or linking by rank, the set union
algorithm runs in O(n + m log n) t ime in the worst case.

PROOF. The upper bound is immediate from Corollary 2. Binomial trees
provide a class of examples showing that the bound is tight. A binomial tree Bo
consists of a single node. For i > 0, a binomial tree Bi is formed from two B,-,
trees by making the root of one the parent of the root of the other. (See Figure 1.)
B, has size 2' and height i. For arbitrary n we can build a tree B, containing 2 t~°s~j-'

Worst-Case Analysis of Set Union Algorithms

f

FIG. 2. Compressmn o f the path a ~ b --* c --* d ~ e - -* f .

251

nodes using any linking rule, since the trees linked in each step are isomorphic. If
we then repeatedly perform a find on the path of length [lognl - 1, the total time
is fl(n + m log n). []

Linking by rank seems preferable to linking by size since it requires less storage;
it needs only log log n bits per node (to store a rank in the range [0, [log n J] 3)
instead of log n bits per node (to store a size in the range [1, n]). Linking by rank
also tends to require less updating than linking by size. All the bounds we shall
derive in subsequent sections hold equally for linking by rank and linking by size.

3. Compression, Splitting, and Halving

Another way to shorten find paths is to modify the trees during finds. To perform
find(e), we first follow parent pointers to the canonical element r of the set
containing e; then we make every node on the find path point directly to r. (See
Figure 2.) Mcllroy and Morris devised this rule, called compression [8]. We offer
two implementations of find with compression. The first uses reeursion and has
the advantage of succinctness; the second uses two explicit scans of the find path
and is more efficient in practice.

function find(e);
i f p(e) = e ---> return e
[I p(e) ¢~ e ~ p(e) := find(p(e)); return p(e)
fi

end find;
funct ion find(e);

local x, r;
r := e; do p(r) # r ---> r := p(r) od;
x := e;, do p (x) ~ r ~ x , p (x) := p(x) , r od;
return r

end find;

Remark. In the second version off indthe statement "x, p(x) := p(x), r" denotes
parallel assignment: p(x) is assigned to x and r is assigned to p(x) simultaneously.

3 We use the notation [3, k] to denote the set o f integers It [J -< l -< kl.

252 R.E. TARJAN AND J. VAN LEEUWEN

We can use compression with naive linking, with linking by rank, or with linking
by size. If we use compression with linking by rank, the value of rank(x) computed
by the algorithm is, in general, not the height of the compressed tree with root x
but only an upper bound on this height. More precisely, the value of rank(x) is the
height of the tree with root x that would have existed had there been no compres-
sion. We shall say more about the properties of rank below. Compression is easy
to implement but hard to analyze, because the compressions change the forest
representing the sets in a complicated way. For the set union algorithm with
compression and linking by size, Tarjan [10] derived an O(ma(m, n)) time bound,
under the assumption that m ~ n.

Compression has the disadvantage that it requires two passes over a find path.
Van Leeuwen and van der Weide [13, 14] proposed two variants of compression
that require only one pass over a find path. The first is splitting: During a find we
make each node along the find path (except the last and the next-to-last) point to
the node two past itself. (See Figure 3.) Splitting breaks a find path into two paths,
each about half as long as the original. The following version of find includes
splitting:

function find(e);
local x;
x :-- ¢, do ~p(x)) ÷ p(x) --* x, p(x) :-- p(x),/XP(x)) od;
return p(x)

end find;

The second variant is halving During a find we make every other node along
the find path (except the last and the next-to-last) point to the node two past itself.
(See Figure 4.) Halving requires only about half as many pointer updates per find
as splitting and intuitively has the advantage that it keeps the nodes on the find
path together while it halves the length of the find, so that later finds will produce
more compression. The following version of find includes halving:

function find(e);
local x;
x := ~, do p(p(x)) ÷ ~x) ---, x := p(x) := p(p(x)) od;
return p(x)

end find;

Remark 1. The statement "x :ffi p(x) : - p(p(x)) denotes sequential assignment:
The value ofp(p(x)) is assigned to p(x) and then to x.

Remark 2. An optimized version of this procedure uses one test and one
pointer extraction for each node on the find path, and one pointer assignment for
every other node on the find path.

For the set union algorithm with linking by size and either splitting or halving,
van Leeuwen and van der Weide derived an O(m log*n) time bound, under the
assumption that m >_ n. We shall prove that the algorithm with either linking
by rank or linking by size and either compression, splitting, or halving runs in
O(n + ma(m + n, n)) time for arbitrary m and n. Thus these six methods are all
asymptotically optimal. To derive this bound, we use the multiple partition tech-
nique of Tarjan [10]. We extend the technique in two ways. First, we modify it so
that it gives a tight bound for m < n, as well as for m >__ n. Second, we generalize it
so that it applies to a large class of find methods. Consider any find path. We
perform a compaction on the path by making each node on the path (except the
last and the next-to-last) point to a node at least two past itself. (See Figure 5.)

Worst-Case Analysis of Set Union Algorithms

t

e

f

FIG. 3. Splitting a path.

253

FIG. 4. Halving a path.

Compression is locally the best kind of compaction, since it moves nodes as close
to the root as possible, whereas splitting is locally the worst. Halving is not a form
of compaction, but with minor changes our method gives a tight bound for halving
as well. Although the analysis below is self-contained, some familiarity with the
technique of [10] will serve the reader well.

Consider any sequence of intermixed make set, find, and link operations,
implemented so that every find compacts the find path. The time required to carry
out the sequence is bounded by a constant times the sum of n and the total number
of nodes on find paths, assuming that the compaction of a path takes time linear
in the number of nodes on the path. To analyze the total number of nodes on find
paths, we need some tools. For the moment we shall not specify the linking method,
since we can use the same proof framework to analyze compaction with any of the
three linking methods.

We measure the pointer changes caused by the compactions with respect to a
fixed forest called the reference forest. The reference forest of a sequence of make

254 R. E. TARJAN AND J. VAN LEEUWEN

f

f

FiG. 5. Compaction of a path. Candidates for the new parent of
node a are c, d, e, and f ; for node b. d, e, and f ; for node c: e and f ; and for
node d: f.

set, find, and link operations is the forest produced by carrying out all the make
set and link operations while ignoring all the finds. Thus no compaction takes
place. (The parent of a node x in the reference forest is the first value other than x
assigned to p(x) by the algorithm.) For the duration of this section we define the
rank of a node to be its height in the reference forest. The rank of a node is fixed
throughout the running of the algorithm; if linking by rank is used, the rank of a
node x is the last value assigned to rank(x) by the algorithm.

The following properties hold for any sequence of make set, find, and link
operations with compaction. For any node x, p(x) is always a proper ancestor'of x
in the reference forest. Thus ranks strictly increase along any find path. Let p
denote the parent function just before a find, and let p ' denote the parent function
just after the find. If x is any node on the find path other than the last and the
next-to-last, then compaction ensures that p'(x) is an ancestor of p(p(x)) in the
reference forest. More important, compression causes the rank of the parent of x
to increase from rank(p(x)) to at least rank(p(p(x)). (Note that ranks never change,
but parents do.) By analyzing these rank increases, we can bound the total number
of nodes on find paths. To get the best bounds, we must group the rank changes
into levels and account separately for each level of change.

To group rank changes, we define a collection of partitions on the integers from
zero to the maximum rank of a node. There is one such partition for each level
i ~ [0, k], where k is a parameter to be chosen later. The blocks of the level i
partition are intervals defined by

block(i, j) = [B(i, j), B(i, j + 1) - 1] for j E [0, li - I],

where the interval boundaries B(i, j) and the number of intervals l, in level i are
also parameters to be chosen later.

For this definition to make sense, we require that the boundary function B(i, j),
which is defined for i E [0, k], j ~ [0, li], have the following properties, whose
meanings are explained below.

Worst-Case Analysis of Set Union Algorithms 255

(a) B(0, j) =-- j for j E [0, lo];
(b) B(i, 0) ---" 0 for i ~ [1, k];
(c) B(i , j)< 'B(i , j+ 1) f o r i E [l , k] , j E [O , l , - 1];
(d) B(i, l,) > h for i E [0, k], where h is the maximum rank of a node;
(e) lk-- 1.

Property (c) implies that the blocks of the level i partition are nonempty disjoint
intervals. Properties (b) and (d) imply that every integer in the range [0, h] is in
some block of the level i partition. Property (a) implies that each block of the level
zero partition is a singleton. Property (e) implies that the level k partition consists
of a single block.

