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1. Introduction 

A well-known problem in data structures is the set union problem, defined as 
follows: Carry out a sequence o f  intermixed operat ions o f  the following three kinds 
on  labeled sets: 

make set(e, l): Create a new set with label l containing the single e lement  e. This  
operat ion requires that  e initially be in no set. 

f ind label(e): Return  the label o f  the set containing e lement  e. 

unite(e, f ) :  Combine  the sets containing elements  e and f i n t o  a single set, whose 
label is the label o f  the old set containing e lement  e. This  operat ion requires that  
elements  e and f in i t i a l l y  be in different sets. 

Because of  the constraint  on make set, the sets existing at any t ime  are disjoint 
and  define a parti t ion of  the d e m e n t s  into equivalence classes. For  this reason the 
set union problem has been called the equivalence problem by some authors. A 
solution to the set union problem can be used in the compil ing o f  F O R T R A N  
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EQUIVALENCE statements [7] and in finding minimum spanning trees [2]. A 
generalization of  the problem arises in the compiling of FORTRAN COMMON 
statements [2, 7] and in various graph problems [12]. 

All algorithms for the set union problem appearing in the literature can be 
regarded as versions of a general method that we shall call the canonical element 
method. Within each set, we distinguish an arbitrary but unique element called the 
canonical element, which serves to represent the set. We store the label of  a set 
with its canonical dement  in a field called label. We carry out find label and unite 
using two lower level operations that manipulate canonical elements: 

find(e): Return the canonical element of the set containing dement  e. 
rink(e, f): Combine the sets whose canonical dements are e a n d f i n t o  a single set, 
and make either e or f t h e  canonical element of the new set. The label of  the new 
set is the label of  the old set containing element e. This operation requires that 
e ÷ f .  

The following procedures, written in a version of Dijkstra's guarded command 
language [4], implement find label and unite: 

function find label(e); 
return label(find(e) ) 

end find label; 
procedure unite(e, f); 

link( find( e), find(f) ) 
end unite; 

To make finds possible, we represent each set by a rooted tree whose nodes are 
the dements of the set. The tree has an arbitrary structure except that the root is 
the canonical element. Each node x contains a pointer p(x) to its parent in the 
tree; the root points to itself. This compressed tree representation (so-called because 
of the compression operation defined in Section 3) was invented by Galler and 
Fischer [7]. To carry out find(e), we follow parent pointers from e until repeating 
a node; then we return the repeated node. To carry out rink(e, f), we makefpo in t  
to e; e becomes the canonical dement  of the new set. The following procedures 
implement make set, link, and .find: 

procedure make set(e, 1); 
p(e) :-- ~, label(e) := l 

end make set; 
procedure link(e, JO; 

/ ~ f )  :---- e 
end link;, 
function find(e); 

return if p(e) = e ---, e 
fl p(e) ~ e --~ find(p(e)) 
fi 

end find; 

In analyzing this method (and its more sophisticated variants), we shall regard 
make set, rink, and find as the fundamental operations. We shall denote by n the 
number of make set operations and by m the number of find operations. If k is the 
number of links, k _< n - 1. We shall assume that k >_ n/2. This entails no loss of 
generality, since there are at most 2k elements that are ever in sets containing more 
than one element, and finds on elements in singleton sets require 0( I )  time. In a 
sequence of make set, link, and .find operations that arises from a sequence of 
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make set, unite, and find label operations, there are two finds per l ink  and m __, n. 
However, our analysis will be valid for an arbitrary sequence of  make set, link, and 
find operations, and, we shall not, in general, assume that m _> n. 

The naive version of the canonical element method spends most of  its time 
following parent pointers. Each make set operation requires O(1) time, as does 
each link. A find takes time proportional to the number of nodes on the find path, 
which is at most n. Thus the total time is O(n + mn). The following class of 
examples shows that this bound is tight. By means of n - 1 links, we can build a 
tree that is a path of n nodes; if we then repeatedly perform a find on this path, we 
use a total of  f~(n + mn) time. 

THEOREM 1 [5]. The naive set union algorithm runs in O(n + mn) time in the 
worst case. 

By changing the structure of the trees to reduce the length of find paths, we can 
speed up the algorithm considerably. In this paper we analyze several variants of  
the canonical element method, with the aim of ascertaining which are both easy to 
implement and efficient in theory and in practice. In Section 2 we study two ways 
to implement the link operation, called linking by. size and linking by rank. Both 
methods reduce the maximum length of a find path to O(log n). In Section 3 we 
study a way to improve subsequent finds by compressing each find path. In 
combination with either linking by rank or linking by size, compression gives an 
asymptotically optimal method (in the sense defined below). However, compression 
requires two passes over a find path. We discuss two one-pass variants of  compres- 
sion that also are asymptotically optimal. In Section 4 we study an appealing but 
inferior variant of  compression called reversal In Section 5 we study two ways to 
speed up the canonical element method by doing more work during link and unite 
operations. Section 6 contains some concluding remarks. 

There is a general lower bound for the set union problem that applies to many 
versions of the canonical element method. The algorithms to which this bound 
applies are called the separable algorithms. Consider an arbitrary sequence of 
intermixed make set, link, and find operations. A separable algorithm begins with 
a list structure L representing the sets defined by the make set operations. L 
contains a distinct node representing each element and may contain an arbitrary 
number of auxiliary nodes. (We do not distinguish between an element and the 
node representing it.) Each node contains an arbitrary number of pointers to other 
nodes. The nodes are partitioned into accessed nodes and unaccessed nodes; this 
partition changes as the operations are performed. The algorithm has two kinds of 
steps: 

(i) Follow a pointer x ~ y from an accessed node x to an unaccessed node y. This 
causes y to become accessed. 

(ii) Put into an accessed node x a pointer to another accessed node y. 

The algorithm carries out the set operations in the following way. The initiation 
of an operation make set(e), find(e), or link(e, f )  causes e (and f i n  the case of 
link(e, f)) to become accessed. The algorithm performs an arbitrary sequence of 
steps, which in the case of find(e) must cause the canonical element of  the set 
containing e to become accessed. The completion of an operation causes all nodes 
to become unaccessed. 

We impose one more restriction on the algorithm, called separability: There 
must be a partition of the nodes of the initial list structure L into n parts, such that 
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each element is in a different part and no pointer leads from one part to another. 
Because the algorithm has no global memory (all nodes become unaccessed after 
each set operation), separability is preserved as the set operations are performed. 
More precisely, after each set operation the nodes can be partitioned into i parts, 
where i is the number of  currently existing sets, so that each part contains the 
elements in one set, and no pointer leads from one part to another. 

Any correct separable algorithm must perform at least one pointer construction 
step per link, since otherwise the canonical node of the new set is inaccessible from 
the nodes in one of the two old sets. (Recall that the set operations are to be 
performed on-line.) This gives an fl(n) lower bound on the number of steps needed 
by any separable algorithm in the worst case. For m = f/(n), Tarjan [ 11] derived 
an ~(ma(m, n)) lower bound, where ct is a functional inverse of Ackermann's 
function [1] defined as follows: For i, j -> 1 let the function A(i, j) be defined by 

A(l ,  j )  = 2~ for j _> l, 
A(i, 1) = A(i - 1, 2) for i >_ 2, 
A(i, j) = A(i - 1, A(i, j - 1)) for i, j _> 2. 

Let ~(m, n) = min{i _ 1 [A(i, Lm/nJ) > logn}. 

Remark 1. The most important property of Ackermann's function is its explo- 
sive growth. In the usual definition of this function A(1, j )  = j + 1, and the 
explosion does not occur quite so soon. However, this change only adds a constant 
to the inverse function a. 

Remark 2. The function tz grows very slowly. A(3, 1) = 16; thus a(m, n) _< 3 
for n < 2 ~6 = 65,536. A(4, 1) = A(2, 16), which is very large. Thus, for all practical 
purposes, a(m, n) is a constant no larger than four. 

Remark 3. For fixed n, a(m, n) decreases as m/n increases. In particular, let 
a(i, n) = minl j  >- 1 IA(i, j )  > log n}. Then [m/nJ >_ a(i, n) implies , (m,  n) -< i. For 
instance, Lm/nJ __. 1 + log log n implies a(m, n) _< 1; lm/nJ >_ log*log n implies 
a(m, n) _< 2, where log*n is defined by 

logt°)n = n, log(~+l)n ffi log log(i)n, 
log*n ffi min{illog°)n < 1 }. 

Tarjan's proof contains an error that was found and corrected by Banachowski 
[3]. Combining the ~(n) and f~(ma(m, n)) lower bounds, we obtain the following 
theorem: 

THEOREM 2. Any separable algorithm for the set union problem requires 
~(n + ma(m + n, n)) time in the worst case. 

PROOF. If m ----- n, the theorem follows from Tarjan's bound, since 1 - , ( m  + 
n, n) _< a(m, n). If ma(n, n) <_ n, the theorem follows from the fl(n) bound. Finally, 
if ma(n, n) > n but m < n, we obtain from Tarjan's result a lower bound of 
~(m,(m, m)) if we ignore all but m elements. We have m 2 >-- n, and since ix(m, m) 
_ a(n, n) _< ~t(m 2, m 2) _< o~(m, m) + 1, or(m, m) _> ix(n, n) - 1 _> tz(m + n, n) - 1, 
implying the theorem in this case as well. [] 

Remark. For m < n, Theorem 2 improves Banachowski's lower bound [3] of 
f~(n + ma(n, m)). 

Theorem 2 provides a standard by which we shall judge set union algorithms: 
We call an algorithm asymptotically optimal if its worst-case running time is 



Worst-Case Analysis of  Set Union Algorithms 249 

O(n + ma(m + n, n)). Every algorithm considered in this paper is ~parable and 
thus requires ~2(n + ma(m + n, n)) time; an upper bound of  O(n + ma(m + n, n)) 
is therefore the best for which we can hope. 

