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This paper gives an input independent average linear time algorithm for storage and 
retrieval on keys. The algorithm makes a random choice of hash function from a suitable 
class of hash functions. Given any sequence of inputs the expected time (averaging over all 
functions in the class) to store and retrieve elements is linear in the length of the sequence. 
The number of references to the data base required by the algorithm for any input is 
extremely close to the theoretical minimum for any possible hash function with randomly 
distributed inputs. We present three suitable classes of hash functions which also can be 
evaluated rapidly. The ability to analyze the cost of storage and retrieval without worrying 
about the distribution of the input allows as corollaries improvements on the bounds of 
several algorithms. 

A program may be viewed as solving a class of problems. Each input, in this view, 
is an instance of a problem from that class. The answer given by the program is, one 
hopes, a correct solution to the problem. Ordinarily, when one talks about the average 
performance of a program, one averages over the class of problems the program can 
solve. Gill [3], Rabin [8], and Solovay and Strassen [ll] have used a different approach 
on some classes of problems. They suggest that the program randomly choose an 
algorithm from a class of algorithms which solve the problem. They are able to give 
a bound, which is independent of the input, for the average performance of the class 
of algorithms. Their approach is valuable when this bound is better than the performance 
of any known single algorithm on that algorithm’s worst case. Some of the difficulties 
which this approach overcomes are the following: 

(1) Classical analysis (averaging over the class of inputs) must make an assumption 
about the distribution of the inputs. This assumption may not hold in a particular 
application. If not, a new analysis must be performed (if possible). 

(2) Often the designer of a system will not know the applications that system 
will be put to and will shy away from algorithms whose performance is dependent 
on the distribution of the data: For example, quicksort is a sorting algorithm which 
has good performance on randomly ordered sequences, but happens to perform poorly 
when the input is already almost sorted. It would be a mistake to provide quicksort as a 
general purpose library sorting routine since, for instance, business applications often 
deal with nearly sorted files. 
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(3) If the program is presented with a worst-case input, there is no way to avoid 
the resulting poor performance. However, if there were a class of algorithms to choose 
from and the program could recognize when a particular algorithm was running slowly 
on a given input, then it could possibly choose a different algorithm. 

In this paper, we apply these notions to the use of hashing for storage and retrieval, 
and suggest that a class of hash functions be used. We show that if the class of functions 
is chosen properly, then the average performance of the program on any input will be 
comparable to the performance of a single function constructed with knowledge of the 
input. We present several classes of hash functions which insure that every sample 
chosen from the input space will be distributed evenly by enough of the functions 
to compensate for the poor performance of the algorithm when an unlucky choice of 
function is made. 

A brief outline of our paper follows. After introducing some notation, we define a 
property of classes of functions: universal, . We show that any class of functions that is 
universal, has the desired properties. We then exhibit several universal, classes of func- 
tions which can be evaluated easily. Finally we give several examples of the use of these 
functions. 

NOTATION 

If S is a set, 1 S 1 will denote the number of elements in 5’. If x is a real number, then 
1x1 means the least integer 3x. If x and y are bit strings, then x @ y is the exclusive-or 
of x and y. 2, will represent the integers mod n. All hash functions map a set A into 
a set B. We will always assume 1 A 1 > / B 1. A is sometimes called the set of possible 
keys, and B the set of indices. If f is a hash function and x, y E A, we define 

w%Y) = 1; 
if x # Y and f(s) = f(y) 
otherwise 

If 6,(x, y) = 1, then we say that x and y collide under f. If f, x or y is replaced in 6,(x, y) 
by a set, we sum over all the elements in the set. Thus, if H is a collection of hash func- 
tions, x E A and S C A then &(x, S) means 

Notice that the order of summation does not matter. 

PROPERTIES OF UNIVERSAL CLASSES 

Let H be a class of functions from A to B. We say that H is universal, if for all x, y 
in A, 6,(x, y) < 1 H //I B I. That is, H is universal, if no pair of distinct keys collide 
under more than (1 /I B I)th of the functions. The subscript “2” is intended to emphasize 
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that the definition constrains the behavior of H only on pairs of elements of A. It turns 
out that this is powerful enough for many purposes, as the propositions of this section 
suggest. However, for some applications of hashing, it is desirable to have a class of 
functions which distribute larger subsets of A in a uniform manner. This may be the 
subject of a future paper. 