Each level of blocks partitions the nodes by rank. For i E [1, k], j E [0, 1~ - 1],
let n,j be the number of nodes with rank in block(i, j) - block(i - 1, 0). Then, for
any i,

1,-I

~. no<_n.
)lO

Our intention is that the partition become coarser as the level increases. As a
measure of this coarsening we use the function bu, which for i E [1, k], j E [0,
l, - 1] is the number of level i - 1 blocks whose intersection with block(i, j) is
nonempty.

As the algorithm proceeds, each node x has a level, defined to be the minimum
value of i such that rank(x) and rank(p(x)) are in the same block of the level i
partition. Since the level zero partition consists of singletons and the level
k partition consists of a single block, level(x) ~ [1, k] unless x is a tree root, in
which case level(x) -- 0. Whereas the rank of a node is fixed, the level of a node
can increase, but not decrease, as the algorithm proceeds.

To bound the number of nodes on find paths, we assign a charge for each find.
The charge is allocated among the nodes on the find path and the find itself, in a
way that depends upon the levels of the nodes just before the find takes place. The
charge assigned to a given node is further allocated among levels. The charging
rules are somewhat complicated because c~ the generality of the results we are
trying to obtain. We use two rules to assign charge:

Find Charging. Charge 3k to the find itself.

Node Charging. Let x be any node on the find path other than the first and the
last. Let i be the maximum level of any node preceding x on the path. If

min{i, level(p(x))} >_ level(x),

charge

min{i, level(p(x))} - level(x) + 1

to x. Of this amount, charge one to each level in the range

[level(x), minli, level(p(x))}].

Note. The node charging rule does not charge the next-to-last node on a find
path.

LEMmA 3. The amount charged for a find is at least the number of nodes on
the find path.

256 R. E. TAR JAN AND J. VAN LEEUWEN

PROOF. Let Xo ~ X~ ---, . . . ---, Xh be a find path that starts at node Xo and ends
at node Xh. Let level be the level function just before the find, and let

e = { i l l E [0, h - 1] and level(x,) <_ level(xi+l)};

N = { i l l E [0, h - 1] and level(x,) > level(xi+O}.

Then
h - I

Y. (level(xi+,) - level(x~)) -- level(Xh) - level(xo) >_ -level(xo),
i -O

which implies

Y. (level(xi+O - level(xi)) >__ - level(xo)

+ Y. (level(x,) - level(x,+3) >_ - level(xo) + INI,

and

(level(x~+,) - level(x,) + 1) ~ IPI + I N I - level(xo) = h - level(xo).

Let yo, y~, . . . , yg be the subsequence ofxo, x~, . . . , Xh consisting of those nodes
x, whose level exceeds the level of all previous nodes on the path. Note that
Yo = Xo, none of the nodes yj is charged for the find, and g _< k - 1. Consider the
amount charged for the find by the node charging rule. I f x, E P but x,+~ is not in
the y-subsequence, then a charge of level(xi+O - level(xi) + 1 is assigned to xi. (In
this case, xi cannot be in the y-subsequence.) If x, E P and x,+~ = y~ for some j, a
charge of at least

level(y~-3 - level(xi) = level(yA - level(xi) + 1 - (level(yj) - level(yj-3 + 1)

is assigned to x~. (This includes the possibility that yj_~ = xi, in which case the
charge assigned to x, is zero.) Thus the total charge (including the charge to the
find itself) is at least

g

Y. (level(x,+O - level(x~) + I) - Y. (level(y~) - level(yj-O + 1) + 3k
, ~.P j m l

>_ h - level(xo) - level(yg) + level(yo) - (k - 1) + 3k _> h + 1,

since Xo -- yo. I-1

The following lemma gives a formula bounding the total charge for all finds:

LEMMA 4. The total charge for all f inds, and .hence the total number o f nodes
on f i n d paths, is at mos t

k tr-~

3 k m + ~, E bono.
,--I 3~4)

PROOF. If a node x is charged at level i, then 1 _< level(x) <_ i before the
find and level(x) >_ i after the find. Let rank(x) E block(i, j) and suppose
level(x) = i after the find. This implies that level(p(x)) = i before the find, for if
level(p(x)) > i before the find, then level(x) > i after the find. To say that
level(p(x)) = i means that rank (p (x)) and r a n k (p (p (x))) are in different level
i - 1 blocks. The find thus causes p (x) to change so that rank(p(x)) is in a new
level i - I block. This can happen at most b,j - 1 times without increasing the level

Worst-Case Analysis of Set Union Algorithms

LEVEL

0 2 t

1 I
2

z z z 3 2" z s z e z r z o z 9 z t° z t~ z Iz 2 ~n zt'~z ~n ~ 6

I l l l l l l l l l l l 1

3

FIG. 6. Multiple partition for compaction with linking by rank or size. Level
zero is omitted and a logarithmic scale is used.

257

of x, since block(i, j) intersects only b,j level i - 1 blocks. Thus, after x is changed
b,j times at level i, its level is at least i + 1, and it is never again charged at level L

For x to be charged at level i, there must be a predecessor x ' o f x on the find
path such that level(x') > i before the find. By the definition of level, rank(x') and
rank(p'(x)) are in different level i - 1 blocks before the find. Since rank(x) >_
rank(p(x')), rank(x) q~ block(i - 1, 0). This implies that the number of nodes
whose rank is in block(i, j) that can be charged at level i is at most n#.

Summing all the charges, we obtain a total charge of at most
k t,-,

3kin + ~ ~ b,~n,~. []

Now we are ready to focus on a particular version of the set union algorithm.
Suppose we use either linking by rank or linking by size. The next lemma bounds
n,j.

LEMMA 5. With linking by rank or linking by size,

n
n,: <_ 2maxlBOj),B0-1,Ol-i"

PROOF. By Corollary 1,

B(i,j+ 1) - I n ~ n
n,j <_ Y. 2--- ~ <_ ~

hmmaxlB(t,j),B(t-l,l)} hmmaxlB(t,j),BO-l,I)l 2 h
n

m 2maxlB(z,j),B0_ i,i)1_ i" []

LEMMA 6. In any sequence of set operations implemented using any form of
compaction and either linking by rank or linking by size, the total number of nodes
on find paths is at most 3ma(m + n, n) + 4m + 13n.

PROOF. Choose k ffi a(m + n, n) + 1, 1, = min{j lA(i , j) > log n} for i E [1,
a(m + n, n)], lk = 1, and

B(i , j) f f iA(i , j) for i ~ [1 , a (m + n , n)] , j E [I , I ~] ;

B(k, 1) = t l o g nJ + 1.

(See Figure 6.)
With this definition, it is easy to see that the boundary function B(i, j) has

properties (c), (d), and (e). (By Corollary 1, no node has rank exceeding log n.) We
estimate bo as follows:

(i) b~ = 2 for i E [1, a(m + n, n)]: For i E [1, a(m + n, n)],

block(i, O) ffi block(i - 1, O) U block(i - 1, 1)

since A(I, 1) = 2 and A(i, 1) ffi A(i - 1, 2) for i > 2.

258 R, E. TARJAN AND J. VAN LEEUWEN

(ii) b , j < - A (i , j) f o r i E [l , a (m + n , n)] , j E [l , l , - l] : F o r j E [l , l . - l] ,

block(l, j) -- [A(I, j), A(I, j + 1) - 1] = [2~ 2 J + l - 1].

Thus b O = 2 j -- A(1,j). For i E [2, a(m + n, n)],j E [1, li - 1],

block(i, j) = [A(i, j), A(i, j + 1) - 1]
-- [A(i, j), A(i - 1, A(i, j)) - 1]

A(id) - I

__[0, A (i - l , A (i , j)) - 1]= U b l o c k (i - l ,h) .
h=O

Thus b u <_ A(i, j).

(iii) bko ffi t(m + n)/nJ: We have bko = l~m+,,,) = min{j lA(a(m + n, n), j) > log n}
_< t(m + n)/nJ by the definition of a.

To estimate the bound given in Lemma 4, we break the sum
k I,--I

Y. Y. bung
~-l j-O

into three parts: First,

Second,

Ik-I

X
j=o

nkjbkj = nkobko <-- n t(m + n)/nl <_ m + n.

k - l k - I 2n
Y, b, on,o <- ~ 2sti_.,.)_ l by Lemma 5

lml I l l

k-l 1
_< 4n Y, 2so_l,t) _<. 4n.