2. Linking by Size or Rank 

One way to make find paths shorter is to use a freedom implicit in the link 
operation: When performing link (e, f ) ,  we are free either to makefpo in t  to e or 
to make e point to f. Galler and Fischer [7] proposed linking by size:. We make the 
root of the smaller tree point to the root of the larger tree, breaking a tie arbitrarily. 
The following versions of make set and link implement linking by size, using a 
field size (x) to store the size of the tree rooted at x: 

procedure make set(e, I); 
p(e) := e; label(e) := 1; size(e) := 1 

end make set; 
procedure link(e, f); 

if size(e) > size(f) ---> 
p(f) := e', size(e) := size(e) + size(f) 

[] size(f) > size(e) 
p(e) := f, size(f) := size(e) + size(f); label(f) := label(e) 

fi 
end link; 

If we link by size, no find path has length exceeding log n)  We shall prove a 
stronger result that will be useful later. For any tree node x, we define rank(x) to 
be the height of x. 2 

LEMMA I. I f  x is any node in a forest built from single nodes by a sequence of  
link-by-size operations, size(x) >_ 2 rank(x). 

PROOF. By induction on the number of links. The lemma is true before the 
first link. The size of a node never decreases as links are performed. The only way 
to increase the rank of a node x is to perform a link that causes a node y to point 
to x, in the process making the new rank of x equal to the old rank of  y plus one. 
The new size of x is at least twice the old size of y. Thus, if the ie~mma holds before 
the link, it also holds after the link. [] 

COROLLARY 1. In a forest built from single nodes by a sequence of links by 
size, the number of  nodes of rank i is at most n/2'. 

PROOF. Ranks strictly increase along any path in the forest. Hence, any two 
nodes of the same rank are unrelated; that is, they have disjoint sets of  descendants. 
By Lemma 1, any node of rank i has at least 2' descendants. Thus there are at most 
n/2' such nodes. [] 

COROLLARY 2. In a forest built from single nodes by a sequence of  links by 
size, no path has length exceeding log n. 

A linking method that achieves the same effect as linking by size while saving 
space is linking by rank: We maintain with each node its rank, rather than its size. 
When performing link(e, f ) ,  we make the node of smaller rank point to the node 

Throughout this paper we use base-two logarithms. 
2 The height of a node x in a rooted tree is the length of the longest path from a leaf to x. (We adopt 
the convention that an edge in a rooted tree is directed from child to parent.) Every node is a descendant 
of itself. 
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of larger rank. The following versions of  make  set and link implement linking by 
rank: 

procedure make set(e, 1); 
p(e) := e', label(e) := l; rank(e) := 0 

end make set; 

procedure link(e, f); 
if rank(e) > rank(f) --~ p( f )  :-- e 

rank(e) = rank(f) --~ p( f )  := e; rank(e) := rank(e) + 1 
rank(e) < rank(f) --~ p(e) := f; label(f) := label(e) 

fi 
end link; 

LEMMA 2. L e m m a  1 holds for  linking by rank. That is, size(x) > 2"a"~x) for  all 
nodes x. Thus Corollaries 1 and 2 also hold for  linking by rank. 

PROOF. By induction on the number of  links. Suppose the lemma is true just 
before link(e, f ) .  Let size and rank denote the appropriate functions before the 
link and let size' and rank'  denote the functions just after the link. Let x be any 
node. There are two cases. If x # e or rank(e) ~ rank( f ) ,  then size'(x)  >_ size(x) 
and rank'(x)  = rank(x), which means the lemma is true after the link. I fx  = e and 
rank(e) = rank( f ) ,  then size '(x)  = size'(e) = size(e) + s i ze ( f )  > 2 rankte) + 2 rank(f) = 

2 rank(e)+l = 2 rank'(x), and again the lemma is true after the link. [] 

TheOREM 2 [5]. With either linking by size or linking by rank, the set union 
algorithm runs in O(n + m log n) t ime in the worst case. 

PROOF. The upper bound is immediate from Corollary 2. Binomial trees 
provide a class of  examples showing that the bound is tight. A binomial tree Bo 
consists of  a single node. For i > 0, a binomial tree Bi is formed from two B,-, 
trees by making the root of  one the parent of  the root of  the other. (See Figure 1.) 
B, has size 2' and height i. For arbitrary n we can build a tree B, containing 2 t~°s~j-' 
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nodes using any linking rule, since the trees linked in each step are isomorphic. If 
we then repeatedly perform a find on the path of length [lognl - 1, the total time 
is fl(n + m log n). [] 

Linking by rank seems preferable to linking by size since it requires less storage; 
it needs only log log n bits per node (to store a rank in the range [0, [log n J] 3) 
instead of log n bits per node (to store a size in the range [ 1, n]). Linking by rank 
also tends to require less updating than linking by size. All the bounds we shall 
derive in subsequent sections hold equally for linking by rank and linking by size. 

3. Compression, Splitting, and Halving 

Another way to shorten find paths is to modify the trees during finds. To perform 
find(e), we first follow parent pointers to the canonical element r of  the set 
containing e; then we make every node on the find path point directly to r. (See 
Figure 2.) Mcllroy and Morris devised this rule, called compression [8]. We offer 
two implementations of find with compression. The first uses reeursion and has 
the advantage of succinctness; the second uses two explicit scans of  the find path 
and is more efficient in practice. 

function find(e); 
i f  p(e)  = e ---> return e 
[I p(e) ¢~ e ~ p(e) := find(p(e)); return p(e) 
fi 

end  find; 
funct ion  find(e); 

local x, r; 
r := e; do  p(r) # r ---> r := p(r) od; 
x := e;, do  p (x )  ~ r ~ x ,  p (x )  := p(x) ,  r od; 
return r 

end find; 

Remark. In the second version off indthe statement "x, p(x) := p(x), r" denotes 
parallel assignment: p(x) is assigned to x and r is assigned to p(x) simultaneously. 

3 We use the notation [3, k] to denote the set o f  integers It [J -< l -< kl. 
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We can use compression with naive linking, with linking by rank, or with linking 
by size. If  we use compression with linking by rank, the value of rank(x) computed 
by the algorithm is, in general, not the height of the compressed tree with root x 
but only an upper bound on this height. More precisely, the value of  rank(x) is the 
height of  the tree with root x that would have existed had there been no compres- 
sion. We shall say more about the properties of  rank below. Compression is easy 
to implement but hard to analyze, because the compressions change the forest 
representing the sets in a complicated way. For the set union algorithm with 
compression and linking by size, Tarjan [ 10] derived an O(ma(m, n)) time bound, 
under the assumption that m ~ n. 

Compression has the disadvantage that it requires two passes over a find path. 
Van Leeuwen and van der Weide [13, 14] proposed two variants of compression 
that require only one pass over a find path. The first is splitting: During a find we 
make each node along the find path (except the last and the next-to-last) point to 
the node two past itself. (See Figure 3.) Splitting breaks a find path into two paths, 
each about half as long as the original. The following version of find includes 
splitting: 

function find(e); 
local x; 
x :-- ¢, do ~p(x)) ÷ p(x) --* x, p(x) :-- p(x),/XP(x)) od; 
return p(x) 

end find; 

The second variant is halving During a find we make every other node along 
the find path (except the last and the next-to-last) point to the node two past itself. 
(See Figure 4.) Halving requires only about half as many pointer updates per find 
as splitting and intuitively has the advantage that it keeps the nodes on the find 
path together while it halves the length of the find, so that later finds will produce 
more compression. The following version of find includes halving: 

function find(e); 
local x; 
x := ~, do p(p(x)) ÷ ~x) ---, x := p(x) := p(p(x)) od; 
return p(x) 

end find; 

Remark 1. The statement "x :ffi p(x) : -  p(p(x)) denotes sequential assignment: 
The value ofp(p(x)) is assigned to p(x) and then to x. 

Remark 2. An optimized version of this procedure uses one test and one 
pointer extraction for each node on the find path, and one pointer assignment for 
every other node on the find path. 

For the set union algorithm with linking by size and either splitting or halving, 
van Leeuwen and van der Weide derived an O(m log*n) time bound, under the 
assumption that m >_ n. We shall prove that the algorithm with either linking 
by rank or linking by size and either compression, splitting, or halving runs in 
O(n + ma(m + n, n)) time for arbitrary m and n. Thus these six methods are all 
asymptotically optimal. To derive this bound, we use the multiple partition tech- 
nique of  Tarjan [ 10]. We extend the technique in two ways. First, we modify it so 
that it gives a tight bound for m < n, as well as for m >__ n. Second, we generalize it 
so that it applies to a large class of  find methods. Consider any find path. We 
perform a compaction on the path by making each node on the path (except the 
last and the next-to-last) point to a node at least two past itself. (See Figure 5.) 
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FIG. 4. Halving a path. 

Compression is locally the best kind of compaction, since it moves nodes as close 
to the root as possible, whereas splitting is locally the worst. Halving is not a form 
of compaction, but with minor changes our method gives a tight bound for halving 
as well. Although the analysis below is self-contained, some familiarity with the 
technique of [10] will serve the reader well. 

Consider any sequence of intermixed make set, find, and link operations, 
implemented so that every find compacts the find path. The time required to carry 
out the sequence is bounded by a constant times the sum of n and the total number 
of nodes on find paths, assuming that the compaction of a path takes time linear 
in the number of nodes on the path. To analyze the total number of  nodes on find 
paths, we need some tools. For the moment we shall not specify the linking method, 
since we can use the same proof framework to analyze compaction with any of the 
three linking methods. 