Proposition 1 shows that the bound on 6,(x, y) in the definition of universal, is tight 
when 1 A / is much larger than 1 B /. Notice that in most applications of hashing, 1 A I 
is indeed much larger than j B j. For example, a compiler might typically handle 1000 
variables from a class of all possible 7 character identifiers. A reasonable choice for B 
would therefore be 1000, while 1 A \ is 26’. 

PROPOSITION 1. Given any collection H of hush functions (not necessarily universal,), 
there exist x, y E A such that 

S,(x,y) >#-E. 

Proof. In the proof, we first derive a lower bound on the number of collisions under 
one function in H &(A, A), then use this to give a lower bound on the total number 
of collisions under all functions &(A, A), and finally use the pigeon hole principle 
to conclude there must be two elements of A which collide under 1 A ( of the functions. 

Leta=IA~,b=[B[andf~H.ForeachiEB,letAibethesetofelementsofA 
which are mapped into i byf, and let ai = j Ai I. ?$(A, , Aj) = 0 for i # j since elements 
of Ai are mapped into i, and therefore cannot collide with elements from A, . However, 
each element of Ai collides with every other element of Ai, and so &(Ai , Ai) = ai(a, - 1). 
Thus, ?+(A, A) = CisB &, 6,(Ai , A,) = CioB 6?(A, , Ai) = Ciea (ai - ai). It is known 
that this summation is minimized when the ai’s are of the same size, that is, when ai = a/b 
for each i E B. Thus, for each f E H, 6,(A, A) 3 b((a/b)2 - a/b) = a2(l/b - l/a). 

Taking the sum over the 1 H / functions in H, we obtain S,( A, A) 3 a2 1 H j (1 /b - 1 /a). 
The &,(A, A) on the left side of this equation is the sum of the a2 terms of the form 

6,(x, y), where X, y E A. When x = y, 6,(x, y) = 0. Thus, the sum of fewer than 
a2 non-zero terms is as ) H 1(1/b - l/a). Th e 1 eon hole principle implies there exist p’g 
X, y E A with x # y such that 8,(x, y) > / H \(I /b - l/a). 1 

In the remainder of this section, we derive consequences of the definition of universal, . 
These results are not particularly deep but are intended to demonstrate the usefulness 
of a universal, class. 

One application of hash functions is to implement an associative memory. Briefly, 
an associative memory can perform the operations: Store (Key, Data), which stores 
“Data” under the identifier “Key” and overwrites any data previously associated with 
“Key”; Retrieve (Key), which returns the data associated with “Key” or “Nil” if there 
is no such data; and Delete (Key). One method of implementing an associative memory 
uses a hash function f and an array of size 1 B 1 of linked lists. Given a Store, Retrieve 
or Delete request, f is applied to the given key. The resulting index is used to designate 
a linked list where the key and its associated data are to be stored. This list is searched 
linearly to determine if the key has been previously stored. See [1, pages 111-1131 for 
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more details. In this associative memory system, the time required to perform an operation 
involving the key x is less than some linear function of the length of the list indexed 
byf(x). If S is the set of keys which have been the subject of a Store, this list is of length 
1 + 6,(x, S). The next proposition calculates the expected length of this list. Once 
again, we emphasize that this result holds for any x and S, and that the average is over 
the class of hash functions. 

PROPOSITION 2. Let x be any element of A and S any subset of A. Let f be a function 
chosen randomly from a universal, class of functions (with equal probabilities on the functions.) 
Then the mean value of 6,(x, S) < ) S j/l B 1. 

Proof. Mean value of &(x, S) = , H , foH -!- c S,(x, S) 

= & zs S& Y> (by notation) 
jg ’ h zs I B I (by def. of universal,) 

It is not hard to extend this result to give the expected performance of our associative 
memory on a sequence R of requests. To make the notion of “performance” more 
precise, we define the cost of an individual request referring to the key x to be 1 + 8,(x, S) 
where S is the set of previously inserted keys. The cost C(f, R) of the hash function f 
on R is the sum of the costs of the individual requests in the order specified by R. 