Third, for i ~ [I, a(m + n, n)],

t,-i :,-1 A(i, j)n
~, bun u <- Y, by Lemma 5 j - i ~ l 2 a(i'J)-t

** hn n(A(i, 1)+ 1)
-< =

h- ,0 2"~ 2"40'1)-2 '

which implies

k-l t,-t k-, n(A(i, l) + 1)
~, ~. bung <_ ~. 2A(,,,)_2

(h + 1)
~ n h-2 2 h-2 = 8n.

Combining estimates, we discover that the total charge for all finds is at most
3m(a(m + n, n) + l) + m + 13n. []

THEOREM 3. The set union algorithm with either linking by rank or linking by
size and either compression, splitting, or halving runs in O(n + ma(m + n, n)) time
and thus is asymptotically optimal.

PROOF. For compression and splitting, the theorem is immediate from Lemma
6. For halving, we must change the multiple partition method slightly. We call
every other node on a find path, starting with the first, essential. The essential

Worst-Case Analysis of Set Union Algorithms 259

nodes on the path (except the last) are exactly the nodes whose parents change'
when the path is halved. For any node x, we define level(x) to be the minimum
value of i such that rank(x) and rank(l~(X)) are in the same block of the level i
partition. We assign charge to nodes as follows:

Node Charging. Let x be any essential node on the find path other than the
first and the last. Let i be the maximum level of any essential node preceding x on
the path. If

mini/, level(p2(x))} >-- level(x),

charge

to x.
Of this amount,

level(1~(x))l].

min[i, level(p2(x))} - level(x) + 1

charge one to each level in the range [level(x), mini/,

The proofs of Lemmas 3, 4, and 6 now apply and serve to bound the total count
of essential nodes on find paths. (We must replace p(x) by/~(x) throughout the
proof of Lemma 4.) Since at least half the nodes on each find path are essential,
twice the bound of Lemma 6 holds as a bound for halving. E]

Theorem 3 gives us six different asymptotically optimal set union algorithms.
Perhaps the best is linking by rank with halving, since it saves space over linking
by size and uses only one pass over each find path.

In the remainder of this paper, we analyze a number of other set union
algorithms. This analysis will give us insight into the behavior of different variants
of compression and into the benefits of linking by rank or size instead of linking
naively. We begin by analyzing compression, splitting, and halving with naive
linking. This is not just a theoretical exercise, since these techniques can be used
to solve a generalization of the set union problem in which naive linking is the
only linking method possible [12].

Our results are as follows: For the case m _> n, all three methods have the same
asymptotic running time: O(m Iog.+m/n)n). For m < n, compression with naive
linking runs in O(n + m log n) time and splitting with naive linking runs more
slowly, in O(n log m) time. We have not been able to obtain a tight bound for
halving with naive linking in the case m < n; our best upper bound is O(n log m)
and our best lower bound is fl(n + m log n).

We begin by deriving the upper bounds.

LEMMA 7. Suppose m >_ n. In any sequence of set operations implemented using
any form of compaction and naive linking, the total number of nodes on find paths
is at most (4m + n) rlog,÷,m, jn]. With halving and naive linking, the total number
of nodes on find paths is at most (8m + 2n)Flogu+m/njn].

PROOF. We apply the multiple partition method. Consider any form of
compaction with naive linking. Choose k = rlogu+m/,jn], li = [n/L l+m/nJ i] for i E
[1, k], and B(z,j) = i l l + m/nJ' for i ~ [l, k] , j E [l, l,]. (See Figure 7.) Proper-
ties (c)-(e) are immediate. (Since there are only n nodes, no rank exceeds n - l.)
For i E [l, k] , j E [0, l, - 1], b,j = II + m/nJ. By Lemma 4, the total number of
nodes on find paths is at most

k Z~-J

3km + Y, ~ [1 + m/nln,j

<_ 3km + k(n + m) = (4m + n)k = (4m + n)l'logtt+m/,jn].

260

0

1

2

LEVEL 3

4

5

FIG. 7.

R. E. TAB JAN AND J. VAN LEEUWEN

0 ! 2 3 4 5 6 7 8 9 1011121314151617181920212223

I l l I l l I l l I l l I l l I l l
I I I I I I

Multiple partition for compaction with naive linking if t I + m / n J ffi 2.

The bound for halving with naive linking follows as in the proof of Theorem 3. []

LEMMA 8. Suppose m < n. In any sequence of set operations implemented using
any form of compaction and naive linking, the total number of nodes on find paths
is at most (3m + 2n)[log ml + 2(n + m). With halving and naive linking, the total
number of nodes on find paths is at most (6m + 2n)rlog m] + 4(n + m).

PROOF. We apply the multiple partition method, modified to estimate the
charge at level k (the highest level) in a different way. In order for a node x to be
charged at level k, p(x) must be at level k; that is, rank(p(x)) and rank(p2(x)) must
be in different blocks of the level k - 1 partition. This means that for a given find
at most bko- 1 nodes can be charged at level k. Incorporating this estimate into the
proof of I_emma 4, we obtain an upper bound of

k-t I,-I

(3k + bko--l)m + ~. ~ bono
zffil j -0

on the total number of nodes on find paths.
Consider any form of compaction with naive linking. Choose k ffi flog m] + 1,

l, -- rn /2q for [I , k - 1], lk -- 1, B(i,j) - - f i i for i E [1, k - 1] , j E [1, 1,], and
B(k, 1) ffi n. As usual, properties (c)-(e) are immediate. We estimate b,j as follows:
for i E [1, k - l] , j E [0, 1, - 1], b,~ = 2; bko <-- rn/ml. Plugging into the estimate
above, we find that the total number of nodes on find paths is at most

(3flog m] + 2 + rn /ml)m + rlog m12n = (3m + 2n)rlog ml + 2(n + m).

The bound for halving with naive linking follows as in the proof of Theorem 3. []

LEMMA 9. Suppose m < n. In any sequence of set operations implemented using
compression and naive linking, the total number of nodes on find paths is at most
n + 2mrlog n] + m.

PROOF. We use a modified form of the multiple partition method. Since the
method is simpler in this case, we shall describe it more or less from scratch. For a
node x such that p(x) ~ x, let the level of x be the minimum value of i such that
rank(p(x)) - rank(x) >_ 2'- '; for a node x such that p(x) ffi x, let the level o f x be
zero. Call a node active if it is returned by at least one of the m finds, passive
otherwise. There are at most m active nodes. Furthermore, after a node x is on at
least one find path its parent p(x) is active, and although p(x) may change, it
remains an active node.

We charge for a find as follows:

Find Charging. Charge flog n] + 2 to the find.

Worst-Case Analysis of Set Union Algorithms 261

FIG. 8. Repeated splitting of a long path.

Active Node Charging. If x is an active node on the path of level i that is
followed somewhere on the path by another node of level i, charge one to x.

Passive Node Charging. Charge one to every passive node on the path other
than the first.

We first observe that the amount charged for a find is at least the number of
nodes on the find path: We charge one for every passive node except possibly one,
and one for every active node except possibly one per level. Since all ranks are in
the range [0, n - 1], all levels are in the range [0, flog nl]. Thus the amount charged
to the find is at least as large as the number of uncharged nodes.

A passive node that is charged has a child whose parent changes from passive to
active because of the find. This can happen at most n times, for a total charge of
n. When an active node is charged, its level increases by at least one. Thus an
active node is charged at most flog n] - I times, for a total charge ofm(rlog n] - l) .
The total charge to finds is m(Flog n]+2), giving a grand total of n + 2mrlog nl +
m. 17

To obtain lower bounds for compression, splitting, and halving with naive
linking, we must construct time-consuming sequences of set operations. We begin
by considering splitting for m < n, since this is by far the easiest case. Suppose we
build up a path containing 2' + 1 nodes (for some i >_ 1) and then split it. The
result is two paths of 2 '-j + 1 nodes sharing a common final vertex. We can split
each of these to obtain four paths of length 2 '-2 + 1 with common final vertex,
and repeat this process until we obtain 2' paths of length two. (See Figure 8.)

T o make this example more precise, assume n > m _ 3. Let i = llog(n - 1)l and
j = Llog mJ. Build a path of 2' + 1 < n nodes. Then perform one split of length
2' + 1, two splits of length 2 '-~ + 1 2 ~-~ splits of length 2 i-J+l + 1. The total
number of splits is 2 ~ - 1 _< m. The total length of the find paths is at least j2 i --
O(n log m). Thus, the bound in Lemma 8 is tight for splitting.