We measure the pointer changes caused by the compactions with respect to a 
fixed forest called the reference forest. The reference forest of  a sequence of  make 
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FiG. 5. Compaction of a path. Candidates for the new parent of 
node a are c, d, e, and f ;  for node b. d, e, and f ;  for node c: e and f ;  and for 
node d: f. 

set, find, and link operations is the forest produced by carrying out all the make 
set and link operations while ignoring all the finds. Thus no compaction takes 
place. (The parent of a node x in the reference forest is the first value other than x 
assigned to p(x) by the algorithm.) For the duration of this section we define the 
rank of a node to be its height in the reference forest. The rank of a node is fixed 
throughout the running of the algorithm; if linking by rank is used, the rank of a 
node x is the last value assigned to rank(x) by the algorithm. 

The following properties hold for any sequence of make set, find, and link 
operations with compaction. For any node x, p(x) is always a proper ancestor'of x 
in the reference forest. Thus ranks strictly increase along any find path. Let p 
denote the parent function just before a find, and let p '  denote the parent function 
just after the find. If x is any node on the find path other than the last and the 
next-to-last, then compaction ensures that p'(x) is an ancestor of p(p(x)) in the 
reference forest. More important, compression causes the rank of the parent of x 
to increase from rank(p(x)) to at least rank(p(p(x)). (Note that ranks never change, 
but parents do.) By analyzing these rank increases, we can bound the total number 
of nodes on find paths. To get the best bounds, we must  group the rank changes 
into levels and account separately for each level of  change. 

To group rank changes, we define a collection of partitions on the integers from 
zero to the maximum rank of a node. There is one such partition for each level 
i ~ [0, k], where k is a parameter to be chosen later. The blocks of the level i 
partition are intervals defined by 

block(i, j)  = [B(i, j), B(i, j + 1) - 1] for j E [0, li - I], 

where the interval boundaries B(i, j)  and the number  of intervals l, in level i are 
also parameters to be chosen later. 

For this definition to make sense, we require that the boundary function B(i, j), 
which is defined for i E [0, k], j ~ [0, li], have the following properties, whose 
meanings are explained below. 



Worst-Case Analysis of Set Union Algorithms 255 

(a) B(0, j )  =-- j for j E [0, lo]; 
(b) B(i, 0) ---" 0 for i ~ [1, k]; 
(c) B( i , j )< 'B( i , j+  1 ) f o r i E [ l , k ] , j E [ O , l , -  1]; 
(d) B(i, l,) > h for i E [0, k], where h is the maximum rank of  a node; 
(e) lk-- 1. 

Property (c) implies that the blocks of the level i partition are nonempty disjoint 
intervals. Properties (b) and (d) imply that every integer in the range [0, h] is in 
some block of the level i partition. Property (a) implies that each block of the level 
zero partition is a singleton. Property (e) implies that the level k partition consists 
of  a single block. 

Each level of blocks partitions the nodes by rank. For i E [ 1, k], j E [0, 1~ - 1 ], 
let n,j be the number of nodes with rank in block(i, j) - block(i - 1, 0). Then, for 
any i, 

1,-I 

~. no<_n. 
)lO 

Our intention is that the partition become coarser as the level increases. As a 
measure of this coarsening we use the function bu, which for i E [ 1, k], j E [0, 
l, - 1] is the number of level i - 1 blocks whose intersection with block(i, j)  is 
nonempty. 

As the algorithm proceeds, each node x has a level, defined to be the minimum 
value of i such that rank(x) and rank(p(x)) are in the same block of  the level i 
partition. Since the level zero partition consists of singletons and the level 
k partition consists of a single block, level(x) ~ [1, k] unless x is a tree root, in 
which case level(x) -- 0. Whereas the rank of a node is fixed, the level of a node 
can increase, but not decrease, as the algorithm proceeds. 

To bound the number of nodes on find paths, we assign a charge for each find. 
The charge is allocated among the nodes on the find path and the find itself, in a 
way that depends upon the levels of the nodes just before the find takes place. The 
charge assigned to a given node is further allocated among levels. The charging 
rules are somewhat complicated because c~ the generality of the results we are 
trying to obtain. We use two rules to assign charge: 

Find Charging. Charge 3k to the find itself. 

Node Charging. Let x be any node on the find path other than the first and the 
last. Let i be the maximum level of any node preceding x on the path. If 

min{i, level(p(x))} >_ level(x), 

charge 

min{i, level(p(x))} - level(x) + 1 

to x. Of this amount, charge one to each level in the range 

[level(x), minli, level(p(x))}]. 

Note. The node charging rule does not charge the next-to-last node on a find 
path. 

LEMmA 3. The amount charged for a find is at least the number of  nodes on 
the find path. 
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PROOF. Let  Xo ~ X~ ---, . . .  ---, Xh be a find path that starts at node Xo and ends 
at node Xh. Let level be the level function just before the find, and let 

e = { i l l  E [0, h - 1] and level(x,) <_ level(xi+l)}; 

N = { i l l  E [0, h - 1] and level(x,) > level(xi+O}. 

Then 
h - I  

Y. (level(xi+,) - level(x~)) -- level(Xh) - level(xo) >_ -level(xo),  
i -O 

which implies 

Y. (level(xi+O - level(xi)) >__ - level(xo)  

+ Y. (level(x,) - level(x,+3) >_ - level(xo) + INI, 

and 

(level(x~+,) - level(x,) + 1) ~ IPI + I N I  - level(xo) = h - level(xo). 

Let yo, y~, . . . ,  yg be the subsequence ofxo, x~, . . . ,  Xh consisting of  those nodes 
x, whose level exceeds the level of  all previous nodes on the path. Note that 
Yo = Xo, none of  the nodes yj is charged for the find, and g _< k - 1. Consider the 
amount charged for the find by the node charging rule. I f  x,  E P but x,+~ is not in 
the y-subsequence, then a charge of  level(xi+O - level(xi) + 1 is assigned to xi. (In 
this case, xi cannot be in the y-subsequence.) If x, E P and x,+~ = y~ for some j, a 
charge of  at least 

level(y~-3 - level(xi) = level(yA - level(xi) + 1 - (level(yj) - level(yj-3 + 1) 

is assigned to x~. (This includes the possibility that yj_~ = xi, in which case the 
charge assigned to x, is zero.) Thus the total charge (including the charge to the 
find itself) is at least 

g 

Y. (level(x,+O - level(x~) + I) - Y. (level(y~) - level(yj-O + 1) + 3k 
, ~.P j m  l 

>_ h - level(xo) - level(yg) + level(yo) - (k  - 1) + 3k _> h + 1, 

since Xo -- yo. I-1 

The following lemma gives a formula bounding the total charge for all finds: 

LEMMA 4. The  total charge for  all  f inds,  and .hence  the total number  o f  nodes 
on f i n d  paths,  is at mos t  

k tr-~ 

3 k m  + ~, E bono. 
,--I 3~4) 

PROOF. If a node x is charged at level i, then 1 _< level(x) <_ i before the 
find and level(x) >_ i after the find. Let rank(x)  E block(i,  j )  and suppose 
level(x) = i after the find. This implies that level(p(x))  = i before the find, for if 
level(p(x))  > i before the find, then level(x) > i after the find. To say that 
level(p(x))  = i means that rank (p (x ) )  and r a n k ( p ( p ( x ) ) )  are in different level 
i - 1 blocks. The find thus causes p ( x )  to change so that rank(p(x ) )  is in a new 
level i - I block. This can happen at most b,j - 1 times without increasing the level 
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FIG. 6. Multiple partition for compaction with linking by rank or size. Level 
zero is omitted and a logarithmic scale is used. 
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of x, since block(i, j) intersects only b,j level i - 1 blocks. Thus, after x is changed 
b,j times at level i, its level is at least i + 1, and it is never again charged at level L 

For x to be charged at level i, there must be a predecessor x '  o f  x on the find 
path such that level(x') > i before the find. By the definition of level, rank(x') and 
rank(p'(x)) are in different level i - 1 blocks before the find. Since rank(x) >_ 
rank(p(x')), rank(x) q~ block(i - 1, 0). This implies that the number of  nodes 
whose rank is in block(i, j)  that can be charged at level i is at most n#. 

Summing all the charges, we obtain a total charge of at most 
k t,-, 

3kin + ~ ~ b,~n,~. [] 

Now we are ready to focus on a particular version of the set union algorithm. 
Suppose we use either linking by rank or linking by size. The next lemma bounds 
n,j. 

LEMMA 5. With linking by rank or linking by size, 

n 
n,: <_ 2maxlBOj),B0-1,Ol-i" 

PROOF. By Corollary 1, 

B(i,j+ 1 ) -  I n ~ n 
n,j <_ Y. 2--- ~ <_ ~ 

hmmaxlB(t,j),B(t-l,l)} hmmaxlB(t,j),BO-l,I)l 2 h 
n 

m 2maxlB(z,j),B0_ i,i )1_ i" [ ]  

LEMMA 6. In any sequence of set operations implemented using any form of 
compaction and either linking by rank or linking by size, the total number of  nodes 
on find paths is at most 3ma(m + n, n) + 4m + 13n. 

PROOF. Choose k ffi a(m + n, n) + 1, 1, = min{j lA( i , j )  > log n} for i E [1, 
a(m + n, n)], lk = 1, and 

B(i , j )  f f iA(i , j)  for i ~ [ 1 ,  a ( m + n , n ) ] ,  j E [ I , I ~ ] ;  

B(k, 1) = t l o g  nJ + 1. 