Note that this cost function is appropriate only for an associative memory which 
uses a linked list collision resolution strategy. Other collision resolution schemes would 
have other cost functions associated with them. For example, if the keys with the same 
index were stored in a balanced tree, the corresponding cost function would be smaller- 
namely, the cost of an individual request would be 1 + log&(x, S)). 

The following theorem gives a nice bound on the expected linked-list-cost of using 
a universal, class of hash functions. 

PROPOSITION 3. Let R be a sequence of r requests which includes k insertions. 
Suppose H is a universal, class of hash functions. Then if we choose f at random from H, 
Expected(C(f, R)) < r(l + k/l B I). 

Proof. The expected cost of R is the sum of the expected costs of the individual 
requests. Proposition 2 and the definition of cost tell us that an individual request has 
expected cost no greater than 1 + k/l B j. 1 

Often, an estimate for the number of items to be stored in an associative memory 
is known. If so, one can choose [ B (, the number of linked lists, so that k/( B ( is approxi- 
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mately 1. Proposition 3 then implies that the expected cost of processing a sequence 
of requests is linear in the number of requests. Notice that this linear bound holds 
for any sequence of requests, not just for the “average” sequence. Fagin, Nievergelt, 
Pippenger and Strong [2] have developed an extendible hashing scheme which achieves 
the linear time bound even when there is no estimate on 1 S j. Their system involves 
little overhead, and only requires local remapping of data as j S j expands or contracts. 

Proposition 2 is helpful for other applications of hashing as well. For instance, an 
optical character reader postprocessing system is described in [9]. This system is designed 
to check if a word x is a member of a set of valid words S. The set {f(y) ( y E S} is 
stored in memory. To test whether x is in S, a check is made to see iff(x) is in the stored 
set. Since f(y) is generally shorter than y, a considerable amount of space is saved. 
However, there is a chance of error; iff(x) = f(y) f or some y tz S, then x may erroneously 
be accepted as valid. 

Proposition 2 gives a bound on the probability of error when f is chosen from a class 
of universal, functions, and suggests that to achieve an error probability of less than p, 
we should let B have size 1 S l/p. To be precise, Proposition 2 says that if x and S are 
specified, then a randomly chosenf will erroneously accept x with probability less than 
I/p. This is not the order of doing things which will occur in practice of course. First 

f is chosen by the system designer, then x is input by the user. However, assuming 
that the user does not choose x based on any knowledge of the hash function chosen, 
the order of choice is immaterial to the probability. 

We no not intend to imply that all functions in a universal, class are equally good: 
conceivably there is a function which maps each input into the same element of B, 
and another which maps each element of S into one element of B and maps everything 
else into a different index. The first function would accept any x as valid, whereas the 
second would never make a mistake. What is gained by using a universal, class is the 
knowledge that if one has simply made a random choice of hash function from such 
a class there is a favorable probability that a given mistake will be caught. Intuitively, 
we are saying that a universal, class contains enough good functions that a random choice 
is very likely to be a good choice. In particular, we need not be concerned with statistics 
on the frequencies of English letter combinations or with probable spelling errors. 

For some applications of hashing, it is not enough to know that the average performance 
will be good. There may be some level of performance such that any worse performance 
would not be tolerated. For instance, in an online application, we may want some 
assurance that no individual transaction will cost more than, say, t times the expected 
cost. The next proposition gives some assurance in this direction. 

PROPOSITION 4. Let x E A and SC A. Let p be the expected value of Sf(x, S). (By 
Proposition 2, p < 1 S \/\ B I.) Choose f at random from a universal, collection of junctions, 
H. Then the probability that 6,(x, S) > tp is less than 1 /t. 

Proof. The collection of numbers ($(x, S) j f E H} has mean p but no negative 
numbers. Thus, for each function with al(x, S) > tp, there must be more than t - 1 
functions with 6,(x, S) < p to keep the mean down to cc. i 
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Note that a similar argument shows that the probability that C(f, I?) is greater than 
t times its expected cost is also less than l/t. 