Let us turn to the case m > n. For each of the three versions of find, we shall
construct sequences of set operations requiring ~(m logo+m/,)n)time, thus showing
that the bound in Lemma 7 is tight. We begin with compression. Fischer [5] noted
that if we link a tree containing a single node with a binomial tree Bi and then
compress the longest path, the result is a new binomial tree B~ with an extra node.
That is, binomial trees are self-reproducing under compression and linking with a
single node. (See Figure 9.) Fischer thus obtained a lower bound of fl(n log n) for
compression with naive linking. This class of examples gives a more general lower
bound of f~(n + m log n) for arbitrary m < n, implying that the bound in Lemma
9 is tight.

262 R. E. TAR JAN AND J. VAN LEEUWEN

BO B! Bi-2 Bi-1 Bi.2
(a)

(b)

\
\

\

BO

A
Bi

LINK COMPRESS

Bi

Bi

(c)

FiG. 9. Self-reproduction of B,. (a) Horizontal unrolling of B, using recursive
definition. (b) Vertical unrolling of B,. (e) Self-reproduction.

We shall generalize Fischer's idea. Let j be any positive integer. For k > 1 we
define the class of trees Tk recursively as follows: For k <_j, Tk is a tree with a single
node. For k > j, Tk is formed from Tk-i and Tk-j by making the root of Tk-~ the
parent of the root of Tk-j. (See Figure 10.) Note that i f j = 1, we obtain the binomial
trees.

Tk has the following property: If we link a tree containing a single node with a
Tk tree and then perform j compressions, we obtain a new Tk tree with an extra
node. To demonstrate this self-reproduction, we use the recursive definition of Tk.
Suppose k > 2j. By applying the definition j times, we can unroll Tk horizontally,
into a tree consisting of Tk-., linked with Tk-2,+~, Tk-2j+2,..., and Tk-,. (See Figure
1 la.) By continuing to expand the tree at the root, we eventually unroll T~ into a
tree consisting of a root and subtrees T~,T2 Tk-j. (See Figure 1 lb.)

We can, on the other hand, continue the expansion by unrolling each of the
trees Tk-2~+l, Tk--2j+2, • • . , Tk-j vertically. For ease of description, let us assume
that k is a multiple of j, say k = ij. Figure 12 illustrates the unrolled tree Tk, which
consists of Tk-, linked with j subtrees. The hth subtree is a path whose nodes are
the roots of trees Th, T,+h-~, T2j+h-t, • . . , Tk-2j+h-t.

The vertically unrolled tree Tk contains one copy of Th for each h in the interval
[1, k - j] and an extra copy of Tj. But T~ is a tree with a single node. The
horizontally unrolled Tk also contains one copy of Th for each h in the interval [1,
k - j]. Thus, if we link a tree containing a single node with Tk and perform
compressions on the j vertically unrolled paths, we obtain Tk with an extra node.
(See Figure 13.) Each of the j paths compressed contains i + 1 nodes. An easy
induction shows that Tk contains at most (j+ 1) i-~ nodes.

Worst-Case Analysis o f Set Union Algorithms 263

rk"

• if k < j

Tk.l~if k>j

Tk-i
(a)

k 1 2 3 4 5 6 7

(b)

FIG. 10. Tk trees. (a) Rccursive definition of Tk. (b) Examples
of Tk forj ffi 2.

Tk"

i Tk.2j,i. 2 Tk-j
Tk-2j+l

(a)

FIG. I1.

T~ T 2 Tk_j.~ Tk. i

(b)
T, after horizontal unrolling. (a) Aftery-fold unrolling. (b) After complete unrolling.

We obtain bad examples for compression with naive linking in the case m __. n
as follows: Suppose m >_ n >_ 2. Let j = Im/nl , i = Ilogj+l(n/2)J + 1, and k = ij.
Build a Tk tree. Note that I Tkl <-- (j + 1) '-j --< n/2. Repeat the following operations
/n/2J times: Link a single-node tree with the existing tree, which consists of Tk with
some extra nodes. Then perform j finds, each traversing a path of i + 1 nodes, to
reproduce Tk with some extra nodes. There are at most m finds, and the total
number of nodes on find paths is at leastj ln/2J (i + 1) = ~(m lo&l+m/,)n).

264 R. E. TAP-JAN AND J. VAN LEEUWEN

Tk"

\ Tk-j-! %

_~..-J _~.-.~ \ _ ~ \
Tk-3i \Tk-3j.+~ \ Tk-~'j-t \ \ % \

r 1"2 T i

Ft~. 12. Tk for k = ij after j-fold horizontal and complete vertical unrolling.

FIG. 13. Self-reproduction of Tk.

• A ~ Tk LINK

Tk

COMPRESS
j PATHS

Tk

Summarizing our results for compression with naive linking, we have the
following theorem (note that

lo&2+,,/,~n ffi O(lo&l+m/,~n) if m >_. n,
log(2+m/n)n = O(log n) if m < n).

THEOREM 4. The set union algorithm with compression and naive linking runs
in O(n + m log(2+m/n)n) t ime .

For splitting, we can define a similar class of self-reproducing trees, called Sk
trees. Let j _> 1. For each integer k, define Sk as follows: If k <_ O, Sk is an empty
tree. If k E [1, j], Sk is a single-node tree. If k > j, Sk consists of a root and j + 1
subtrees, Sk-2j, Sk-2j+l, . . . , Sk-j. (See Figure 14.) Note that Sk for k E [j, 2j]
consists of a root with k - j children.

For k = i j, Sk has the following property: If we unite a single-node tree with Sk
and then perform j splittings, each on a path of i + 1 nodes, the result is a new Sk
tree with an extra node. To demonstrate this self-reproduction, we introduce an
auxiliary class of trees Rk. For k >_. j, Rk consists of a root and j subtrees, Sk-2j.,
S~-2j+2,... , Sk-j. (See Figure 15a.) Note that Rk = St, for k E [j, 2 j - l] . For k > j ,
we can represent Sk as Rk-~ linked with S~: or alternatively as RK linked with SK-2j.
(See Figure 15b.)

Suppose k = ij with i >_ 1. We can unroll the j subtrees Sk-2~.~, Sk-2j+2 Sk-j
of Sk into paths of i nodes using the first expansion of Figure 15b. (See Figure 16.)

Worst-Case Analysis of Set Union Algorithms 265

S k =

THE EMPTY TREE if k:~o

• if I s k<j

Sk-2j I Sk'i
Sk-aj+l

(a)

if k>j

k -1 0 t 2 3 4 5 6

,

FIG. 14.
j=2.

(b)

Sk trees. (a) Recursive definition of Sk. (b) Examples for

Rk=

Sk-2j÷tSk-zj.2 Sk- i
(a)

Sk-j Sk-aj

(b)

FIG. 15. Rk trees. (a) Definition.
(b) Alternative expansions of 8k for
k>j.

If we unite a single-node tree with Sk and then split the unrolled paths, we can roll
up the resulting tree into Sk with an extra node, using the second expansion of
Figure 15b and the equalities Sk = Sk-= for k E [2,j] and Rk ffi Sk for k E [j, 2j -
1]. Figure 17 illustrates the case of even i; the case of odd i is similar.

Each of the j paths split contains i + 1 nodes. An easy induction shows that Sk
contains at most (j + l)'-t nodes for k _> 1. We can construct bad examples for
splitting with naive linking using Sk trees just as we did for compression with naive

266 R. E. TAR JAN AND J. VAN LEEUWEN

S k •

\

\

S

\

S2 Sj

FIG, 16. Vertical unrolling of S~ for k ffi ij.

j SPLITTINGS

R

Rj'S i R2j-t=S2j-t

Sk-sj Sk-2j-t Sk-zj

A

FIG. ! 7. Self-reproduction of Sk for k ffi tj, i even, S~ denotes Sk with an extra
node.

Worst-Case Analysis of Set Union Algorithms

0

H I

1"! Hi- 1 HI1.1 H~- I Hi- I

(a)

if i = |

if i > !

267

i I 2 3

"2i Hi

(b)

FIG. 18. HI trees. (a) Recursive definition of/-/,. (b) Examples
of H, forj = 2.

linking using Tk trees. Thus we obtain an ~(m log~+m/,)n) lower bound for the total
number of nodes on find paths. The following theorem summarizes the situation
for splitting with naive union:

THEOREM 5. The set union algorithm with splitting and naive union runs in
O((n + m)log~2+m/,) (min{m, n])) time.

