
Undirected Single Source Shortest Paths

in Linear Time

Mikkel Thorup

AT&T Labs—Research

Based on:

Mikkel Thorup.Undirected single source short-

est paths with positive integer weights in lin-

ear time. Journal of the ACM, 46(3):362–394,

1999. See also FOCS’97.

1

SSSP

Weighted graph G = (V, E), s ∈ V , n = |V |,
m = |E|

Find dist(s, v) ∀v ∈ V

This talk: undirected SSSP in deterministic

linear time and linear space.

Previously linear time only for planar graphs

[Klein, Rao, Rauch, Subramanian, STOC’94]

Since 1959 all theoretical developments for gen-

eral directed and undirected graphs based on

Dijkstra’s algorithm

2

Dijkstra

Super distance D(v) ≥ d(v) = dist(s, v)

v ∈ S ⇒ D(v) = d(v)

v 6∈ S ⇒ D(v) = minu∈S{d(u) + `(u, v)}

Dijkstra’s SSSP algorithm

S ← {s}
D(s)← 0, ∀v 6= s : D(v)← `(s, v)

while S 6= V

pick v ∈ V \ S minimizing D(v)

� D(v) = d(v)

S ← S ∪ {v}
for all (v, w) ∈ E

D(w)←min{D(w), D(v) + `(v, w)}

3

Implementations of Dijkstra

O(m + n2) Dijkstra’59

O(m logn) William’64

O(m + n logn) Fredman and Tarjan’87

O(m
√

logn) Fredman and Willard’93

O(m + n logn
log logn) Fredman and Willard’94

O(m log logn) Thorup’96

O(m + n
√

logn1+ε) Thorup’96

O(m + n 3
√

logn1+ε) Raman’97

O(m + n 3
√

logn1+ε) Raman’97

O(m
√

log logn) Han and Thorup’02

O(m + n log logn) Thorup’03

O(m log logC) van Emde Boas’77

O(m + n
√

logC) Ahuja et.al.’90

O(m + n 3
√

logC log logC) Cherkassky et.al.’97

O(m + n 4
√

logC1+ε) Raman’97

O(m + n log logC) Thorup’03

Linear Dijkstra ⇐⇒ linear sorting, Thorup’96

4

Still use S, D:

v ∈ S ⇒ D(v) = d(v)

v 6∈ S ⇒ D(v) = minu∈S{d(u) + `(u, v)}

“visit v”≡ moving v to S

New: flexible visit sequence, not order of d(v)

Identify many other vertices v 6∈ S with D(v) =

d(v)

Note: Dinitz (1978) buckets occording to

bD(v)/min
e∈E

`(e)c

We use hierarchical bucketting structure.

5

Suppose

• V partitions into V1, ..., Vk

• Edges between different Vi have weight ≥ δ

• For some v ∈ Vi \ S,

D(v) = minD(Vi \ S) ≤min
j

D(Vj \ S) + δ

Then

d(v) = D(v)

V

V

V

VS

s

2

0 min iD(V \S)

w

3

41

v
u

6

A recursive version

s

2

1

2< 2

< 2

2

2 3

4

V

V

V

S 2
V

V

V

V

3

D(V \S)iminV

1 4

0< 2

7

Component Hierarchy

Gi = (V, {e ∈ E|`(e) < 2i})

[v]i: component of v in Gi

≡ “level i component of v”

(notation: x ↓ i ≡ bx/2ic ≡ “x drop i”)

Observation u 6∈ [v]i, dist(u, v) ≥ 2i

(notation: [v]−i = [v]i \ S)

[v]i min-child [v]i+1 if

minD([v]−i) ↓ i = minD([v]−i+1) ↓ i

[v]i minimal if ∀j ≥ i : [v]j min-child [v]j+1

Lemma [v]i minimal⇒ minD([v]−i) = min d([v]−i)

Corollary [v]0 minimal ⇒ D(v) = d(v)

8

Component hierachy only stores components

with multiple children

—don’t store [v]i if [v]i−1 = [v]i.

—at most 2n− 1 nodes in hierachy.

Component hierachy computed in linear time

via minimum spanning tree

9

Some clusters [v]i are expanded:

• Children clusters stored in buckets B〈[v]i , ·〉.