These are often not particularly useful bounds on the probability that a cost is 
intolerable. They can be improved by two methods. Firstly, a particular class of hash 
functions can be analyzed in more detail. For instance, for the classes H, and Hs presented 
in the next section, Markowsky [7] has calculated bounds on the second and fourth 
moments of the set of costs. These are used to show that when 1 S I/I I3 1 is about 1, 
the probability that a cost (of a request or sequence of requests) is greater than tp is 
less than 1 /t2 and also less than 1 l/t4. 

A second way to insure that no cost will be intolerable is to change the collision 
resolution strategy. For instance, suppose balanced trees ([I], pp. 145-152) are used 
in place of the linked lists mentioned earlier. When 1 5’ //I B I is about 1, this makes 
a small improvement in the expected value of af(x, S), and may not be worth the added 
bookkeeping if one cares only about the average cost. However, using balanced trees 
makes an exponential reduction in the probability that a request is intolerably expensive. 
In order for a request involving the key x to require searching more than t levels of the 
tree, 6,(x, S) would have to have at least 2t elements. Assuming 1 S I/j B 1 = 1, this 
means that the probability of a request requiring more than t steps is no more than 
l/21, and if f is chosen from Hz or H3 , the probability is less than 1/24t. 

We conclude this section by showing that although our approach to hashing achieves 
independence from the choice of input, it does not entail a poorer expected performance 
than the traditional approach. More precisely, we show: 

PROPOSITION 5. Given any single hash function, let E1 be the expected cost with respect 
to that function of a random request after k random insertions have been made. Let E2 be 
the expected cost (averaging over a universal, class of hash fun&ions) of any request after 
any k insertions have been made. Then E1 3 (1 - E) E, where E = 1 B j/I A I. 

Proof. Let a = j A I and b = I B I. Let S be the set of elements of A which were 
inserted prior to the request on the element X. Proposition 2 implies that E2 < 1 + I S I/b. 
We will show that E1 >, 1 + ( S 1(1/b - l/u), assuming that S and x were chosen 
randomly. A simple calculation then verifies that E1 3 (1 - b/a) E, . 

In the proof of Proposition 1, it was shown that &(A, A) > a2( l/b - l/u) for any 
hash function f. Thus if x and y are chosen at random from A, then Expected &(x, y)) = 
(I/&) &(A, A) >, l/b - l/u. Recall that &(x, S) = CVes &(x, y). Since the expectation 
of a sum is the sum of the individual expectations, Expected (5$(x, S)) > I S /(l/b - l/u). 
Thus, E1 > 1 + 1 S 1(1/b - I/a). 1 

SOME UNIVRRSAL~ CLASSES 

The first class of universal, hash functions we present, HI , is suitable for applications 
where the bit strings which represent the keys can conveniently be multiplied by the 
computer. 
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Suppose A = (0, I ,..., a - l> and B = (0, I,..., b - 1). Let p be a prime withp >, a. 
Let g be any function from 2, to B which, as closely as possible, maps the same number 
of elements of Z, into each element of B. Formally, we require i{y E Z, 1 g(y) = ;}I < 
[p/b1 for all i E B. A natural choice for g is the residue modulo b. When b = 2k for 
some K, this amounts to taking the last K bits in the binary representation of y. 

Let m and n be elements of Z, with m # 0. We define Jz,,~: A - Z, by h,&x) == 
(mx +- n) mod p. Now definef,,,(x) = g(hm,n(x)). Th e c 1 ass HI is the set (fm,% I m, n E Z,, 
and m + 01. 

The following lemma is useful in proving that this class is universal, . 

LEMMA 6. When HI is defined as above, then for any x, y E A with x # y, aH1(x, y) = 

&7(-G 7 z%J 

Proof. There is a natural correspondence between the functions h,,, and the ordered 
pairs (Y, s) where r, s E Z, and r # s. Specifically, we associate the function h,,, with 
the ordered pair (h,,,(x), h,,,(y)). S’ mce m # 0 and x # y, hmsn(x) # h,,,(y). This 
correspondence is one-to-one and onto since for a fixed x, y, r and s, the linear equations 
xm + n ~2 r (modp) and ym + n = s (modp) have a unique solution for nz and n in the 
field Z, . 