We conclude this section by defining a class of trees self-reproducing under
halving. Le t j ___ 1. For i ___ 1, we shall define a tree H, with the following property:
If we perform j halvings on H,, each on a path of 2i - 1 nodes, and then link a
single-node tree with the halved tree, the result is a new H~ tree with an extra node.
The extra node is the starting node of the first path that was halved; this node is a
leaf in the original H, tree. We use H, n to denote H, after the first h of the j self-
reproducing halvings has been carried out.

We define H, inductively, simultaneously proving the self-reproducing property.
H~ is a single-node tree; its self-reproduction is obvious. For i > 1, suppose He-~ is
defined and known to be self-reproducing. We define H, to consist of a root and a
single subtree formed by linking H,_~ with H,-I, H~_~, H,~_l, . . . , ~-! H,_I. (See Figure
18.) If we perform j halvings on H,, one starting in each of the subtrees
H,-l, H~-i, H~-l j-l H,_~ linked to H,_~, we produce a tree consisting of a root
and subtrees H,_~, H~_~, H,Z_~ HJ,_~. But the tree consisting of a root and a
single subtree H~,_~ is H,_~ with an extra node by the induction hypothesis. Thus,
if we unite a single node tree with the halved tree, we obtain He with an extra node,
and H, is self-reproducing. (See Figure 19.) The size of He is at most (j + 1) e. We
can obtain bad examples for halving and naive linking using H~ as we did for
compression and naive linking using Tk, except that in each cycle o f j finds arid a

268 R. E. TAR JAN AND J. VAN LEEUWEN

H•j
HALVINGS

1 J ' |
Hi-1 H i . 4 Hi-4

-t

H, 1 Hrl It~1-t . ..I .,)-1 Mi- 1 Mi- 1 hi-1 • * •

FIG. 19. Self-reproduction of H,. H,+-= denotes H~-i with an extra node.

link, the link follows the finds. Thus we obtain a lower bound of 9(m log(~+m/,)n)
for the total number of nodes on find paths. The following theorem summarizes
what we know about halving with naive linking:

THEOREM 6. The set union algorithm with halving and naive union runs in
0((!1 + m)log(2+m/n) (minim, n})) time and in 9(n + m log(2+m/.)n) time. (These
bounds match for m >_ n.)

4. Reversal

Van Leeuwen and van der Weide [13] proposed another one-pass find method,
called reversal. Although reversal is superficially appealing, we shall see that it is
not as efficient as the methods studied in Section 3. Reversal is really a class of
methods rather than a single method. A reversal of type zero is performed on a
find path by making every node on the path point to the first node on the path.
(See Figure 20a.) Note that this changes the canonical element of the set. For any
integer k _> 1, a reversal of type k is performed by making the first node and the
last k nodes on the path point to the last node, and making the remaining nodes
point to the first node. Figures 20b and c illustrate type one reversal and type two
reversal, respectively. Van der Weide [14] called type three reversal node transpor-
tation. We can use any type of reversal in combination with any linking rule.

As k increases, type k reversal approximates compression more and more closely,
but for no fixed k is type k reversal as efficient as compression. We shall analyze
the efficiency of types zero, one, and two, and leave the analysis of type k for k >
3 as an open problem. We begin our analysis of reversal by showing that both type
zero and type one use O(n + m log n) time for any linking method. Van Leeuwen
and van der Weide [13] observed that if we reverse a path of i + 1 nodes in a B,
tree, the result is a new Bi tree. (See Figure 21.) This is true for both type zero anal
type one, and implies a lower bound of f~(n + m log n) for either of these algorithms
with any linking method, since we can build a Bi tree with any linking method.

Worst-Case Analysis of Set Union Algorithms

0

°4i '
~ (b)

(e)

FIG. 20. Reversal. (a) Type zero. (b) Type one. (¢) Type two.

269

To obtain a corresponding upper bound, we use a version of the multiple-
partition method much like that used to analyze compression with naive linking.
Our bound of O(n + m log n) improves van Leeuwen and van der Weide's bound
of O((n + m)log(n + m)).

LEMMA 10. In any sequence of set operations implemented using type zero or
type one reversal and any linking method, the total number of nodes on find paths
is O(n + m log n).

PROOF. We shall prove that if we start with an arbitrary n-node forest and
perform an arbitrary sequence of at most n - 1 links and m _< n intermixed finds,
then the total number of nodes on find paths is at most 4mrlog n] + 7m + n. This
implies the lemma. (Apply the bound repeatedly to groups of n consecutive
operations.)

We first consider type zero reversal. For each node in the forest, we define a
rank, which may change as the links and finds are carried out. (This new definition
of rank is for analytical purposes only and does not affect the implementation of
the linking by rank rule.) Initially, the rank of a node is its height in the original
forest. When a link operation causes a tree root r to become the parent of another
tree root s, we redefine the rank of r to be the maximum of its old value and one
more than the rank of s. When a find operation begins at a node e and returns a
node r, we redefine the rank of e to be one more than the rank of r.

With this definition, ranks always strictly increase along any path in the forest,
and every rank is in the range [0, 3n - 2]. (The original ranks are in the range [0,
n - 1], and a set operation can increase the maximum rank by at most one.) We

270 R. E. TAR JAN AND J. VAN

S•\
el-z\

TYPE ZERO
RE~E R S A L . ~ B~ i

\

Bo Bt Brl

Bo
(a)

\ \
Bi-2 \

TYPE ONE

Bo BI Bi-2

(b)
Bo

A
Bi

FIG. 21. Self-reproduction of B, by reversal. (a) Type zero reversal.
(b) Type one reversal.

LEEUWEN

define the level of a node x as in the proof of Lemma 9 to be zero ifp(x) = x and
the maximum value of i such that rank(p(x)) - rank(x) _> 2 '-I if p(x) ~ x. If
level(x) ÷ O, then the rank of x cannot change, and the level of x cannot decrease,
until a find of x occurs.

We define a node to be active it it starts or ends a find path and passive otherwise;
there are at most 2m active nodes. Once a node x has an active parent, it retains
an active parent. We charge for a find almost exactly as in I.emma 9:

Find Charging. Charge flog n] + 4 to the find.

Active Node Charging. If x is an active node of level i that is not the first node
on the find path and is followed somewhere on the path by another node of level
i, charge one to x.

Passive Node Charging. I f x is a passive node, charge one to x.

Since all levels are in the range [0, flog n] + 2], the total charge for a find is at
least the number of nodes on the find path. Charging a passive node causes one of
its children to acquire an active parent. This can happen at most n times. Charging
an active node causes its level to increase by at least one. This can happen at most
flog n] + 1 times before a find on the node occurs. Thus the total charge to active
nodes is 3m(flog n] + 1). The total charge to finds is m(flog n] + 4), giving a grand
total charge of 4mflog n] + 7m + n.

Worst-Case Analysis of Set Union Algorithms

/I Bi-2
/

/A
Bo

TYPE TWO

Bo Bi-2 Bi-1

S
Bi Bi

(a)

REPEATEDREv~sALTYPE T ~

_~ Bi Bi Bi

Bi
(b)

FIG. 22. Effect of type two reversal on a collection of finked B~ trees.
(a) Reversal on a single B~ tree. (b) Reversal on several B, trees.

271

Exactly the same proof works for type one reversal, if_we change the definition
of rank as follows: When a find of a node e returning a node r is performed, we
redefine the rank of e to be the old rank of r and redefine the rank of r to be one
more than its previous value. We obtain the same upper bound of 4mrlog n] + 7m
+ n on the total number of nodes on find paths, assuming m _< n. []

THEOREM 7. The set union algorithm with reversal of type zero or one and
naive linking, linking by rank, or linking by size runs in O(n + m log n) time.

Type two reversal has more interesting behavior than either type zero or type
one. With naive linking, the method runs in O(n + m log(2 + n2/(n + m))) time;
with either linking by rank or linking by size, the method runs in O(n + m
log(2 + n log n/(n + m))) time. As with the other types of reversal, we begin with
the lower bounds. Figure 22a illustrates that if we perform a type two reversal on
a tree consisting of a root, a single child, and a single B, tree at depth 2, we obtain
a tree in which the B, tree has moved to depth one. More generally, if we form a
tree consisting of a root and j subtrees, each a copy of Bi, we can reproduce this
tree by linking it with a single-node tree and performing j type two reversals, one
on each B, tree. Each path reversed contains i + 3 nodes. (See Figure 22b.)