(See Figure 6.) 
With this definition, it is easy to see that the boundary function B(i, j)  has 

properties (c), (d), and (e). (By Corollary 1, no node has rank exceeding log n.) We 
estimate bo as follows: 

(i) b~ = 2 for i E [1, a(m + n, n)]: For i E [1, a(m + n, n)], 

block(i, O) ffi block(i - 1, O) U block(i - 1, 1) 

since A(I, 1) = 2 and A(i, 1) ffi A(i - 1, 2) for i > 2. 
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(ii) b , j < - A ( i , j ) f o r i E [ l , a ( m + n , n ) ] , j E [ l , l , - l ] :  F o r j E [ l , l . - l ] ,  

block( l, j )  -- [A( I, j), A( I, j + 1 ) -  1] = [2~ 2 J + l -  1]. 

Thus b O = 2 j -- A(1,j). For i E [2, a(m + n, n)],j E [1, li - 1], 

block(i, j )  = [A(i, j), A(i, j + 1) - 1] 
-- [A(i, j), A(i - 1, A(i, j)) - 1] 

A( id ) - I  

__[0, A ( i -  l , A ( i , j ) ) -  1]=  U b l o c k ( i -  l ,h) .  
h=O 

Thus b u <_ A(i, j). 

(iii) bko ffi t(m + n)/nJ: We have bko = l~m+,,,) = min{j lA(a(m + n, n), j )  > log n} 
_< t(m + n)/nJ by the definition of a. 

To estimate the bound given in Lemma 4, we break the sum 
k I,--I 

Y. Y. bung 
~-l j-O 

into three parts: First, 

Second, 

Ik-I 

X 
j=o 

nkjbkj = nkobko <-- n t(m + n)/nl <_ m + n. 

k - l  k - I  2n 
Y, b, on,o <- ~ 2sti_.,.)_ l by Lemma 5 

lml I l l  

k-l 1 
_< 4n Y, 2so_l,t) _<. 4n. 

Third, for i ~ [ I, a(m + n, n)], 

t,-i :,-1 A(i, j)n 
~, bun u <- Y, by Lemma 5 j - i  ~ l  2 a(i'J)-t 

** hn n(A(i, 1)+  1) 
-< = 

h- ,0 2"~  2"40'1)-2 ' 

which implies 

k-l t,-t k-, n(A(i, l) + 1) 
~, ~. bung <_ ~. 2A(,,,)_2 

( h +  1) 
~ n  h-2 2 h-2 = 8n. 

Combining estimates, we discover that the total charge for all finds is at most 
3m(a(m + n, n) + l) + m + 13n. [] 

THEOREM 3. The set union algorithm with either linking by rank or linking by 
size and either compression, splitting, or halving runs in O(n + ma(m + n, n)) time 
and thus is asymptotically optimal. 

PROOF. For compression and splitting, the theorem is immediate from Lemma 
6. For halving, we must change the multiple partition method slightly. We call 
every other node on a find path, starting with the first, essential. The essential 
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nodes on the path (except the last) are exactly the nodes whose parents change' 
when the path is halved. For any node x, we define level(x) to be the minimum 
value of i such that rank(x) and rank(l~(X)) are in the same block of  the level i 
partition. We assign charge to nodes as follows: 

Node Charging. Let x be any essential node on the find path other than the 
first and the last. Let i be the maximum level of any essential node preceding x on 
the path. If 

mini/, level( p2(x))} >-- level(x), 

charge 

to x. 
Of this amount, 

level(1~(x) )l ]. 

min[i, level(p2(x))} - level(x) + 1 

charge one to each level in the range [level(x), mini/, 

The proofs of Lemmas 3, 4, and 6 now apply and serve to bound the total count 
of essential nodes on find paths. (We must replace p(x) by/~(x) throughout the 
proof of Lemma 4.) Since at least half the nodes on each find path are essential, 
twice the bound of Lemma 6 holds as a bound for halving. E] 

Theorem 3 gives us six different asymptotically optimal set union algorithms. 
Perhaps the best is linking by rank with halving, since it saves space over linking 
by size and uses only one pass over each find path. 

In the remainder of this paper, we analyze a number of other set union 
algorithms. This analysis will give us insight into the behavior of different variants 
of  compression and into the benefits of  linking by rank or size instead of linking 
naively. We begin by analyzing compression, splitting, and halving with naive 
linking. This is not just a theoretical exercise, since these techniques can be used 
to solve a generalization of the set union problem in which naive linking is the 
only linking method possible [ 12]. 

Our results are as follows: For the case m _> n, all three methods have the same 
asymptotic running time: O(m Iog.+m/n)n). For m < n, compression with naive 
linking runs in O(n + m log n) time and splitting with naive linking runs more 
slowly, in O(n log m) time. We have not been able to obtain a tight bound for 
halving with naive linking in the case m < n; our best upper bound is O(n log m) 
and our best lower bound is fl(n + m log n). 

We begin by deriving the upper bounds. 

LEMMA 7. Suppose m >_ n. In any sequence of set operations implemented using 
any form of compaction and naive linking, the total number of  nodes on find paths 
is at most (4m + n) rlog,÷,m, jn]. With halving and naive linking, the total number 
of nodes on find paths is at most (8m + 2n)Flogu+m/njn]. 

PROOF. We apply the multiple partition method. Consider any form of 
compaction with naive linking. Choose k = rlogu+m/,jn], li = [n/L l+m/nJ i] for i E 
[1, k], and B(z,j) = i l l  + m/nJ' for i ~ [l, k ] , j E  [l, l,]. (See Figure 7.) Proper- 
ties (c)-(e) are immediate. (Since there are only n nodes, no rank exceeds n - l.) 
For i E [l, k] , j  E [0, l, - 1], b,j = II + m/nJ. By Lemma 4, the total number of 
nodes on find paths is at most 

k Z~-J 

3km + Y, ~ [1 + m/nln,j 

<_ 3km + k(n + m) = (4m + n)k = (4m + n)l'logtt+m/,jn]. 



260 

0 

1 

2 

LEVEL 3 

4 

5 

FIG. 7. 

R. E. TAB JAN AND J. VAN LEEUWEN 

0 ! 2 3 4 5 6 7 8 9 1011121314151617181920212223 

I l l  I l l  I l l  I l l  I l l  I l l  
I I I I I I 

Multiple partition for compaction with naive linking if t I + m / n J  ffi 2. 

The bound for halving with naive linking follows as in the proof of Theorem 3. [] 

LEMMA 8. Suppose m < n. In any sequence of set operations implemented using 
any form of compaction and naive linking, the total number of nodes on find paths 
is at most (3m + 2n)[log ml + 2(n + m). With halving and naive linking, the total 
number of nodes on find paths is at most (6m + 2n)rlog m] + 4(n + m). 

PROOF. We apply the multiple partition method, modified to estimate the 
charge at level k (the highest level) in a different way. In order for a node x to be 
charged at level k, p(x) must be at level k; that is, rank(p(x)) and rank(p2(x)) must 
be in different blocks of the level k - 1 partition. This means that for a given find 
at most bko- 1 nodes can be charged at level k. Incorporating this estimate into the 
proof of I_emma 4, we obtain an upper bound of 

k-t I,-I 

(3k + bko--l)m + ~. ~ bono 
zffil j -0  

on the total number of nodes on find paths. 
Consider any form of compaction with naive linking. Choose k ffi flog m] + 1, 

l, -- rn /2q for  [ I ,  k -  1], lk -- 1, B(i,j) - - f i i  for i E  [1, k -  1 ] , j E  [1, 1,], and 
B(k, 1) ffi n. As usual, properties (c)-(e) are immediate. We estimate b,j as follows: 
for i E [1, k - l ] , j  E [0, 1, - 1], b,~ = 2; bko <-- rn/ml. Plugging into the estimate 
above, we find that the total number of nodes on find paths is at most 

(3flog m] + 2 + rn /ml )m + rlog m12n = (3m + 2n)rlog ml + 2(n + m). 

The bound for halving with naive linking follows as in the proof of Theorem 3. [] 

LEMMA 9. Suppose m < n. In any sequence of set operations implemented using 
compression and naive linking, the total number of nodes on find paths is at most 
n + 2mrlog n] + m. 

PROOF. We use a modified form of the multiple partition method. Since the 
method is simpler in this case, we shall describe it more or less from scratch. For a 
node x such that p(x) ~ x, let the level of x be the minimum value of i such that 
rank(p(x)) - rank(x) >_ 2'- '; for a node x such that p(x) ffi x, let the level o f x  be 
zero. Call a node active if it is returned by at least one of the m finds, passive 
otherwise. There are at most m active nodes. Furthermore, after a node x is on at 
least one find path its parent p(x) is active, and although p(x) may change, it 
remains an active node. 

We charge for a find as follows: 

Find Charging. Charge flog n] + 2 to the find. 
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FIG. 8. Repeated splitting of a long path. 

Active Node Charging. If x is an active node on the path of  level i that is 
followed somewhere on the path by another node of level i, charge one to x. 

Passive Node Charging. Charge one to every passive node on the path other 
than the first. 

We first observe that the amount charged for a find is at least the number of 
nodes on the find path: We charge one for every passive node except possibly one, 
and one for every active node except possibly one per level. Since all ranks are in 
the range [0, n - 1 ], all levels are in the range [0, flog nl]. Thus the amount charged 
to the find is at least as large as the number of uncharged nodes. 

A passive node that is charged has a child whose parent changes from passive to 
active because of the find. This can happen at most n times, for a total charge of 
n. When an active node is charged, its level increases by at least one. Thus an 
active node is charged at most flog n] - I times, for a total charge ofm(rlog n ] - l ) .  
The total charge to finds is m(Flog n]+2), giving a grand total of  n + 2mrlog nl + 
m. 17 

To obtain lower bounds for compression, splitting, and halving with naive 
linking, we must construct time-consuming sequences of set operations. We begin 
by considering splitting for m < n, since this is by far the easiest case. Suppose we 
build up a path containing 2'  + 1 nodes (for some i >_ 1) and then split it. The 
result is two paths of 2 '-j + 1 nodes sharing a common final vertex. We can split 
each of these to obtain four paths of length 2 '-2 + 1 with common final vertex, 
and repeat this process until we obtain 2' paths of length two. (See Figure 8.) 