If (y, s) is the pair (h&X), L,,(y)), then f,&x) = fn,,&) if and only if g(r) = g(s). 
Thus, 6,&r, ~1) = 6,(Z, , Z,). 1 

PROPOSITION 7. The class HI is universal, . 

Proof. Let ni be the number of elements in {t E Z, j g(t) = i>. g was chosen so that 
na < [pjbl for each i. Since p and b are integers, [p/b] < ((p - 1)/b) + 1, Thus for a 
given 1’ E Z, , there are no more than (p - 1)/b c h oices for s such that Y # s but g(r) = 
g(s). Since there are p choices for Y, p( p - 1)/b > a,,(~, y). Recalling that for x = V, 
sH1(x, y) = 0, this shows that HI is universal, . fl 

If desired, p can be chosen so the mod p operation can be calculated without a division. 
For instance, suppose p = 2j - 1 for some j, and x is expressible in 2j bits. Then there 
exist x1 , sz < 2i such that x = 2jx, + x2 . x1 is the j high order bits of the binary 
representation of X, and x2 is the j low order bits. x = x1 + xa (modp), since 2j = 1 
(mod p). Thus, the 2j bit number x can be reduced to a congruent j + 1 bit number 
by performing a shift and an add operation. To get x (modp), only a test and perhaps 
a subtract are needed. When one uses this method, and b is a power of two (so the mod b 
operation can be implemented by taking the last bits), then computing a function from 
H, takes only one multiply and a few addition, shift and Boolean operations. 

It may seem that the addition of n in the class of functions given above plays an un- 
important role. This is only partly true. Suppose for m E Z, we define h,,,(x) = mx 
(modp), and as before define f*(x) as g(h,(x)). Let H = {fm 1 m E Z, and m # 0). 
It can be shown that this class of functions comes within a factor of two of being 
universal, , that is %&,Y) < 20 H l/l B I) f or any x and y. On the other hand, this 
bound cannot be improved significantly. For instance, let b = \ B /, and choose K so 
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that p = Kb + K + 1 is prime (there will be infinitely many such R’s.) Let g(x) = x 
(mod b). Let x = 1 and y = b + 1. It can be shown that the 2K functions jr , fa ,..., fk , 

f9--k ,f*-?4+1 YVfll--1 each map x and y to the same value. Thus, 6,(x, y) = 2K, while 

IHI P-1 kb + k -=- =-= 
IBI b b i 1 

l+; k. 

The universal, class HI may not be convenient when the keys are too long to be 
multiplied using a single machine instruction. However, the next proposition gives 
a method of extending a class of functions for long keys. 

PROPOSITION 8. Suppose B = (0, I,..., b - I} where b is a power of two and H is a 
class of functions from A to B with the property that for some real number Y, for each x, y E A 
with x # y, and for each i E B, ](f E H ) f (x) @f(y) = i}] < r / H I. (Recall that @ is 
the exclusive-or operation.) Dejine the class J of hash functions from A x A to B as follows: 
For f, g E H, de$ne hf,A(xl , x2)) = f (xl) 0 g(xJ, and let J = {hr,g If, g E H). Then for 
aZZx,yEAxAwithx#y,andforalZiEB,I(hEJ]h(x)~h(y)=i)j~~~J]. 

Proof. Given x, y c A x A with x # y, write x = (x1, xs) and y = (yr ,ys). 
Without loss of generality, we may assume that xi # yi (otherwise, interchange the 
subscripts 1 and 2 in the following.) Given i E B, 

IQ E J I h(x) 0 h(y) = ill = Nf, g E H If (x1) 0 g(x,) @f (yl> 0 dy2) = i>I 

= E I{f E H If (x1) Of (n> = i Og(xz) OdydH. 

The hypothesis implies that each term of this summation is bounded by Y 1 H /. Thus, 
IPEJIh(x)Oh(y) =i>l <rlHHj2 =yIJI. I 

Proposition 8 can be used to produce universal, classes which work on long keys. 
Suppose His a class of functions which can be applied to keys of length 01 and H satisfies 
the condition of the proposition with Y = I// B /. Then the resulting J is a class of 
functions which can be applied to keys of length 2or. Furthermore, J is universals . 
To see this, notice that if x # y, r 1 J 1 > I{h E J 1 h(x) @ h(y) = O}l = 8,(x, y). 
Repeated application of Proposition 8 allows us to extend the functions to arbitrarily 
long keys. Notice that if the functions in H can be applied in constant time, then the 
time required to compute an extended function is proportional to the length of the key. 