We obtain bad examples for type two reversal with naive linking as follows: For
any m _ n >_. 3, l e t j = tm/nJ. Suppose n/2j _> 1 (otherwise n2/(n + m) -- O(1)) and

272 R. E. TAP, JAN AND J. VAN LEEUWEN

Bi Bi Bi Bi
(a)

Bi Bi

REVERSALS

Bi Bi
(b)

Fro. 23. Bad examples for type two reversal with linking by rank or size.
(a) Initial trees fo r j = 5. (b) Typical link followed by reversals.

let i -- [log(n/2j)J. Build a tree consisting of a root and j subtrees, each a B~ tree.
This tree contains at most ln/2J + 1 nodes. Repeat the following operations rn/2]
- 1 times. Link a tingle-node tree with the existing tree (which is isomorphic to
the original tree with some extra nodes) and perform j type two reversals, each on
a path of i + 3 nodes~ to reproduce the original tree with some extra nodes. The
total number of nodes on find paths is at least

j(rn/2] - l)(i + 3) ffi 12 m log ~ .

For n _> 3 but m < n, the same example with j -- 1 and at most m finds gives a
lower bound of 12(m log n); a lower bound of fl(n) is obvious.

The way we obtain bad examples for type two reversal with linking by rank or
size is similar but a little more complicated. For any m >_ n _> 64, let j = Lm/nJ.
Suppose log n/ j _> 1 (otherwise n log n/m ffi O(1)) and let i -- Llog(log n/j)J, k =
Llog(n/log n)J. Since n _> 64, k _> 3. By means of links by rank or size, build j 2 k
copies orB,. These trees contain no more than j2 '+k _< n nodes. Link the B~ trees
in groups o f j using linking by rank or size, giving 2 k trees, each consisting of B,
linked with j - 1 copies of B,. (See Figure 23a.) Repeat the following operations
until only one tree is left: Link the existing trees in pairs; then perform a type two
reversal on each of the Bi trees of depth two. (See Figure 23b.) Each tree existing
after a sequence of reversals consists of a B, tree linked with a number of copies of

Worst-Case Analysis of Set Union Algorithms 273

B,. Each reversal is on a path of i + 3 nodes. The total number of revorsals is

k - I

~, 2k--h--l(2hj--l) "~ k2k-ij -- 2 k + l <-- m.
h-O

The total number of nodes on find paths is

For n _> 64 but m < n, the same example with j -- 1 and at most m finds gives a
lower bound of fl(m log log n); a lower bound of ft(n) is obvious.

To derive upper bounds for type two reversal, we use almost the same proof as
in I.emma 10.

LEMMA 11. In any sequence of set operations implemented using naive linking
and type two reversal, the total number of nodes on find paths is O(n + m log(2 +
n2/(n + m))). In any sequence of set operations implemented using linking by rank
or size and type two reversal, the total number of nodes on find paths is O(n + m
log(2 + n log n/(n + m))).

PROOF. We define the rank of a node as in the proof of Lemma 10, with the
following difference: When a find operation begins at a node e and returns a node
r, we redefine the rank of e to be one less than the rank of r. As in the proof of
Lemma 10, this new definition of rank does not affect the implementation of the
linking by rank rule. With this definition, ranks always strictly increase along any
path in the forest. With naive linking, all ranks remain in the range
[0, n - l]; with linking by size or rank, all ranks remain in the range [0, [lognl].
We define the level of a node as in the proofs of Lemmas 9 and 10 and active and
passive nodes as in the proof of Lemma 10; thus there are at most 2m active nodes.
We charge for a find using the following rules, where k is a parameter to be chosen
later:

Find Charging. Charge k + 3 to the find.

Active Node Charging. I f x is an active node of level i that is no t the first node
on the find path and is followed by another node of level at least min{i, k + 1 },
charge one to x.

Passive Node Charging. If x is a passive node, charge one to x.

Consider any find. A node on the find path that is not charged for the find must
be either the first, the last of a level i in the range [0, k], or the last with level at
least k + 1. Thus, there are at most k + 3 nodes not charged, and the t6ial charge
for the find is at least the number of nodes on the find path.

The charge to passive nodes is at most one per passive node, for a total of at
most n. An active node can be charged at most once per level for each level in the
range [1, k] before a find on the node occurs; this gives a total charge of 3mk to
active nodes on levels in the range [1, k]. Each time an active node is charged on
level k + 1 or higher, the rank of its parent increases by at least 2 k. This can happen
at most r/2 k times, where r is the maximum rank of any node. Thus the total
charge is at most 3mk + n(r/2 k) + n, since the number of active nodes is at
most n.

274 R. E. TAR JAN AND J. VAN LEEUWEN

With naive linking, r _ n - 1. If we choose k = log(2 + n2/(n + m)), the total
charge is at most

(n + m) n + m ~ (n + m)) 3mlog 2 + + + n = n + m l o g 2 + .
n 4 n

With linking by rank or size, r ~< log n, and if we choose k ffi log(2 + n log n/(n +
m)), the total charge is at most

(n l o g n ~ (n + m) ~ (n l o g n ~
3mlog 2 + n + m] + ~ + n = n + m l o g 2 + n + m /] . I"1

THEOREM 8. The set union algorithm with naive linking and type two reversal
runs in O(n + m log(2 + n2/(m + n))) time. The algorithm with linking by rank or
size and type two reversal runs in O(n + m log(2 + n log n/(n + m))) time.

5. Collapsing and Splicing

Yet another way to speed up the set union algorithm is to spend more than O(1)
time on each link operation, in the hope of saving time on finds. The most extreme
way of doing this is collapsing: To link two trees, we make every node in one tree
point to the root of the other. (See Figure 24.) Collapsing is well known; a discussion
of it appears in [2]. We can use collapsing with naive linking, linking by rank, or
linking by size. (Note that with linking by rank, the rank of the root of a tree bears
no relation to its depth, which is always zero or one.) Collapsing causes each find
to take O(1) time (each find path contains only one or two nodes), but a link takes
time proportional to the size of one of the sets being linked. The following theorem
is easy to prove:

THEOREM 9 [2]. The set union algorithm with collapsing and naive linking runs
in O(n 2 + m) time. The algorithm with collapsing and linking by rank or size runs
in O(n log n + m) time.

Although superficially appealing, collapsing has two serious drawbacks that make
it inferior to any form of compaction with respect to both space and time. First, it
requires two pointers per node rather than one, since each set must be represented
as a linked list. (Circular linking is best; see Figure 25.) Second, the algorithm with
collapsing always performs at least as many parent pointer assignments as any
form of compaction, as the following theorem shows:

THEOREM 10. Let algorithm A~ be the set union algorithm with collapsing and
any linking method, and let algorithm A2 be the set union algorithm with any form
of compaction and the same linking method as A~. Then on any sequence of set
operations, algorithm A~ performs at least as many assignments to parent pointers
as algorithm A2.

PROOF. For any sequence of set operations, define the reference forest to be the
forest whose nodes are the elements, such that element e is the parent of element f
if and only if a link operation makes e the parent off. Algorithm A~ performs an
assignment p(x) = y for every pair of nodes x and y such that y is a proper ancestor
of x in the reference forest; algorithm A2 perfOrmS an assignment p(x) = y only if
y is a proper ancestor o f x in the reference forest. I"1

The final set union algorithms we shall study are based on an idea of Rem [4].
Rem's idea was to combine the two finds and the link used to carry out a unite

Worst-Case Analysis o f Set Union Algorithms

o g a

b e d e f h i b c d e f g h i

FIG. 24. Collapsing during link (a, g).

b c d e f g

275

i j k

!

FIG. 25. Representation of sets la, b, c, d, e, f, gl, Ih, t, j, kl, {/I
using collapsing data structure. Each node has a parent and a next
field; rank and label fields are omitted in the figure.

into a single operation that scans the two find paths simultaneously, restructuring
the forest in the process. The most natural way to present Rem's method is as a
solution to a variant of the set union problem that we call the contingent union
problem: Carry out an intermixed sequence of two kinds o f operations on unlabeled
sets:

make set(e): Create a new set containing the single element e. This operation
requires that e initially be in no set.

contingently unite(e, f) : If elements e and f are in the same set, return false.
Otherwise combine the sets containing e and f i n t o a single set and return true.

The following procedure implements contingent union using two finds and a link
(we must modify link to avoid updating set labels):

predicate contingently umte(e, f) ;
local r, s:
r := find(e);
s := find(f);
if r = s --, return false
O r ~ s --~ hnk(r, s);return true
fi

end contingently unzte;,

276 R. E. TARJAN AND J. VAN LEEUWEN

t0

FIG. 26. Contingent union of nodes 1 and 2 by splicing.