T o  make this example more precise, assume n > m _ 3. Let i = llog(n - 1)l and 
j = Llog mJ. Build a path of 2' + 1 < n nodes. Then perform one split of  length 
2' + 1, two splits of  length 2 '-~ + 1 . . . . .  2 ~-~ splits of  length 2 i-J+l + 1. The total 
number of splits is 2 ~ - 1 _< m. The total length of the find paths is at least j2 i -- 
O(n log m). Thus, the bound in Lemma 8 is tight for splitting. 

Let us turn to the case m > n. For each of the three versions of  find, we shall 
construct sequences of set operations requiring ~(m logo+m/,)n)time, thus showing 
that the bound in Lemma 7 is tight. We begin with compression. Fischer [5] noted 
that if we link a tree containing a single node with a binomial tree Bi and then 
compress the longest path, the result is a new binomial tree B~ with an extra node. 
That is, binomial trees are self-reproducing under compression and linking with a 
single node. (See Figure 9.) Fischer thus obtained a lower bound of  fl(n log n) for 
compression with naive linking. This class of examples gives a more general lower 
bound of  f~(n + m log n) for arbitrary m < n, implying that the bound in Lemma 
9 is tight. 
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FiG. 9. Self-reproduction of B,. (a) Horizontal unrolling of B, using recursive 
definition. (b) Vertical unrolling of B,. (e) Self-reproduction. 

We shall generalize Fischer's idea. Let j be any positive integer. For k > 1 we 
define the class of trees Tk recursively as follows: For k <_j, Tk is a tree with a single 
node. For k > j, Tk is formed from Tk-i and Tk-j by making the root of  Tk-~ the 
parent of  the root of  Tk-j. (See Figure 10.) Note that i f j  = 1, we obtain the binomial 
trees. 

Tk has the following property: If we link a tree containing a single node with a 
Tk tree and then perform j compressions, we obtain a new Tk tree with an extra 
node. To demonstrate this self-reproduction, we use the recursive definition of  Tk. 
Suppose k > 2j. By applying the definition j times, we can unroll Tk horizontally, 
into a tree consisting of  Tk-., linked with Tk-2,+~, Tk-2j+2,..., and Tk-,. (See Figure 
1 la.) By continuing to expand the tree at the root, we eventually unroll T~ into a 
tree consisting of  a root and subtrees T~,T2 . . . . .  Tk-j. (See Figure 1 lb.) 

We can, on the other hand, continue the expansion by unrolling each of  the 
trees Tk-2~+l, Tk--2j+2, • • . ,  Tk-j vertically. For ease of  description, let us assume 
that k is a multiple of j,  say k = ij. Figure 12 illustrates the unrolled tree Tk, which 
consists of  Tk-, linked with j subtrees. The hth subtree is a path whose nodes are 
the roots of  trees Th, T,+h-~, T2j+h-t, • . . ,  Tk-2j+h-t. 

The vertically unrolled tree Tk contains one copy of  Th for each h in the interval 
[1, k - j ]  and an extra copy of  Tj. But T~ is a tree with a single node. The 
horizontally unrolled Tk also contains one copy of  Th for each h in the interval [ 1, 
k - j].  Thus, if we link a tree containing a single node with Tk and perform 
compressions on the j vertically unrolled paths, we obtain Tk with an extra node. 
(See Figure 13.) Each of  the j paths compressed contains i + 1 nodes. An easy 
induction shows that Tk contains at most ( j+  1) i-~ nodes. 



Worst-Case Analysis o f  Set Union Algorithms 263 

rk"  

• if  k < j  

Tk.l~if k>j 

Tk-i 
(a) 

k 1 2 3 4 5 6 7 

(b) 
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T, after horizontal unrolling. (a) Aftery-fold unrolling. (b) After complete unrolling. 

We obtain bad examples for compression with naive linking in the case m __. n 
as follows: Suppose m >_ n >_ 2. Let j = Im/nl ,  i = Ilogj+l(n/2)J + 1, and k = ij. 
Build a Tk tree. Note that I Tkl <-- ( j  + 1) '-j --< n/2. Repeat the following operations 
/n/2J times: Link a single-node tree with the existing tree, which consists of Tk with 
some extra nodes. Then perform j finds, each traversing a path of  i + 1 nodes, to 
reproduce Tk with some extra nodes. There are at most m finds, and the total 
number of nodes on find paths is at leastj ln/2J (i + 1) = ~(m lo&l+m/,)n). 
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Summarizing our results for compression with naive linking, we have the 
following theorem (note that 

lo&2+,,/,~n ffi O(lo&l+m/,~n) if m >_. n, 
log(2+m/n)n = O(log n) if m < n). 

THEOREM 4. The set union algorithm with compression and naive linking runs 
in O(n + m log(2+m/n)n) t ime .  

For splitting, we can define a similar class of  self-reproducing trees, called Sk 
trees. Let j _> 1. For each integer k, define Sk as follows: If k <_ O, Sk is an empty 
tree. If k E [ 1, j], Sk is a single-node tree. If k > j,  Sk consists of a root and j + 1 
subtrees, Sk-2j, Sk-2j+l, . . . ,  Sk-j. (See Figure 14.) Note that Sk for k E [j, 2j] 
consists of a root with k - j children. 

For k = i j, Sk has the following property: If we unite a single-node tree with Sk 
and then perform j splittings, each on a path of  i + 1 nodes, the result is a new Sk 
tree with an extra node. To demonstrate this self-reproduction, we introduce an 
auxiliary class of trees Rk. For k >_. j, Rk consists of a root and j subtrees, Sk-2j.,  
S~-2j+2,... ,  Sk-j. (See Figure 15a.) Note that Rk = St, for k E [j, 2 j - l ] .  For k > j ,  
we can represent Sk as Rk-~ linked with S~: or alternatively as RK linked with SK-2j. 
(See Figure 15b.) 

Suppose k = ij with i >_ 1. We can unroll the j subtrees Sk-2~.~, Sk-2j+2 . . . . .  Sk-j 
of Sk into paths of  i nodes using the first expansion of Figure 15b. (See Figure 16.) 
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FIG. 15. Rk trees. (a) Definition. 
(b) Alternative expansions of 8k for 
k>j. 

If we unite a single-node tree with Sk and then split the unrolled paths, we can roll 
up the resulting tree into Sk with an extra node, using the second expansion of 
Figure 15b and the equalities Sk = Sk-= for k E [2,j] and Rk ffi Sk for k E [j, 2j - 
1 ]. Figure 17 illustrates the case of even i; the case of odd i is similar. 

Each of the j paths split contains i + 1 nodes. An easy induction shows that Sk 
contains at most (j + l)'-t nodes for k _> 1. We can construct bad examples for 
splitting with naive linking using Sk trees just as we did for compression with naive 
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FIG. 18. HI trees. (a) Recursive definition of/-/,. (b) Examples 
of H, forj = 2. 

linking using Tk trees. Thus we obtain an ~(m log~+m/,)n) lower bound for the total 
number of nodes on find paths. The following theorem summarizes the situation 
for splitting with naive union: 

THEOREM 5. The set union algorithm with splitting and naive union runs in 
O((n + m)log~2+m/,) (min{m, n])) time. 

We conclude this section by defining a class of trees self-reproducing under 
halving. Le t j  ___ 1. For i ___ 1, we shall define a tree H, with the following property: 
If we perform j halvings on H,, each on a path of 2i - 1 nodes, and then link a 
single-node tree with the halved tree, the result is a new H~ tree with an extra node. 
The extra node is the starting node of the first path that was halved; this node is a 
leaf in the original H, tree. We use H, n to denote H, after the first h of  the j self- 
reproducing halvings has been carried out. 

We define H, inductively, simultaneously proving the self-reproducing property. 
H~ is a single-node tree; its self-reproduction is obvious. For i > 1, suppose He-~ is 
defined and known to be self-reproducing. We define H, to consist of  a root and a 
single subtree formed by linking H,_~ with H,-I, H~_~, H,~_l, . . . ,  ~-! H,_I. (See Figure 
18.) If we perform j halvings on H,, one starting in each of the subtrees 
H,-l, H~-i, H~-l . . . . .  j-l H,_~ linked to H,_~, we produce a tree consisting of a root 
and subtrees H,_~, H~_~, H,Z_~ . . . . .  HJ,_~. But the tree consisting of a root and a 
single subtree H~,_~ is H,_~ with an extra node by the induction hypothesis. Thus, 
if we unite a single node tree with the halved tree, we obtain He with an extra node, 
and H, is self-reproducing. (See Figure 19.) The size of He is at most (j + 1) e. We 
can obtain bad examples for halving and naive linking using H~ as we did for 
compression and naive linking using Tk, except that in each cycle o f j  finds arid a 
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FIG. 19. Self-reproduction of  H,. H,+-= denotes H~-i with an extra node. 

link, the link follows the finds. Thus we obtain a lower bound of 9(m log(~+m/,)n) 
for the total number of nodes on find paths. The following theorem summarizes 
what we know about halving with naive linking: 

THEOREM 6. The set union algorithm with halving and naive union runs in 
0((!1 + m)log(2+m/n) (minim, n})) time and in 9(n + m log(2+m/.)n) time. (These 
bounds match for m >_ n.) 