If we apply Proposition 8 to the class HI defined earlier, we do not quite get a universal, 
class. This is because the smallest Y which satisfies the condition of the proposition 
is somewhere between l/j B 1 and (l/j B I)( 1 + (I B 1 + l)/(p - 1)). In most applica- 
tions, ( B 1 is very small compared to p, so the results of the theorems of this paper 
are true “within 6.” Alternatively, one could modify the definition of H, to allow m 
to equal 0. The resulting class is still universal, , and Proposition 8 applies with Y = l/l B I. 

The following universal, class of functions-denoted H3 for historical reasons- 
does not require multiplication and may be better for many applications. Essentially, 
if one considers the elements of A and B to be vectors over the field of two elements, 
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then Ha is the set of linear transformations from A to B. More explicitly: Let A and B 
be the set of i-bit and j-bit binary numbers, respectively. Let M be the set of the arrays 
of length i whose elements are from B. (One can think of the arrays in M as i by j 
Boolean matrices.) For m E M, let m(k) be the bit string which is the Kth element of m, 
and for zc E A, let xk be the kth bit of x. We define f?,(x) = xim(1) @x.92(2) @ ..’ e 
.qm(i). The class Ha is the set {fm / m E M). 

PROPOSITION 9. The class H3 dejned above is universal, . 

Proof. The proof is by induction on i using Proposition 8. 
When i = 1, we have A = (0, I}, M = B, and for m E B, fm(0) = 0 and f&l) = m. 

The condition of Proposition 8 is satisfied with Y = l/J H I since the only possible 
choices for x and y are x = 0, y = 1 (or x = 1, y = 0), and for each i, fi is the only 
function for which f,(O) @ fi(l) = i. 

Proposition 8 supplies the induction step. Thus the condition of Proposition 8 is 
satisfied for all i, and H3 is universal, . 1 

The class Hz of hash functions presented below is similar to H3 , but the functions 
in H, require less time and more space. This is accomplished by first mapping the key 
into a longer bit string, but one with fewer 1’s. Specifically, suppose A can be viewed 
as the set of i-digit numbers written in base 01. For x E A, let s*k denote the kth digit 
of x. Define g to be the function which maps x into the bit string of length B which 
has I’s in positions xi + 1, x1 + x2 + 1, x1 + x2 + xa + 1, etc. Then 1 A 1 = 01i and 
I B 1 = 2’. If H3 is the class defined above for &-bit keys, then H, = {fg j f E Ha}. 
The fact that H, is universal, follows immediately from the facts that g is 1 to 1 and Hz3 
is universal, . 

We would like to emphasize that the hash functions described in this section are fast. 
For instance, the class HI extended by the technique of Proposition 8 has been im- 
plemented using the IBM 360 instruction set [lo]. This code requires about 4 fast 
instructions per byte of key. Thus, there is not a time penalty associated with using 
universal, hash functions. 

IMPORTANCE 

The next two theorems summarize the results proved in this paper which we believe 
are of practical and theoretical importance. Frequently, algorithms are analyzed making 
the assumption that multiplications and other basic operations take unit time. The 
number of such operations is said to be the cost of the algorithm. 

THEOREM 10. Using a standard model of computation, where multiplication, choosing 
of random numbers, and memory references take unit time, any sequence of r requests to an 
associative memory can be processed in expected time O(r). 

Proof. Proposition 3 implies that when a universal, class of hash functions is used 
and / B 1 is chosen approximately equal to r, then the expected number of memory 
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references per request is less than 2 when averaged over all functions in the class. Under 
this model a member in the class iYr may be chosen and may be applied to each of the 
requests in constant time. 4 

If keys are too long, this model is unrealistic and we must discard the assumption 
that multiplication takes unit time. We can also show: 

THEOREM 11. Using a standard model, where Boolean operations on machine addresses, 
choosing of random numbers, and memory references take unit time, any sequence of requests 
to an associative memory can be processed in expected time linear in the number of bits in 
the input. 