We shall call Rem's solution to the contingent union problem naive splicing. We
assume that the elements are totally ordered in an arbitrary way. (We can impose
such an ordering by numbering the elements from I to n.) To carry out contingently
unite(e, f) , we scan the two find paths concurrently, taking a step in one path at a
time. I fx and y are the current nodes on the two paths, we take a step by comparing
p(x) and p(y). If p(x) - p(y), we stop and return false. Otherwise, we make the
node with the smaller parent, say z, point to the larger parent and rep!ac¢ it by its
old parent. If z did not change (we are at a root), we stop and return true. (See
Figure 26.) Note that splicing maintains the property that p(x) _> x for all nodes x.
The following procedure implements contingent union with naive splicing:

predicate contingently unite(e, f);
local x, y, z;
x,y:=e, f ;
do p(x) = p(y) --~ return false
0 p(x) < PrY)

x, ,t,(x), z := p(x), pO'), x;
i f x = z ~ return true fi

fl p(x) > p(y)
y, p(y), z := pry), p(x), y,
i f y -- z ~ return true fi

od
end contingently unite;

In our analysis of naive splicing, we assume that n is the number of elements
that are ever parameters to contingent union operations and that m is the number
of contingent unions; thus m >__ n/2. The running time of naive splicing is
O(m logt2+m/,)n), making it asymptotically as fast as compaction with naive linking.
We obtain the lower bound by noting that if e and f a r e different tree roots, splicing
does the same thing as naive linking; if f is the root of the tree containing e, then
splicing compresses the path from e to f. Thus the bad examples constructed in
Section 3 for compression with naive linking work for splicing, and we obtain an
fl(m logt2+mln)n) lower bound. (This bound generalizes the fl(nlogn) lower bound
of van Leeuwen and van der Weide [11].) To obtain the upper bound, we use a
complicated version of the multiple-partition method.

Worst-Case Analysis of Set Union Algorithms 277

LEMMA 12. In any sequence of contingent unions implemented with naive
splicing, the total number of node visits is O(mlog~2+,,/,)n), where we call a node
visited if it has its parent changed by the splice.

PROOF. To each node x we assign a (permanent) rank in the range [0, n - 1]
corresponding to the position of x in the total order of nodes. For each level i E
[O, flogt2+,,,/,jn]] we define a partition on the ranks whose blocks are

block(i, j) --- [j12 + m/nY, (j + l)t2 + m / n J ' - I]
for j ___ 0. If x and y are a pair of nodes such that rank(x) < rank(y), we define
level(x, y) to be the minimum value of i such that rank(x) and rank(y) are in the
same block of the level i partition. Then level(x, y) E [1, [logt2÷m/,jn]]. (This
partition is the same as the partition used in Lemma 7 to analyze compaction with
naive linking.)

Consider a splice of nodes e and f Let Xo, Xa, Xk be the nodes visited during
the splice, in increasing order by rank. These nodes comprise part or all of the
paths from e and f t o the roots of their respective trees. In order to charge for the
splice, we define a layer for each node x, by layer(xk) -- O, layer(xi) -- level(xi, xi÷,)
for i E [0, k - 1]. We charge according to the following rules:

Node Charging. For each node x, such that i >_ 3 and

layer(x,) >_ max{layer(x,-3), layer(xi-2), layer(x~-O],

charge layer(x,) - max{layer(x,-3), layer(x,-2), layer(x,-O} + 1 to either xi-3, xi-2,
or x~-~ as follows, where p is as defined before the splice:

(a) Ifp(x,_0 = x, (x,_~ and x, are on the same path), then charge x~-t.
(b) Otherwise, ifp(x,-2) = x, (x,-2 and x, are on one path and x,-~ is on the other),

then charge X,-z.
(c) Otherwise (x,-2 and x,-~ are on one path and x, is on the other), charge xl-3.

Splice Charging. Charge 1 + rlogt2+m/,jn] to the splice.

Remark. Case (c) of the node charging rule is really two cases, which we shall
have to distinguish in the analysis:

(ci) p(x,-3) = x, (x,-3 and x, are on one path and x,-2 and x H are on the other).
(cii) p(x,-3) ~ x, (x,-3, x,-2, and x,-~ are on one path and x, is on the other).

In order to relate the charge for a splice to the number of node visits, let Yo,
y~ Yh be the subsequence of xo, x~ , Xk containing the node of maximum
layer among each consecutive triple x,, X,+a, x,+2, for i E [0, k - 2], breaking ties
by choosing the last node of maximum layer. Note that a node J5 can be maximum
in up to three triples x,, x,+~, x,+2.

If k ___ 3, the y-subsequence contains at least one-third of the nodes in the x-
sequence. I f P = {JlJ E [0, h - 1] and layer(yj) <_ layer(yj+O}, the first part of the
proof of Lemma 3 shows that

Y. (layer(yj+O - layer(yj) + 1) + [logt2+,~/.jn + 1] _> h + 1 >__ (k + 1)/3.
j~.P

Thus, if we can show that every node ~+~ with layer(y~+O >- layer(~) generates a
charge of at least layer(ya+,) - layer(yj) + 1, we can conclude that the total charge
for a splice is at least one-third the number of node visits.

278 R . E . TAR JAN AND J. VAN LEEUWEN

Suppose layer(y~+O >>. layer(y~). The first node x, following yj in the x-sequence
and satisfying layer(x,) >>- layer(yj) must have maximum layer among x,-2, xH, x,,
since none has layer greater than layer(xi). Thus xi -- yj+~. The set of three
consecutive nodes among which yj has maximum layer cannot include x~ by the
tie-breaking rule. Thus,

layer(yj+O = layer(xi) >_ max{layer(x,-3), layer(xi-2), layer(x~-O} = layer(yj),

and yj+~ generates a node charge of layer(yj+ 0 - layer(yj) + 1 as desired.
It remains for us to bound the total charge. Consider the charge generated by a

node x,. Suppose that layer(x,) >_ max{layer(x,_3), layer(xi-2), layer(xi-O}. In case
(a), (p(xi-O = xi), level(x,_~, p(xH)) increases because of the splice by at least the
amount charged minus one. (The new parent ofxi-~ has rank greater than or equal
to that ofx~+0. In case (b), (p(x,-2) -- xi), level(x,-2, p(xi-2)) increases by at least the
amount charged minus one, and in case (ci), (p(x,-3) = x,), level(xi-3, p(x,-3))
increases by at least the amount charged minus one. The total charge for all such
cases is at most twice the number of levels times the number of nodes, or 2nr I +
logt2+m/nJn]. In case (cii), (p(xi-3) = xi-2 and p(x,-2) -- x,-O, level(x,_3, p2(x,_3))
increases by at least the amount charged minus one. The total charge for this case
is also at most 2nr 1 + logt2+,n/nJn]. (The new grandparent of x,-3 has rank greater
than or equal to that of x~÷~.)

We must also account for the charge generated if layer(x,) = max{layer(x,-3),
layer(x,_2), layer(x,-O}. Let h = layer(x,). In case (a), the splice causes rank(p(xi-O)
to move from one level h - 1 block to another. In case (b), the splice causes
rank(p(x,-2)) to move from one level h - 1 block to another, and in case (ci), the
splice causes rank(p(xi-3)) to move from one level h - 1 block to another. If x is
any node, p(x) can be in at most t 1 + m/nJ level h - 1 blocks before level(x, p(x))
> h. Thus the total charge in all such cases is at most the number of levels times
the number of nodes times t2 + m/nJ, or at most (m + 2n)[1 + logt2+m/njn]. A
similar argument using level(x, p2(x)) shows that the total charge in case (cii) if
layer(x,) = max{layer(x,_3), layer(x,_2), layer(xi-l)} is also at most (m + 2n)rl +
logt2+m/nJn].

The total charge to splices is mr I + logt2+m/njn]. Thus the grand total charge is
at most (3m + 8n)rl + logt2+m/~jn]. []

THEOREM I 1. The contingent union algorithm with naive splicing runs in O(m
log(2+m/n)n) time.

We conclude that Rem's algorithm sglves the contingent union problem as
efficiently as compression, splitting, or halving with naive union. The disadvantage
of Rem's algorithm is that it does not use linking by rank or size and thus is not
asymptotically optimal. However, we can obtain an asymptotically optimal algo-
rithm by combining splicing with linking by rank, resulting in a method that we
shall call splicing by rank. When making a set containing the single element e, we
initialize the rank of e to be zero. To carry out contingently unite(e, f), we scan the
two find paths concurrently, taking a step in one path at a time. If x and y are the
current nodes in the two paths, we take a step by comparing rank(p(x)) and
rank(p(y)). If rank(p(x)) < rank(p(y)), we simultaneously replace x by p(x) and
p(x) by p(y); if this does not change x, we stop and return true. The case rank(p(x))
> rank(p(y)) is symmetric. If rank(p(x)) = rank(p(y)), what we do depends upon
x, p(x), y, and p(y). Ifp(x) = p(y), we stop and return false. Ifp(x) ~ p(y) and
x v~ p(x), we replace x by p(x). Ifp(x) ~ p(y) and y ~ p(y), we replace y by p(y).