4. Reversal 

Van Leeuwen and van der Weide [13] proposed another one-pass find method, 
called reversal. Although reversal is superficially appealing, we shall see that it is 
not as efficient as the methods studied in Section 3. Reversal is really a class of 
methods rather than a single method. A reversal of  type zero is performed on a 
find path by making every node on the path point to the first node on the path. 
(See Figure 20a.) Note that this changes the canonical element of the set. For any 
integer k _> 1, a reversal of  type k is performed by making the first node and the 
last k nodes on the path point to the last node, and making the remaining nodes 
point to the first node. Figures 20b and c illustrate type one reversal and type two 
reversal, respectively. Van der Weide [ 14] called type three reversal node transpor- 
tation. We can use any type of reversal in combination with any linking rule. 

As k increases, type k reversal approximates compression more and more closely, 
but for no fixed k is type k reversal as efficient as compression. We shall analyze 
the efficiency of types zero, one, and two, and leave the analysis of type k for k > 
3 as an open problem. We begin our analysis of  reversal by showing that both type 
zero and type one use O(n + m log n) time for any linking method. Van Leeuwen 
and van der Weide [13] observed that if we reverse a path of i + 1 nodes in a B, 
tree, the result is a new Bi tree. (See Figure 21.) This is true for both type zero anal 
type one, and implies a lower bound of  f~(n + m log n) for either of  these algorithms 
with any linking method, since we can build a Bi tree with any linking method. 
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To obtain a corresponding upper bound, we use a version of the multiple- 
partition method much like that used to analyze compression with naive linking. 
Our bound of O(n + m log n) improves van Leeuwen and van der Weide's bound 
of O((n + m)log(n + m)). 

LEMMA 10. In any sequence of set operations implemented using type zero or 
type one reversal and any linking method, the total number of nodes on find paths 
is O(n + m log n). 

PROOF. We shall prove that if we start with an arbitrary n-node forest and 
perform an arbitrary sequence of  at most n - 1 links and m _< n intermixed finds, 
then the total number of  nodes on find paths is at most 4mrlog n] + 7m + n. This 
implies the lemma. (Apply the bound repeatedly to groups of  n consecutive 
operations.) 

We first consider type zero reversal. For each node in the forest, we define a 
rank, which may change as the links and finds are carried out. (This new definition 
of  rank is for analytical purposes only and does not affect the implementation of  
the linking by rank rule.) Initially, the rank of a node is its height in the original 
forest. When a link operation causes a tree root r to become the parent of  another 
tree root s, we redefine the rank of  r to be the maximum of its old value and one 
more than the rank of  s. When a find operation begins at a node e and returns a 
node r, we redefine the rank of e to be one more than the rank of  r. 

With this definition, ranks always strictly increase along any path in the forest, 
and every rank is in the range [0, 3n - 2]. (The original ranks are in the range [0, 
n - 1], and a set operation can increase the maximum rank by at most one.) We 
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define the level of a node x as in the proof of Lemma 9 to be zero ifp(x) = x and 
the maximum value of i such that rank(p(x)) - rank(x) _> 2 '-I if p(x) ~ x. If 
level(x) ÷ O, then the rank of x cannot change, and the level of x cannot decrease, 
until a find of x occurs. 

We define a node to be active it it starts or ends a find path and passive otherwise; 
there are at most 2m active nodes. Once a node x has an active parent, it retains 
an active parent. We charge for a find almost exactly as in I.emma 9: 

Find Charging. Charge flog n] + 4 to the find. 

Active Node Charging. If x is an active node of level i that is not the first node 
on the find path and is followed somewhere on the path by another node of level 
i, charge one to x. 

Passive Node Charging. I f x  is a passive node, charge one to x. 

Since all levels are in the range [0, flog n] + 2], the total charge for a find is at 
least the number of nodes on the find path. Charging a passive node causes one of 
its children to acquire an active parent. This can happen at most n times. Charging 
an active node causes its level to increase by at least one. This can happen at most 
flog n] + 1 times before a find on the node occurs. Thus the total charge to active 
nodes is 3m(flog n] + 1). The total charge to finds is m(flog n] + 4), giving a grand 
total charge of 4mflog n] + 7m + n. 
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FIG. 22. Effect of type two reversal on a collection of finked B~ trees. 
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Exactly the same proof works for type one reversal, if_we change the definition 
of rank as follows: When a find of  a node e returning a node r is performed, we 
redefine the rank of e to be the old rank of r and redefine the rank of  r to be one 
more than its previous value. We obtain the same upper bound of  4mrlog n] + 7m 
+ n on the total number of nodes on find paths, assuming m _< n. [] 

THEOREM 7. The set union algorithm with reversal of type zero or one and 
naive linking, linking by rank, or linking by size runs in O(n + m log n) time. 

Type two reversal has more interesting behavior than either type zero or type 
one. With naive linking, the method runs in O(n + m log(2 + n2/(n + m))) time; 
with either linking by rank or linking by size, the method runs in O(n + m 
log(2 + n log n/(n + m))) time. As with the other types of  reversal, we begin with 
the lower bounds. Figure 22a illustrates that if we perform a type two reversal on 
a tree consisting of  a root, a single child, and a single B, tree at depth 2, we obtain 
a tree in which the B, tree has moved to depth one. More generally, if we form a 
tree consisting of a root and j subtrees, each a copy of  Bi, we can reproduce this 
tree by linking it with a single-node tree and performing j type two reversals, one 
on each B, tree. Each path reversed contains i + 3 nodes. (See Figure 22b.) 

We obtain bad examples for type two reversal with naive linking as follows: For 
any m _ n >_. 3, l e t j  = tm/nJ. Suppose n/2j _> 1 (otherwise n2/(n + m) -- O(1)) and 
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Fro. 23. Bad examples for type two reversal with linking by rank or size. 
(a) Initial trees fo r j  = 5. (b) Typical link followed by reversals. 

let i -- [log(n/2j)J. Build a tree consisting of  a root and j subtrees, each a B~ tree. 
This tree contains at most ln/2J + 1 nodes. Repeat the following operations rn/2] 
- 1 times. Link a tingle-node tree with the existing tree (which is isomorphic to 
the original tree with some extra nodes) and perform j type two reversals, each on 
a path of i + 3 nodes~ to reproduce the original tree with some extra nodes. The 
total number of nodes on find paths is at least 

j(rn/2] - l)(i + 3) ffi 12 m log ~ . 

For n _> 3 but m < n, the same example with j -- 1 and at most m finds gives a 
lower bound of 12(m log n); a lower bound of  fl(n) is obvious. 

The way we obtain bad examples for type two reversal with linking by rank or 
size is similar but a little more complicated. For any m >_ n _> 64, let j = Lm/nJ. 
Suppose log n/ j  _> 1 (otherwise n log n/m ffi O(1)) and let i -- Llog(log n/j)J, k = 
Llog(n/log n)J. Since n _> 64, k _> 3. By means of  links by rank or size, build j 2  k 
copies orB,. These trees contain no more than j2 '+k _< n nodes. Link the B~ trees 
in groups o f j  using linking by rank or size, giving 2 k trees, each consisting of B, 
linked with j - 1 copies of B,. (See Figure 23a.) Repeat the following operations 
until only one tree is left: Link the existing trees in pairs; then perform a type two 
reversal on each of the Bi trees of depth two. (See Figure 23b.) Each tree existing 
after a sequence of reversals consists of  a B, tree linked with a number of copies of 
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B,. Each reversal is on a path of i + 3 nodes. The total number of  revorsals is 

k - I  

~, 2k--h--l(2hj--l) "~ k2k-ij -- 2 k + l <-- m. 
h-O 

The total number of nodes on find paths is 

For n _> 64 but m < n, the same example with j -- 1 and at most m finds gives a 
lower bound of fl(m log log n); a lower bound of ft(n) is obvious. 

To derive upper bounds for type two reversal, we use almost the same proof as 
in I.emma 10. 

LEMMA 11. In any sequence of  set operations implemented using naive linking 
and type two reversal, the total number of nodes on find paths is O(n + m log(2 + 
n2/(n + m))). In any sequence of set operations implemented using linking by rank 
or size and type two reversal, the total number of  nodes on find paths is O(n + m 
log(2 + n log n/(n + m))). 

PROOF. We define the rank of a node as in the proof of Lemma 10, with the 
following difference: When a find operation begins at a node e and returns a node 
r, we redefine the rank of e to be one less than the rank of r. As in the proof of 
Lemma 10, this new definition of rank does not affect the implementation of the 
linking by rank rule. With this definition, ranks always strictly increase along any 
path in the forest. With naive linking, all ranks remain in the range 
[0, n - l]; with linking by size or rank, all ranks remain in the range [0, [lognl]. 
We define the level of a node as in the proofs of Lemmas 9 and 10 and active and 
passive nodes as in the proof of Lemma 10; thus there are at most 2m active nodes. 
We charge for a find using the following rules, where k is a parameter to be chosen 
later: 

Find Charging. Charge k + 3 to the find. 

Active Node Charging. I f x  is an active node of level i that is no t the  first node 
on the find path and is followed by another node of  level at least min{i, k + 1 }, 
charge one to x. 

Passive Node Charging. If x is a passive node, charge one to x. 

Consider any find. A node on the find path that is not charged for the find must 
be either the first, the last of a level i in the range [0, k], or the last with level at 
least k + 1. Thus, there are at most k + 3 nodes not charged, and the t6ial charge 
for the find is at least the number of nodes on the find path. 