Proof. Use class Hz or H3 . 1 

There are several ways in which universal hash functions are of practical importance. 
In many applications, it is quite easy to change the hash function each time a program 
is run. This makes it mathematically certain that the linear time bounds of Theorems 10 
and 11 are achieved. This is true even if the program is run on different data each time, 
provided that the choice of hash function is independent (in the probabilistic sense) 
of the data. This will be the case if the hash function is chosen randomly after the data 
is established. 

For other applications of hashing, it may be awkward to change the hash function 
frequently. For instance, changing the hash function in a large database system would 
require moving a large amount of data to new locations. In this case, there are several 
strategies one could employ. The simplest is to once and for all randomly choose 
a hash function from a universal, class. The expected time required by the associative 
memory subroutine of the application will be linear in the number of requests. Further- 
more, Proposition 4 and reference [7] give some bounds on the probability that the actual 
time required is significantly greater than the expected time. A second strategy is to 
occasionally observe how many collisions were occurring, and change the hash function 
if there were significantly more than expected. This strategy makes good performance 
certain, again assuming the choice of hash function and the data are independent. 

A third value of a universal, class of functions is that one can be sure that there 
are many acceptable functions in the class. Programmers sometimes spend a con- 
siderable amount of time searching for a hash function which will perform well on 
their test data ([6], p. 508-513). This search time can be reduced by simply trying 
out a few functions chosen randomly from a universal, class. 

The theoretical importance of universal, classes is that they allow one to get a good 
bound on the average performance of an algorithm which uses hashing. The problem 
with an ordinary hashing scheme is that the algorithm might tend to make requests 
involving a particular subset of the keys, and these favored keys may be distributed 
unevenly by the particular hash function being used. There is often a complicated 
interaction between the inputs to the algorithm and the keys the algorithm requires 
to be hashed. This interaction makes the average performance of such an algorithm 
difficult to determine. However, if one uses a universal, class of hash functions, then 
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it does not matter which particular set of keys are generated by the algorithm. We give 
two examples of algorithms which benefit from our approach. 

Rabin [8] has developed an algorithm which finds the nearest neighbors of a collection 
of points in a plane, given the coordinates of the points. This algorithm involves making 
a random choice of points, and it uses hashing. If one also randomly chooses the hash 
function from a universal, class, then the expected running time of the algorithm will 
always be linear in the number of points. 

In [4] and [5] an algorithm is suggested for multiplying sparse polynomials, using 
hashing. We can strengthen the results of these papers. Assume scalar multiplication 
and addition take constant time. The following algorithm can multiply two polynomials 
P and Q with n and m non-zero terms, respectively, in average time O(nm). Let CP, , 
CP s ,..., CP, be the coefficients of the n terms of P. Let EP, , EP, ,..., EP, be the 
exponents of those terms. Let CQi and EQi stand for the same quantities of Q. Store 
and Retrieve are the associative memory operations introduced earlier, and are im- 
plemented using a universal, class of hash functions. If a value has not been stored 
previously for a given key, a Retrieve will return zero. 

Begin 
Choose a hash function; 
Fori:= 1 tondo 

Forj:= 1 tomdo 
Begin 
K = Retrieve (EP, + EQ,); 

Store (EP, + EQj , K + CP, c CQj) 
End; 

Print all keys and values which have been stored; 
End; 

Since addition and multiplication are viewed as taking constant time, the first class 
of functions we presented seems appropriate for this analysis. 

FUTURE RESEARCH 

There are a number of areas which can be investigated, such as: 

(1) Improve the bounds cited here on the probability that a particular function 
from H, or H3 will perform poorly on a particular input. 

(2) Extend the analysis to other storage and retrieval algorithms which involve 
hashing, such as double hashing and open addressing. 

(3) When should one decide that a particular function is a poor choice and it 
would be worth the effort to choose a new function and rehash ? 

(4) What is the minimum number of bits necessary to specify a function from 
a universal, class? One class not discussed in this paper is close to being universal, 
and requires log(log ] A 1) log(\ B 1) bits. 
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