Worst-Case Analysis o f Set Union Algorithms 279

Finally, i fp(x) # p(y), but x -- p(x) and y -- p(y), we replace p(x) by p(y), add
one to the rank of y, and stop, returning true. The following procedure implements
contingent union with splicing by rank.

predicate contingently unite(e, f);
local x, y, z;
x,y:=e,f, ,
do rank(p(x)) < rank(p(y)) --*

x, v(x), z := p(x), v(y), x;
i f x = z ~ return true fi

0 rank(p(x)) > rank(p(y))
y, p(y), z := p(y), p(x), y;
i f y = z ~ return true fi

0 rank(p(x)) = rank(p(y)) --.
i f p(x) = p(y) ~ return false fi;
if x ~ p (x) -.~ x := p (x)

0 y # V(Y) --* Y := P(Y)
0 x = p (x) and y = p(y) --,

p(x) := p(y); rank(y) := rank(y) + 1; return true
fi

od
end contingently unite;

Splicing by rank maintains the invariant that rank(x) < rank(p(x)) for each node
x such that x ÷ p(x). We can define the reference forest for a sequence of make
set and contingently unite operations as we did in Section 3: The parent of a node
x in the reference forest is the first value other than x assigned to p(x) by the
algorithm. With this definition, Lemma 2 holds for the reference forest, if we take
the rank of a node x to be the last value assigned to rank(x) by the algorithm.
Combining the analysis in Section 3 for compaction and linking by rank with the
ideas in the proof of Lemma 12, we can obtain a bound of O(ma(m + n, n)) for
splicing by rank.

THEOREM 12. The contingent union algorithm with splicing by rank runs in
O(ma(m + n, n)) time.

PROOF. Exercise. []

Splicing by rank has another property worth noting.

THEOREM 13. I f every contingent union operation returns true, then the contin-
gent union algorithm with splicing by rank runs in O(n) time.

PROOF. There are at most n - 1 contingent unions. Consider the last one,
combining trees with roots r and s. The time for this union is O(min{rank(r), .
rank(s)}) = O(log(min{size(r), size(s)})). If t(n) is the total time as a function of n,
we obtain the recurrence

t(l) = O(1);
t(n) = max {t(i) + t(n - i) + O(log(min{i, n - i}))1 if n > 1.

! " : r~ t l

This recurrence has the solution t(n) = O(n). []

6. Remarks

In this paper we have analyzed a total of twenty-six algorithms for the set union
problem. Tables I and II list the asymptotic running times of the algorithms for

280 R. E. TARJ~,N AND J. VAN LEEUWEN

TABLE I. WORST-CAsE RUNNING TIMES OF SET UNION ALGORITHMS IF m ~ n

Naive linking Linking by rank or size

Naive find O(mn) O(m log n)
Compression O(m log(, + m/.)n) O(ma(m,n))
Splitting O(m lo~t ÷ m/.~n) O(ma(m,n))
Halving O(m logo +,,/,~n) O(ma(m,n))
Type zero reversal O(m log n) O(m log n)
Type oqe reversal O(m log n) O(m log n)

Type two reversal O(m log(2 + n2/m)) O(m log (2 + n log n)) m

Collapsing O(m + n 2) O(m + n log n)
Naive splicing O(m log(, +,./.)n) - -

Splicing by rank - - O(ma(m,n))

TABLE II. WORST-CASE RUNNING TIMES OF SEt UNION ALGORITHMS IF m < n

Naive linking Linking by rank or size

Naive find O(mn) O(n + m log n)
Compression O(n + m log n) O(n + ma(n,n))
Splimng O(n log m) O(n + mc~(n,n))
Halving ft(n + m log n), O(n log m) O(n + ma(n,n))
Type zero reversal O(n + m log n) (~n + m log n)
Type one reversal O(n + m log n) O(n + m log n)
Type two reversal O(n + m log n) O(n + m log log n)
Collapsing O(rf) O(n log n)
Naive splicing O(n + m log m) - -
Splicing by rank - - O(n + ma(m,m))

m _ n and m < n, respectively. (In most applications m _> n.) Seven of the
algorithms are asymptotically optimal: compression, splitting, or halving combined
with union by rank or size, and splicing by rank. The remaining methods are less
efficient; most run in about O(log n) time per find. Our analysis has displayed the
power of the multiple-partition method for deriving upper bounds and of self-
reproducing trees for giving worst-case examples. Two intriguing open problems
remain: To analyze the running time of halving with naive linking if m < n, and
to analyze the running time of type k reversal for k -> 3.

Our analysis shows that some of the compression methods, while intuitively
appealing, are not asymptotically optimal or are dominated by other methods.
Specifically, the various kinds of reversal (see Section 4) are not asymptotically
optimal; neither is Rem's splicing method for contingent union (see Section 5),
unless it is modified to incorporate linking by rank. Furthermore, the collapsing
method (see Section 5), sometimes called "fast find," is dominated by compression,
splitting, or halving with the same linking rule. LaG [9] gives another rather
complicated algorithm that is not asymptotically optimum. For practical applica-
tions we favor either halving or compression with linking by rank.

The question of whether there is a linear time set union algorithm remains open.
The nonlinear lower bound for separable algorithms [11] suggests that such an
algorithm, if there is one, will use the power of random-access memory. Recently,
Gabow and Tarjan [6] have devised such a linear-time algorithm for a special case
of set union that occurs in many applications, but the method does not seem to
extend to the general case, as it requires advance knowledge and preprocessing of
the link operations.

Worst-Case Analysis o f Set Union Algorithms 281

REFERENCES

!. ACKERMANN, W. Zum Hilbertschen Au[bau der reellen Zahlen. Math. An'n. 99 (1928), I |8-133.
2. AHO, A.V., HOt~ROFr, J.E., AND ULLMAN, J.D. The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, Mass., 1974.
3. BANACHOWSKi, L. A complement to Tarjan's result about the lower bound on the complexity of

the set union problem. Inf. Process. Lett. 11 (1980), 59--65.
4. DIJI<STRA, E.W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N. J., 1976.
5. FISCHER, M.J. Efficiency of equivalence algorithms. In Complexity of Computer Computations,

R. E. Miller and J. W. Thatcher, Eds. Plenum Press, New York, 1972, pp. 153-168.
6. GABOW, H.N., AND TARJAN, R.E. A linear-time algorithm for a special case of disjoint set union.

In Proceedings of the 15th ACM Symposium on Theory of Computing (Boston, Mass., Apr. 25-27).
ACM, New York, 1983, pp. 246-251.

7. GALLER, B.A., AND FISHER, M.J. An improved equivalence algorithm. Commun. ACM 7, 5 (May
1964), 301-303.

8. HOpCROrr, J.E., AND ULLMAN, J.D. Set-merging algorithms. SIAMJ. Comput. 2 (1973), 294-
303.

9. LAO, M.J. A new data structure for the union-find problem. Inf. Process. Lett. 9 (1979), 39--45.
10. TARJAN, R.E. Efficiency of a good but not linear set union algorithm. J. ACM22, 2 (Apr. 1975),

2 ! 5-225.
I 1. TARJAN, R.E. A class of algorithms which require nonlinear time to maintain disjoint sets. J.

Comput. Syst. Sci. 18 (1979), 110-127.
12. TA~AN, R.E. Applications of path compression on balanced trees. J. ACM 26, 4 (Oct. 1979),

690-715.
13. VAN LEEUWEN, J., AND VAN DER WEIDE, T. Alternative path compression techniques, Tech. Rep.

RUU-CS-77-3, Rijksoniversiteit Utrecht, Utrecht, The Netherlands, 1977.
14. VAN DER WEIDE, T. Datastructures: An Axiomattc Approach and the Use of Binomial Trees in

Developing and Analyzing Algorithms. Mathematisch Centrum, Amsterdam, 1980.

RECEIVED FEBRUARY 1982; REVISED JUNE 1983; ACCEPTED JUNE 1983

Journal of the Assocmuon for Computing Machinery, Vol. 31, No. 2, AI~! 1984.

