


Recall |

@ k-wise Independence

o Intuition: First k inputs are answered uniformly at random
e Formally: For all distinct x1,...,xx € Dand y1,...,yxk € R
we have

1
}P’[h(xl):yl,h(xz):yz,...,h(xk):yk: hEH :W

e One Construction: The set of all degree < k polynomials.
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Recall Il

@ 2-wise Independence/Pairwise Independence

e Special case of k = 2 mentioned above
e Formally: For all distinct x1,x2 € D and y1,y» € R we have

1
P {h(Xl) =y, h(e)=ya: hEH| = T

e One Construction: Linear functions
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Recall 111

@ Universal Hash Function Family

o Intuition: Probability of Collision is low
o Formally: For all distinct x1, x2 € D we have

1

P [h(xl) — h(x): h&H| < =i

e Construction: Any 2-wise independent hash function family is
also universal (we proved this result) The collision probability

P |h(x1) = h(x2): h<—’H] ﬁ in this case.
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Recall IV

@ Constructing Better Universal Hash Function Families

o We know that if the range is larger (or same size) than the
domain, then we can achieve collision probability
P {h(xl) = h(x2): h & 7-[] = 0 for every distinct x;,x € D
(we saw that any one-one function achieves this)

e When the range is smaller than the domain, we saw that any
2-wise independent hash function family achieves collision
probability P [(x1) = h(xa): h ¢ H| = &

o When the range is smaller than the domain, can we have
collision probability PP {h(xl) = h(x2): h & ’H] < |7%| for all
distinct xq,x € D?

@ In the previous lecture we saw that we can construct one hash
function family H, for |D| = 4, |R| = 2 such that the collision
probability is = % < |7%| = %!

o Can we have even lower collision probabilities? In this lecture
we shall prove that a lower collision probability is impossible!
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Lower-bounding Collision Probability

@ Let the size of the domain D be N
@ Let the size of the range R be M
@ Suppose we have M < N

We shall prove the following theorem

Theorem (Collision Lower Bound)

Let H be a hash function family such that the domain of the
function is D and the range of the functions is R. There exists
distinct x{, x5 € D such that

—1
N-—-1

3

P [h(x) = h(>3): h<EH| >

<=

Note that for M = 2 and N = 4, the bound is 1/3. The has
function family from the previous lecture achieves this bound.
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Proof of the Lower-bound |

Let us fix a hash function h € H
Suppose the range is the set {y1,y2,...,ym}

Let n; be the size of the set {x: x € D, h(x) = y;}, for
i€{1,2,...,M}. Thatis, n; inputs maps to y;, ny inputs
maps to y», and so on ...

The intuition of this is pictorially represented below

(n) ==
() ==
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Proof of the Lower-bound Il

@ Let us count the number (represented by #col,) of entries
{x1,x2}, where xq, xp are distinct elements from the domain
D, such that h(x1) = h(x2)

M
#col, = Z (g’)

i=1

o Note that the number of distinct {x1,x,} that collide at y; is (')

n2

o Note that the number of distinct {x1,x,} that collide at y, is (%)
e And, soon ...

o Adding these entries, we get the total number of distinct {x1, %2}
that collide my
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Proof of the Lower-bound Il

o Note that n; > 0and "M, n;= N

o We are interested in lower-bounding the expression "M, (%)
e Consider the following manipulation
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Proof of the Lower-bound IV

o We are interested in lower-bounding 3>M, n? under the
constraint n; > 0 and Z,’\il nj=N

@ So our task is to look at all the solutions to the equations:
n >0 (forallie{1,...,M})and "M n; = N. And
2

minimize Z,Ail ns.

@ For M = 2, we have the following picture for intuition. The
THICK RED line is the set of all feasible solutions. The
quantity n? 4+ n3 measures the distance of the solution from
the origin. The dotted lines represent this distance for various

solutions.

