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SSSP

Weighted graph G = (V,E), s € V, n = |V]|,
m = |E|

Find dist(s,v) Yv e V

This talk: undirected SSSP in deterministic
linear time and linear space.

Previously linear time only for planar graphs
[Klein, Rao, Rauch, Subramanian, STOC'94]

Since 1959 all theoretical developments for gen-
eral directed and undirected graphs based on
Dijkstra’s algorithm



Dijkstra
Super distance D(v) > d(v) = dist(s,v)

veS = Dw)=d)
v S = D) =min,cs{d(u) + {(u,v)}

Dijkstra’s SSSP algorithm

S — {s}
D(s) «— 0, Yv# s : D(v) < £(s,v)
while S =V
pick v € V' \ S minimizing D(v)
> D(v) = d(v)
S — SuU{v}
for all (v,w) € E
D(w) «<— min{D(w), D(v) + ¢(v,w)}
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Still use S, D:

veS=DWw)=dw)
v S = D) =min,ecs{d(u) + £(u,v)}

“visit v = moving v to S
New: flexible visit sequence, not order of d(v)

Identify many other vertices v ¢ S with D(v) =
d(v)

Note: Dinitz (1978) buckets occording to

[D(v)/ min é(e)]

We use hierarchical bucketting structure.



Suppose
e V partitions into Vq,..., V.
e Edges between different V; have weight > ¢

e For some v e V;\ S,

D) =minD(V;\S) <minD(V;\ S) +6
J

Then

| min D(M\S



A recursive version
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Component Hierarchy

G; = (V,{e € E|t(e) < 2'})

[v];: component of v in G;
= ‘“level ¢« component of v"

(notation: z | i = |z/2'| = “z drop ")
Observation u ¢ [v];, dist(u,v) > 2¢
(notation: [v];” = [v]; \ S)
[v]; min-child [v];41 if
min D([v];") | i = min D([U]i_—|—1) 17

[v]; minimal if Vj > : [v]; min-child [v];4
Lemma [v]; minimal = min D([v], ) = mind([v];")

Corollary [v]g minimal = D(v) = d(v)



Component hierachy only stores components
with multiple children

—don’'t store [v]; if [v];_1 = [v];.
—at most 2n — 1 nodes in hierachy.

Component hierachy computed in linear time
via minimum spanning tree



Some clusters [v]; are expanded:
e Children clusters stored in buckets B([v]; , ).

e Child [v];, stored in

B([v]; , min D([v];) | (i— 1))

unless [v], = 0.

e Maintain index

iz([v];) = min D([];) | (i — 1)

of first non-empty bucket.

e min-children in B{[v]; , ix{[v];)).
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[v]; expandable if minimal and parent expanded
No vertex in [v]; visited yet so [v];” = [v];

Expanding [v];
iz([v];) < minD([v];) ] i —1
for all children [w]; of [v];,
put [w]y, in B([v]; , min D([w]y) | (i — 1))

We shall later see...

A data structure maintains min D([w];,) for all
unexpanded roots, i.e., unexpanded children of
expanded clusters.

The total number of buckets needed is linear.
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Visiting a vertex

v visitable if [v]g minimal and parent expanded

Visiting v

> D(v) = d(v)

for all (v,w) € E
D(w) «— min{D(w), D(v) + £(v,w)}
update bucket of unexpanded root of w

S — SuU{v}

> updating expanded bucket structure

let ¢ be maximal level such that [v]; =0

let [v]; be parent of [v];

remove [v]; from B<[v]j : 73:1:<vj>>

loop
exit it B([v];, iz([v];)) # 0
za:<[v]j> — z:v<[v]j> + 1.

let [v]; be parent of [v];

exit if z:c<[v]3> | (k—J) =ix([v]g)
move [v]; to B{[v] , iz([v]g) + 1)
j — k
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Work in bucket structure proportional to num-
ber of buckets.

Not too many buckets

max d([v];) — mind([v];) < e, £(€)

soO allocate

| B([v];, )|
= |{mind([v];) | i —1,...,maxd([v];) | i — 1}

<24 Yeepu), L) /2071

Thus

[B(:, )|

< Y (2 4+ Teep, £(e) /27 1)

<y Yo k()21

<An+ Y. Yish e(e)/zZ 1 where 2 > ¢(e)
< 4n + ze Z]>02 —J

<4n—+> .4

= 4n + 4m

= O(m)
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For each unexpanded root [v];, maintain min D[v];.

Formulated as independent data structure:

e \We have a forest of rooted trees.

e Each leaf w has a key D(w).

e [ he root has min key of descending leaves.

e [ he key of a leaf may decrease.

e A root may be deleted.
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bottom trees are maximal with < Ioan leaves.
bottom trees are handled recursively
above bottom are < n/|092n middle nodes.

decrease—bottom root—middle—Fibonacci heap

min'ff{ Fibonacci heap‘
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When root deleted, bigger subtree inherits Fi-
bonacci heap

After two recursions: size O(loglog?n).
Then atomic heaps with tabulation.

Now all updates in constant time.
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Summing up

e Computing the component hierachy takes
linear time.

e [ he data structure allows us in constant
time to move unexpanded roots when a
key is decreased.

e T he bucketting of expanded components
IS maintained in constant time per bucket
and the number of buckets is linear.

Thus undirected SSSP solved in linear time.
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Concluding remarks

e People have implemented simpler variants.
If the component hierachy has been con-
structed once for the whole graph, subse-
quent USSSP compuations are fast in prac-
tice.

e Basid ideas reused for the best external
memory USSSP.

e Main open problem do directed SSSP in
linear time... Hagerup has done some nice
generalizations for directed graph, but lost
the linear time.
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Exercises for undirected SSSP

e How quickly can you construct component
hierachy?

e Solve independent data structures problem
for trees of size O(loglog?n) using tables
and atomic heaps (free rank queries within
set of size O(loglog2n) while items de-
creased).

e Why doesn’t this work for immediately di-
rected graphs?

e Discuss simpler implementation, e.g., not
using atomic heaps, and what happens to
the asymptotic running time.
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