The charge to passive nodes is at most one per passive node, for a total of  at 
most n. An active node can be charged at most once per level for each level in the 
range [ 1, k] before a find on the node occurs; this gives a total charge of  3mk to 
active nodes on levels in the range [ 1, k]. Each time an active node is charged on 
level k + 1 or higher, the rank of its parent increases by at least 2 k. This can happen 
at most r/2 k times, where r is the maximum rank of any node. Thus the total 
charge is at most 3mk + n(r/2 k) + n, since the number of active nodes is at 
most n. 
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With naive linking, r _ n - 1. If we choose k = log(2 + n2/(n + m)), the total 
charge is at most 

( n + m )  n + m  ~ ( n + m ) )  3mlog 2 +  + + n =  n + m l o g  2 +  . 
n 4 n 

With linking by rank or size, r ~< log n, and if we choose k ffi log(2 + n log n/(n + 
m)), the total charge is at most 

( n l o g n ~  ( n + m ) ~  ( n l o g n ~  
3mlog 2 + n + m ]  + ~  + n =  n + m l o g  2 + n + m / ] .  I"1 

THEOREM 8. The set union algorithm with naive linking and type two reversal 
runs in O(n + m log(2 + n2/(m + n))) time. The algorithm with linking by rank or 
size and type two reversal runs in O(n + m log(2 + n log n/(n + m))) time. 

5. Collapsing and Splicing 

Yet another way to speed up the set union algorithm is to spend more than O(1) 
time on each link operation, in the hope of saving time on finds. The most extreme 
way of doing this is collapsing: To link two trees, we make every node in one tree 
point to the root of  the other. (See Figure 24.) Collapsing is well known; a discussion 
of it appears in [2]. We can use collapsing with naive linking, linking by rank, or 
linking by size. (Note that with linking by rank, the rank of the root of  a tree bears 
no relation to its depth, which is always zero or one.) Collapsing causes each find 
to take O(1) time (each find path contains only one or two nodes), but a link takes 
time proportional to the size of one of the sets being linked. The following theorem 
is easy to prove: 

THEOREM 9 [2]. The set union algorithm with collapsing and naive linking runs 
in O(n 2 + m) time. The algorithm with collapsing and linking by rank or size runs 
in O(n log n + m) time. 

Although superficially appealing, collapsing has two serious drawbacks that make 
it inferior to any form of compaction with respect to both space and time. First, it 
requires two pointers per node rather than one, since each set must be represented 
as a linked list. (Circular linking is best; see Figure 25.) Second, the algorithm with 
collapsing always performs at least as many parent pointer assignments as any 
form of compaction, as the following theorem shows: 

THEOREM 10. Let algorithm A~ be the set union algorithm with collapsing and 
any linking method, and let algorithm A2 be the set union algorithm with any form 
of compaction and the same linking method as A~. Then on any sequence of set 
operations, algorithm A~ performs at least as many assignments to parent pointers 
as algorithm A2. 

PROOF. For any sequence of set operations, define the reference forest to be the 
forest whose nodes are the elements, such that element e is the parent of  element f 
if and only if a link operation makes e the parent off. Algorithm A~ performs an 
assignment p(x) = y for every pair of  nodes x and y such that y is a proper ancestor 
of  x in the reference forest; algorithm A2 perfOrmS an assignment p(x) = y only if 
y is a proper ancestor o f x  in the reference forest. I"1 

The final set union algorithms we shall study are based on an idea of Rem [4]. 
Rem's idea was to combine the two finds and the link used to carry out a unite 
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FIG. 25. Representation of sets la, b, c, d, e, f, gl, Ih, t, j, kl, {/I 
using collapsing data structure. Each node has a parent and a next 
field; rank and label fields are omitted in the figure. 

into a single operation that scans the two find paths simultaneously, restructuring 
the forest in the process. The most  natural way to present Rem's  method  is as a 
solution to a variant of  the set union problem that we call the contingent union 
problem: Carry out  an intermixed sequence of  two kinds o f  operations on unlabeled 
sets: 

make  set(e): Create a new set containing the single element e. This operation 
requires that e initially be in no set. 

contingently unite(e, f ) :  If  elements e and f are in the same set, return false. 
Otherwise combine the sets containing e and f i n t o  a single set and return true. 

The following procedure implements  contingent union using two finds and a link 
(we must  modify link to avoid updating set labels): 

predicate contingently umte(e, f ) ;  
local r, s: 
r := find(e); 
s := find(f); 
if r = s --, return false 
O r ~ s --~ hnk(r, s);return true 
fi 

end contingently unzte;, 



276 R. E. TARJAN AND J. VAN LEEUWEN 

t0 

FIG. 26. Contingent union of nodes 1 and 2 by splicing. 

We shall call Rem's solution to the contingent union problem naive splicing. We 
assume that the elements are totally ordered in an arbitrary way. (We can impose 
such an ordering by numbering the elements from I to n.) To carry out contingently 
unite(e, f ) ,  we scan the two find paths concurrently, taking a step in one path at a 
time. I fx  and y are the current nodes on the two paths, we take a step by comparing 
p(x) and p(y). If p(x) - p(y), we stop and return false. Otherwise, we make the 
node with the smaller parent, say z, point to the larger parent and rep!ac¢ it by its 
old parent. If z did not change (we are at a root), we stop and return true. (See 
Figure 26.) Note that splicing maintains the property that p(x) _> x for all nodes x. 
The following procedure implements contingent union with naive splicing: 

predicate contingently unite(e, f);  
local x, y, z; 
x,y:=e, f ;  
do p(x) = p(y) --~ return false 
0 p(x) < PrY) 

x, ,t,(x), z := p(x), pO'), x; 
i f  x = z ~ return true fi 

fl p(x) > p(y) 
y, p(y), z := pry), p(x), y, 
i f  y -- z ~ return true fi 

od 
end contingently unite; 

In our analysis of  naive splicing, we assume that n is the number of elements 
that are ever parameters to contingent union operations and that m is the number 
of contingent unions; thus m >__ n/2. The running time of naive splicing is 
O(m logt2+m/,)n), making it asymptotically as fast as compaction with naive linking. 
We obtain the lower bound by noting that if e and f a r e  different tree roots, splicing 
does the same thing as naive linking; if f is the root of  the tree containing e, then 
splicing compresses the path from e to f. Thus the bad examples constructed in 
Section 3 for compression with naive linking work for splicing, and we obtain an 
fl(m logt2+mln)n) lower bound. (This bound generalizes the fl(nlogn) lower bound 
of van Leeuwen and van der Weide [11].) To obtain the upper bound, we use a 
complicated version of the multiple-partition method. 
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LEMMA 12. In any sequence of contingent unions implemented with naive 
splicing, the total number of node visits is O(mlog~2+,,/,)n), where we call a node 
visited if  it has its parent changed by the splice. 

PROOF. To each node x we assign a (permanent) rank in the range [0, n - 1] 
corresponding to the position of  x in the total order of nodes. For each level i E 
[O, flogt2+,,,/,jn]] we define a partition on the ranks whose blocks are 

block(i, j )  --- [j12 + m/nY, (j  + l)t2 + m / n J '  - I] 
for j ___ 0. If x and y are a pair of nodes such that rank(x) < rank(y), we define 
level(x, y) to be the minimum value of  i such that rank(x) and rank(y) are in the 
same block of  the level i partition. Then level(x, y) E [1, [logt2÷m/,jn]]. (This 
partition is the same as the partition used in Lemma 7 to analyze compaction with 
naive linking.) 

Consider a splice of nodes e and f Let Xo, Xa, . . . .  Xk be the nodes visited during 
the splice, in increasing order by rank. These nodes comprise part or all of  the 
paths from e and f t o  the roots of  their respective trees. In order to charge for the 
splice, we define a layer for each node x, by layer(xk) -- O, layer(xi) -- level(xi, xi÷,) 
for i E [0, k - 1 ]. We charge according to the following rules: 

Node Charging. For each node x, such that i >_ 3 and 

layer(x,) >_ max{layer(x,-3), layer(xi-2), layer(x~-O], 

charge layer(x,) - max{layer(x,-3), layer(x,-2), layer(x,-O} + 1 to either xi-3, xi-2, 
or x~-~ as follows, where p is as defined before the splice: 

(a) Ifp(x,_0 = x, (x,_~ and x, are on the same path), then charge x~-t. 
(b) Otherwise, ifp(x,-2) = x, (x,-2 and x, are on one path and x,-~ is on the other), 

then charge X,-z. 
(c) Otherwise (x,-2 and x,-~ are on one path and x, is on the other), charge xl-3. 

Splice Charging. Charge 1 + rlogt2+m/,jn] to the splice. 

Remark. Case (c) of the node charging rule is really two cases, which we shall 
have to distinguish in the analysis: 

(ci) p(x,-3) = x, (x,-3 and x, are on one path and x,-2 and x H  are on the other). 
(cii) p(x,-3) ~ x, (x,-3, x,-2, and x,-~ are on one path and x, is on the other). 

In order to relate the charge for a splice to the number of node visits, let Yo, 
y~ . . . . .  Yh be the subsequence of xo, x~ . . . .  , Xk containing the node of  maximum 
layer among each consecutive triple x,, X,+a, x,+2, for i E [0, k - 2], breaking ties 
by choosing the last node of maximum layer. Note that a node J5 can be maximum 
in up to three triples x,, x,+~, x,+2. 