@ Using the AM-GM inequality, one can show that the minimum
is achieved when all the coordinates of the solution are equal.
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Proof of the Lower-bound VI

@ So, the solution where ny = n, =--- = ny; and le\il nj=N

is
N N N
VM M

@ For this feasible solution, we have:

M

M
D nP=> (N/M)*=N>/M
i=1

i=1

@ Therefore, we get

Universal Hashing



Proof of the Lower-bound VII

@ Suppose H = {hy, ..., hk}. Then, the total number
(represented by #coly,) of entries {h, x1, x2}, where x1, xp are
distinct elements from the domain D, h € H, and
h(Xl) = h(X2) is

N2
e For each h, we have shown earlier that #col, > < i N>.

e Summing over all h € H, we get this result O

\
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Proof of the Lower-bound VIII

o Let us define P be the set of all distinct {x1,x2} such that
x1,x € D. Note that|P| = (§) = N(N —1)/2

@ Suppose we perform the following experiment:

@ Sample (x1,x2) &p

@ Sample h &
© Output 1 if h(x1) = h(x2); otherwise output 0

Let us denote the output of this experiment by Z.

@ Let us calculate expected outcome of Z
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Proof of the Lower-bound IX

@ Consider the following manipulation

E[z (xl,x2)<i77,h<i7-l] :P[Z:l: (xl,X2)<iP,h<iH]

_#coIH
Pl H]
N2y
>_ N 7/
Z "N(N—1
(2 ) . K
N
_M
N—-1
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Proof of the Lower-bound X

@ So, we get the following result

L |

E[Z: (xl,xz)&P,hdH] > M=

@ Note that the above expression is identical to the following

statement:
N_1

For (x1,x2) < P, we have E [Z: h @H} = =
e By Pigeon-hole Principle, we get: There exists (xj, x3) € P
such that
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Proof of the Lower-bound Xl

@ So, for this choice of xi* and x3 the collision probability is

P [A(x) = h(xp): h &3] > 2

@ This completes the proof of the theorem
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“Best Universal Hash Functions”

@ Given domain of size N and range of size M, where M < N
and M divides N

@ Can we design universal hash functions such that for all
distinct x1, x> € D we have

N
_m-1_1 N=-M
N—1 M N-1

P [h(xa) = h(xe): h & H]|

@ This implies that we have to achieve equality at every step of
the proof of the collision lower-bound theorem

o We have to ensure ny = np =--- = ny
e We have to ensure that the “average” collision probability for
every (x1,x2) is identical

@ This problem will be posed in the homework
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“Better(?) than k-wise Independence”

o Note that when defining k-wise Independence we stated that
the probability of a hash function mapping x1 — y1, xo — y»,
, and xx — yk is

1
IR
e Why did we not write < ﬁ?
@ Is it even possible to get < —¢ IRI
@ In the homework you will prove that for any hash function
family, there exists distinct x1,...,x, and y1, ..., yx such that

1
P () = ya oo h(xe) = yi: h <& H > R

@ So, there is no way to get < —— IRI . The bound < |R| would be

equivalent to the bound = ——.
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Appendix: Inequality Proof |

Suppose ny, ..., np are positive numbers such that
ny +--++ npy = N. Then the following claim holds.

ng 4+ nay = N?/M

Proof.

@ We shall use AM-GM inequality to prove this result

@ AM-GM inequality states that, for non-negative a and b, the
following holds.

342—b2 b

Moreover, the equality holds if and only if a = b.
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Appendix: Inequality Proof

o Consider the following manipulation of the original expression

M

2
E n,?:(nl +"'+HM) — E 2[7,'/7_,'
i=1 1<i<j<M
2
= N*— E 2n;n;,
1<i<j<M
2 2: 2 2
= N* — (ni + nj)v
1<i<j<M
_ N2 2
=N"—(M-1) E n;
1<isM

@ Rearranging, we get
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Using Z nj=N
i=1

Using AM-GM



Appendix: Inequality Proof Il

@ This gives the inequality of the claim. Equality holds if and
only if nj = nj, for all 1 <i <j < M. This holds if and only if
ng=~n=--=~ny
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