you've heard them all. — jason Jul 10 "13 at 13:55

10 Answers

1256

| assume that you are looking for intuitive definitions,
since the technical definitions require quite some time to
understand. First of all, let's remember a preliminary
needed concept to understand those definitions.

e Decision problem: A problem with a yes or no
answer.

Now, let us define those complexity classes.

P

P is a complexity class that represents the set of all
decision problems that can be solved in polynomial time.

That is, given an instance of the problem, the answer yes
or no can be decided in polynomial time.

Example

Given a connected graph G, can its vertices be coloured
using two colours so that no edge is monochromatic?

Algorithm: start with an arbitrary vertex, color it red and
all of its neighbours blue and continue. Stop when you
run out of vertices or you are forced to make an edge
have both of its endpoints be the same color.

NP


https://stackoverflow.com/users/45914/jason

NP is a complexity class that represents the set of all
decision problems for which the instances where the
answer is "yes" have proofs that can be verified in
polynomial time.

This means that if someone gives us an instance of the
problem and a certificate (sometimes called a witness) to
the answer being yes, we can check that it is correct in
polynomial time.

Example

Integer factorisation is in NP. This is the problem that
given integers n and m, is there an integer f with 1 <
f < m,suchthat f divides n ( f is a small factor of
n)?

This is a decision problem because the answers are yes
or no. If someone hands us an instance of the problem
(so they hand us integers n and m ) and an integer f
with 1 < f < m, and claim that f is a factor of n (the
certificate), we can check the answer in polynomial time
by performing the division n / f.

NP-Complete

NP-Complete is a complexity class which represents the
set of all problems X in NP for which it is possible to
reduce any other NP problem Y to X in polynomial
time.

Intuitively this means that we can solve Y quickly if we
know how to solve X quickly. Precisely, Y is reducible to
X, if there is a polynomial time algorithm f to transform
instances y of Y toinstances x = f(y) of X in
polynomial time, with the property that the answer to y is
yes, if and only if the answer to f(y) is yes.



Example

3-SAT . This is the problem wherein we are given a
conjunction (ANDs) of 3-clause disjunctions (ORs),
statements of the form

(x_v11l OR x_v21 OR x_v31) AND
(x_v12 OR x_v22 OR x_v32) AND
coo AND
(x_vin OR x_v2n OR x_v3n)

where each x_vij is a boolean variable or the negation
of a variable from a finite predefined list (x_1, x_2, ...
x_n) .

It can be shown that every NP problem can be reduced to
3-SAT. The proof of this is technical and requires use of
the technical definition of NP (based on non-deterministic
Turing machines). This is known as Cook's theorem.

What makes NP-complete problems important is that if a
deterministic polynomial time algorithm can be found to
solve one of them, every NP problem is solvable in
polynomial time (one problem to rule them all).

NP-hard

Intuitively, these are the problems that are at least as
hard as the NP-complete problems. Note that NP-hard
problems do not have to be in NP, and they do not have
to be decision problems.

The precise definition here is that a problem x is NP-
hard, if there is an NP-complete problem Y , such that v
is reducible to X in polynomial time.

But since any NP-complete problem can be reduced to
any other NP-complete problem in polynomial time, all
NP-complete problems can be reduced to any NP-hard



problem in polynomial time. Then, if there is a solution to
one NP-hard problem in polynomial time, there is a
solution to all NP problems in polynomial time.

Example

The halting problem is an NP-hard problem. This is the
problem that given a program P and input I, willit halt?
This is a decision problem but it is not in NP. It is clear
that any NP-complete problem can be reduced to this
one. As another example, any NP-complete problem is
NP-hard.

My favorite NP-complete problem is the Minesweeper
problem.

P=NP

This one is the most famous problem in computer
science, and one of the most important outstanding
questions in the mathematical sciences. In fact, the Clay
Institute is offering one million dollars for a solution to the
problem (Stephen Cook's writeup on the Clay website is
quite good).

It's clear that P is a subset of NP. The open question is
whether or not NP problems have deterministic
polynomial time solutions. It is largely believed that they
do not. Here is an outstanding recent article on the latest
(and the importance) of the P = NP problem: The Status
of the P versus NP _problem.

The best book on the subject is Computers and
Intractability by Garey and Johnson.

edited May 24 '18 at 9:01

E ice1000
3,267 o4 16 46


http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm
http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext
https://rads.stackoverflow.com/amzn/click/0716710455
https://stackoverflow.com/posts/1857342/revisions
https://stackoverflow.com/users/7083401/ice1000

31

11

20

answered Dec 7 '09 at 1:46
;E:_:;_:i jason
AI#Et 194k ©27 0359 483

@Paul Fisher: I'll show that SAT is reducible to the
halting problem in polynomial time. Consider the
following algorithm: given as input a proposition I over

n variables, try all 2”n possible assignments to the
variables and halt if one satisfies the proposition and
otherwise enter an infinite loop. We see that this
algorithm halts if and only if I is satisfiable. Thus, if we
had a polynomial time algorithm for solving the halting
problem then we could solve SAT in polynomial time.
Therefore, the halting problem is NP-hard. — jason Dec 7
'09 at 3:52

@Jason - You can't reduce a decidable problem to an
undecidable problem in that manner. Decidable problems
have to result in a definitive yes or no answer in order to
be considered to be decidable. The Halting Problem
does not have a definitive yes or now answer since an
arbitrary answer might throw any solution into a loop. —
rizii Dec 13 '09 at 2:48

@Rob: Yes, | can. The definition of reducible does not
require that the problem being reduced to be solvable.
This is true for either many-one reductions or Turing
reductions. — jason Dec 13 '09 at 13:12

@Rob: Well, okay, if you want to continue this. First,
"Decidable" is not synonomous with "decision problem"
as you've used it. "Decidable" means, roughly, that there
is an "effective method" for determining the answer.
"Effective method", of course, has a technical definition.
Moreover, "decidable" can also be defined in terms of
"computable functions." So, the halting problem is a
decision problem ("Does this program halt?" is a yes/no
question) but it is undecidable; there is no effective
method for determining whether or not an instance of the
halting problem will halt. — jason Dec 13 '09 at 23:16

Using Halting problem as a "classic example" of NP-hard
problem is incorrect. This is like saying: "Pacific Ocean is
a classic example of a salt water aquarium." — Michael
Mar 11 '14 at 21:18


https://stackoverflow.com/users/45914/jason
https://stackoverflow.com/users/45914/jason
https://stackoverflow.com/users/1185/rjzii
https://stackoverflow.com/users/45914/jason
https://stackoverflow.com/users/45914/jason
https://stackoverflow.com/users/2540407/michael