If k ___ 3, the y-subsequence contains at least one-third of  the nodes in the x- 
sequence. I f P  = {JlJ E [0, h - 1] and layer(yj) <_ layer(yj+O}, the first part of  the 
proof of Lemma 3 shows that 

Y. (layer(yj+O - layer(yj) + 1) + [logt2+,~/.jn + 1] _> h + 1 >__ (k + 1)/3. 
j~.P 

Thus, if we can show that every node ~+~ with layer(y~+O >- layer(~) generates a 
charge of at least layer(ya+,) - layer(yj) + 1, we can conclude that the total charge 
for a splice is at least one-third the number of  node visits. 
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Suppose layer(y~+O >>. layer(y~). The first node x, following yj in the x-sequence 
and satisfying layer(x,) >>- layer(yj) must have maximum layer among x,-2, xH,  x,, 
since none has layer greater than layer(xi). Thus xi -- yj+~. The set of  three 
consecutive nodes among which yj has maximum layer cannot include x~ by the 
tie-breaking rule. Thus, 

layer(yj+O = layer(xi) >_ max{layer(x,-3), layer(xi-2), layer(x~-O} = layer(yj), 

and yj+~ generates a node charge of  layer(yj+ 0 - layer(yj) + 1 as desired. 
It remains for us to bound the total charge. Consider the charge generated by a 

node x,. Suppose that layer(x,) >_ max{layer(x,_3), layer(xi-2), layer(xi-O}. In case 
(a), (p(xi-O = xi), level(x,_~, p(xH)) increases because of the splice by at least the 
amount charged minus one. (The new parent ofxi-~ has rank greater than or equal 
to that ofx~+0. In case (b), (p(x,-2) -- xi), level(x,-2, p(xi-2)) increases by at least the 
amount charged minus one, and in case (ci), (p(x,-3) = x,), level(xi-3, p(x,-3)) 
increases by at least the amount charged minus one. The total charge for all such 
cases is at most twice the number of levels times the number of nodes, or 2nr I + 
logt2+m/nJn]. In case (cii), (p(xi-3) = xi-2 and p(x,-2) -- x,-O, level(x,_3, p2(x,_3)) 
increases by at least the amount charged minus one. The total charge for this case 
is also at most 2nr 1 + logt2+,n/nJn]. (The new grandparent of  x,-3 has rank greater 
than or equal to that of  x~÷~.) 

We must also account for the charge generated if layer(x,) = max{layer(x,-3), 
layer(x,_2), layer(x,-O}. Let h = layer(x,). In case (a), the splice causes rank(p(xi-O) 
to move from one level h - 1 block to another. In case (b), the splice causes 
rank(p(x,-2)) to move from one level h - 1 block to another, and in case (ci), the 
splice causes rank(p(xi-3)) to move from one level h - 1 block to another. If x is 
any node, p(x) can be in at most t 1 + m/nJ level h - 1 blocks before level(x, p(x)) 
> h. Thus the total charge in all such cases is at most the number of levels times 
the number of  nodes times t2 + m/nJ, or at most (m + 2n)[ 1 + logt2+m/njn]. A 
similar argument using level(x, p2(x)) shows that the total charge in case (cii) if 
layer(x,) = max{layer(x,_3), layer(x,_2), layer(xi-l)} is also at most (m + 2n)rl + 
logt2+m/nJn ]. 

The total charge to splices is mr I + logt2+m/njn]. Thus the grand total charge is 
at most (3m + 8n)rl + logt2+m/~jn]. [] 

THEOREM I 1. The contingent union algorithm with naive splicing runs in O(m 
log(2+m/n)n) time. 

We conclude that Rem's algorithm sglves the contingent union problem as 
efficiently as compression, splitting, or halving with naive union. The disadvantage 
of  Rem's algorithm is that it does not use linking by rank or size and thus is not 
asymptotically optimal. However, we can obtain an asymptotically optimal algo- 
rithm by combining splicing with linking by rank, resulting in a method that we 
shall call splicing by rank. When making a set containing the single element e, we 
initialize the rank of  e to be zero. To carry out contingently unite( e, f ), we scan the 
two find paths concurrently, taking a step in one path at a time. If x and y are the 
current nodes in the two paths, we take a step by comparing rank(p(x)) and 
rank(p(y)). If rank(p(x)) < rank(p(y)), we simultaneously replace x by p(x) and 
p(x) by p(y); if this does not change x, we stop and return true. The case rank(p(x)) 
> rank(p(y)) is symmetric. If rank(p(x)) = rank(p(y)), what we do depends upon 
x, p(x), y, and p(y). Ifp(x)  = p(y), we stop and return false. Ifp(x)  ~ p(y) and 
x v~ p(x), we replace x by p(x). Ifp(x) ~ p(y) and y ~ p(y), we replace y by p(y). 
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Finally, i fp(x)  # p(y), but x -- p(x) and y -- p(y), we replace p(x) by p(y), add 
one to the rank of  y, and stop, returning true. The following procedure implements 
contingent union with splicing by rank. 

predicate contingently unite(e, f);  
local x, y, z; 
x,y:=e,f, ,  
do rank(p(x)) < rank(p(y)) --* 

x, v(x), z := p(x), v(y),  x; 
i f  x = z ~ return true fi 

0 rank(p(x)) > rank(p(y)) 
y, p(y), z := p(y), p(x), y; 
i f  y = z ~ return true fi 

0 rank(p(x)) = rank(p(y)) --. 
i f  p(x) = p(y) ~ return false fi; 
if  x ~ p (x )  -.~ x := p (x)  

0 y # V(Y) --* Y := P(Y) 
0 x = p (x )  and y = p(y)  --, 

p(x) := p(y); rank(y) := rank(y) + 1; return true 
fi 

od 
end contingently unite; 

Splicing by rank maintains the invariant that rank(x) < rank(p(x)) for each node 
x such that x ÷ p(x). We can define the reference forest for a sequence of  make 
set and contingently unite operations as we did in Section 3: The parent of  a node 
x in the reference forest is the first value other than x assigned to p(x) by the 
algorithm. With this definition, Lemma 2 holds for the reference forest, if we take 
the rank of a node x to be the last value assigned to rank(x) by the algorithm. 
Combining the analysis in Section 3 for compaction and linking by rank with the 
ideas in the proof of  Lemma 12, we can obtain a bound of  O(ma(m + n, n)) for 
splicing by rank. 

THEOREM 12. The contingent union algorithm with splicing by rank runs in 
O(ma(m + n, n)) time. 

PROOF. Exercise. [] 

Splicing by rank has another property worth noting. 

THEOREM 13. I f  every contingent union operation returns true, then the contin- 
gent union algorithm with splicing by rank runs in O(n) time. 

PROOF. There are at most n - 1 contingent unions. Consider the last one, 
combining trees with roots r and s. The time for this union is O(min{rank(r), . 
rank(s)}) = O(log(min{size(r), size(s)})). If t(n) is the total time as a function of  n, 
we obtain the recurrence 

t(l) = O(1); 
t(n) = max {t(i) + t(n - i) + O(log(min{i, n - i}))1 if n > 1. 

! " : r~ t l  

This recurrence has the solution t(n) = O(n). [] 

6. Remarks 

In this paper we have analyzed a total of  twenty-six algorithms for the set union 
problem. Tables I and II list the asymptotic running times of  the algorithms for 
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TABLE I. WORST-CAsE RUNNING TIMES OF SET UNION ALGORITHMS IF m ~ n 

Naive linking Linking by rank or size 

Naive find O(mn) O(m log n) 
Compression O(m log(, + m/.)n) O(ma(m,n)) 
Splitting O(m lo~t ÷ m/.~n) O(ma(m,n)) 
Halving O(m logo +,,/,~n) O(ma(m,n)) 
Type zero reversal O(m log n) O(m log n) 
Type oqe reversal O(m log n) O(m log n) 

Type two reversal O(m log(2 + n2/m)) O(m log (2 + n log n)) m 

Collapsing O(m + n 2) O(m + n log n) 
Naive splicing O(m log(, +,./.)n) - -  

Splicing by rank - -  O(ma(m,n)) 

TABLE II. WORST-CASE RUNNING TIMES OF SEt UNION ALGORITHMS IF m < n 

Naive linking Linking by rank or size 

Naive find O(mn) O(n + m log n) 
Compression O(n + m log n) O(n + ma(n,n)) 
Splimng O(n log m) O(n + mc~(n,n)) 
Halving ft(n + m log n), O(n log m) O(n + ma(n,n)) 
Type zero reversal O(n + m log n) (~n + m log n) 
Type one reversal O(n + m log n) O(n + m log n) 
Type two reversal O(n + m log n) O(n + m log log n) 
Collapsing O(rf) O(n log n) 
Naive splicing O(n + m log m) - -  
Splicing by rank - -  O(n + ma(m,m)) 

m _ n and m < n, respectively. (In most applications m _> n.) Seven of the 
algorithms are asymptotically optimal: compression, splitting, or halving combined 
with union by rank or size, and splicing by rank. The remaining methods are less 
efficient; most run in about O(log n) time per find. Our analysis has displayed the 
power of the multiple-partition method for deriving upper bounds and of self- 
reproducing trees for giving worst-case examples. Two intriguing open problems 
remain: To analyze the running time of halving with naive linking if m < n, and 
to analyze the running time of type k reversal for k -> 3. 

Our analysis shows that some of the compression methods, while intuitively 
appealing, are not asymptotically optimal or are dominated by other methods. 
Specifically, the various kinds of reversal (see Section 4) are not asymptotically 
optimal; neither is Rem's splicing method for contingent union (see Section 5), 
unless it is modified to incorporate linking by rank. Furthermore, the collapsing 
method (see Section 5), sometimes called "fast find," is dominated by compression, 
splitting, or halving with the same linking rule. LaG [9] gives another rather 
complicated algorithm that is not asymptotically optimum. For practical applica- 
tions we favor either halving or compression with linking by rank. 

The question of whether there is a linear time set union algorithm remains open. 
The nonlinear lower bound for separable algorithms [ 11] suggests that such an 
algorithm, if there is one, will use the power of random-access memory. Recently, 
Gabow and Tarjan [6] have devised such a linear-time algorithm for a special case 
of set union that occurs in many applications, but the method does not seem to 
extend to the general case, as it requires advance knowledge and preprocessing of 
the link operations. 
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