• Child [v]h stored in

B
〈

[v]i , minD([v]−h) ↓ (i− 1)
〉

unless [v]−h = ∅.

• Maintain index

ix〈[v]i〉 = minD([v]−i) ↓ (i− 1)

of first non-empty bucket.

• min-children in B〈[v]i , ix〈[v]i〉〉.

10

[v]i expandable if minimal and parent expanded

No vertex in [v]i visited yet so [v]−i = [v]i

Expanding [v]i

ix〈[v]i〉 ←minD([v]i) ↓ i− 1

for all children [w]h of [v]i,

put [w]h in B〈[v]i , minD([w]h) ↓ (i− 1)〉

We shall later see...

A data structure maintains minD([w]h) for all

unexpanded roots, i.e., unexpanded children of

expanded clusters.

The total number of buckets needed is linear.

11

Visiting a vertex

v visitable if [v]0 minimal and parent expanded

Visiting v

� D(v) = d(v)

for all (v, w) ∈ E

D(w)←min{D(w), D(v) + `(v, w)}
update bucket of unexpanded root of w

S ← S ∪ {v}
� updating expanded bucket structure

let i be maximal level such that [v]−i = ∅
let [v]j be parent of [v]i
remove [v]i from B

〈

[v]j , ix
〈

vj

〉〉

loop

exit if B
〈

[v]j , ix
〈

[v]j
〉〉

6= ∅
ix

〈

[v]j
〉

← ix
〈

[v]j
〉

+ 1.

let [v]k be parent of [v]j
exit if ix

〈

[v]j
〉

↓ (k − j) = ix〈[v]k〉
move [v]j to B〈[v]k , ix〈[v]k〉+ 1〉
j ← k

12

Work in bucket structure proportional to num-

ber of buckets.

Not too many buckets

max d([v]i)−min d([v]i) ≤
∑

e∈[v]i `(e)

so allocate

|B〈[v]i, ·〉 |
= |{min d([v]i) ↓ i− 1, . . . ,max d([v]i) ↓ i− 1}|
≤ 2 +

∑

e∈[v]i `(e)/2
i−1

Thus

|B(·, ·)|
≤ ∑

[v]i
(2 +

∑

e∈[v]i `(e)/2
i−1)

< 4n +
∑

e
∑

[v]i3e `(e)/2i−1

< 4n +
∑

e
∑

i≥h `(e)/2i−1, where 2h > `(e)
< 4n +

∑

e
∑

j≥0 21−j

< 4n +
∑

e 4

= 4n + 4m
= O(m)

13

For each unexpanded root [v]i, maintain minD[v]i.

Formulated as independent data structure:

• We have a forest of rooted trees.

• Each leaf w has a key D(w).

• The root has min key of descending leaves.

• The key of a leaf may decrease.

• A root may be deleted.

14

bottom trees are maximal with < log2 n leaves.

bottom trees are handled recursively

above bottom are ≤ n/ log2 n middle nodes.

decrease→bottom root→middle→Fibonacci heap

bottom trees

middle nodes

Fibonacci heapmin

When root deleted, bigger subtree inherits Fi-

bonacci heap

After two recursions: size O(log log2 n).

Then atomic heaps with tabulation.

Now all updates in constant time.

15

Summing up

• Computing the component hierachy takes

linear time.

• The data structure allows us in constant

time to move unexpanded roots when a

key is decreased.

• The bucketting of expanded components

is maintained in constant time per bucket

and the number of buckets is linear.

Thus undirected SSSP solved in linear time.

16

Concluding remarks

• People have implemented simpler variants.

If the component hierachy has been con-

structed once for the whole graph, subse-

quent USSSP compuations are fast in prac-

tice.

• Basid ideas reused for the best external

memory USSSP.

• Main open problem do directed SSSP in

linear time... Hagerup has done some nice

generalizations for directed graph, but lost

the linear time.

17

Exercises for undirected SSSP

• How quickly can you construct component

hierachy?

• Solve independent data structures problem

for trees of size O(log log2 n) using tables

and atomic heaps (free rank queries within

set of size O(log log2 n) while items de-

creased).

• Why doesn’t this work for immediately di-

rected graphs?

• Discuss simpler implementation, e.g., not

using atomic heaps, and what happens to

the asymptotic running time.

18

