Tries and suffix tries

Ben Langmead

(==
4
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me briefly how you're
using them. For original Keynote files, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Tries

A trie (pronounced “try”) is a tree representing a collection of strings with
one node per common prefix

Smallest tree such that:
Each edge is labeled with a characterce 2
A node has at most one outgoing edge labeled ¢, force 2

Each key is “spelled out” along some path starting at the root

Natural way to represent either a set or a map where keys are strings

http://xlinux.nist.gov/dads/HTML/node.html
http://xlinux.nist.gov/dads/HTML/node.html
http://xlinux.nist.gov/dads/HTML/prefix.html
http://xlinux.nist.gov/dads/HTML/prefix.html

Tries: example

Represent this map with a trie:

Key Value
1 n

instant

internal 2

S
Internet 3 t <:>
a
The smallest tree such that:
Each edge is labeled with a characterce 2 " §
t
O

: a
A node has at most one outgoing edge

labeled ¢, force 2

Each key is “spelled out” along some path @ @
starting at the root

Tries: example

Checking for presence of a key P,
wheren=|P|,is O(n) time

If total length of all keys is N, trie
has O(N) nodes

What about | 2 | ?

Depends how we represent outgoing
edges. If we don’tassume |2 |is a

small constant, it shows up in one or
both bounds.

Tries: another example

We can index T with a trie. The trie maps
substrings to offsets where they occur

14

12

18

10
16

root:

18,0
10

16

Tries: implementation

class TrieMap(object):
""" Trie implementation of a map. Associating keys (strings or other
sequence type) with values. Values can be any type. """

def __init_ (self, kvs):
self.root = {}
For each key (string)/value pair
for (k, v) in kvs: self.add(k, v)

def add(self, k, v):
""" Add a key-value pair
cur = self.root
for ¢ in k: # for each character in the string
if ¢ not in cur:
cur[c] = {} # if not there, make new edge on character c
cur = cur[c]
cur['value'] = v # at the end of the path, add the value

def query(self, k):
""" @iven key, return associated value or None
cur = self.root
for ¢ in k:
if ¢ not in cur:
return None # key wasn't in the trie
cur = cur[c]
get value, or None if there's no value associated with this node
return cur.get('value')

Python example:
http://nbviewer.ipython.orq/6603619

http://nbviewer.ipython.org/6603619
http://nbviewer.ipython.org/6603619

Tries: alternatives

Tries aren’t the only tree structure that can encode sets or maps with string
keys. E.g. binary or ternary search trees.

/\
/\ /\ N
\? / \

3‘ y e frb

\

[

Ternary search tree for as, at, be, by, he, in, is, it, of, on, or, to

Example from: Bentley, Jon L., and Robert Sedgewick. "Fast algorithms for sorting and searching
strings." Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 1997

Indexing with suffixes

Until now, our indexes have been based on extracting substrings from T

A very different approach is to extract suffixes from T. This will lead us to
some interesting and practical index data structures:

5] % q 6] s 3 A

n};{ Q I BANANA$. 5 | AS A N

4w Q O, °A ,O 3] ANAS A N

;5 ? : tr s’V NA -7 $’r‘ V-‘NA$ L ANANAS A B

35“ " ¢ 5 4 2 1 BANANAS B $

? ? : $ / \ NAS 4| NAS N A

& é Q P 4 2 | NANAS N A
! ; 3] |1 —

i Suffix Trie Suffix Tree Suffix Array FM Index

Suffix trie

Build a trie containing all suffixes of atext T

I: GTTATAGCTGATCGCGGCGTAGCGG

GTTATAGCTGATCGCGGCGTAGCGG T

TTATAGCTGATCGCGGCGTAGCGG
TATAGCTGATCGCGGCGTAGCGG
ATAGCTGATCGCGGCGTAGCGG
TAGCTGATCGCGGCGTAGCGG
AGCTGATCGCGGCGTAGCGG
GCTGATCGCGGCGTAGCGG
CTGATCGCGGCGTAGCGAG
TGATCGCGGCGTAGCGG
GATCGCGGCGTAGCGG
ATCGCGGCGTAGCGG
TCGCGGCGTAGCGAG
CGCGGCGTAGCGG
GCGGCGTAGCGG
CGGCGTAGCGAG

GGCGTAGCGG

GCGTAGCGG

CGTAGCGG

GTAGCGG

TAGCGG

AGCGG

GCGG

CGG

GG

G 1

m(m+1)/2
chars

Suffix trie

First add special terminal character $ to theend of T

S is a character that does not appear elsewhere in T, and we define it
to be less than other characters (for DNA:S <A< C<G<T)

$ enforces a rule we're all used to using: e.g. “as” comes before “ash”in the
dictionary. $ also guarantees no suffix is a prefix of any other suffix.

I: GTTATAGCTGATCGCGGCGTAGCG
GTTATAGCTGATCGCGGCGTAGCG
TTATAGCTGATCGCGGCGTAGCG
TATAGCTGATCGCGGCGTAGCG
ATAGCTGATCGCGGCGTAGCG
TAGCTGATCGCGGCGTAGCG
AGCTGATCGCGGCGTAGCG
GCTGATCGCGGCGTAGCG
CTGATCGCGGCGTAGCG
TGATCGCGGCGTAGCG
GATCGCGGCGTAGCG
ATCGCGGCGTAGCG
TCGCGGCGTAGCG
CGCGGCGTAGCG
GCGGCGTAGCG
CGGCGTAGCG

G

GGCGTAGC
GCGTAGC G

AN AN A A A A A A A R KA KA AR A2 KN
A A A AAAAAAAAAAAAAAA

l

Tries

Smallest tree such that:
Each edge is labeled with a character from 2
A node has at most one outgoing edge labeled with ¢, forany ce 2

Each key is “spelled out” along some path starting at the root

Suffix trie

a b \$
/ Shortest
T: abaaba T$: abaaba$ " ‘ ‘ (n?;_empty)
4 AV . SUTTIX
Each path from root to leaf represents a ‘ ‘ ‘
suffix; each suffix is represented by some : 5 2 \¢
path from root to leaf (‘ ‘

a

Would this still be the case if we hadn’t

added $? () (

5

O C

2 \$

D O C

D

YO

A

C

e

Cg Longest suffix

Suffix trie

a \b

Each path from root to leaf represents a

suffix; each suffix is represented by some
path from root to leaf ‘ ‘ ‘

T: abaaba

Would this still be the case if we hadn’t
added $? No ' ' '

Suffix trie)

a pb \$

We can think of nodes as having labels, ‘ ‘ ‘

where the label spells out characters on the
path from the root to the node

a b \$

OQQ
Q 0
0 0
0

0 0

baa

Suffix trie

How do we check whether a string S'is a
substring of T?

Note: Each of T's substrings is spelled out
along a path from the root. l.e., every
substring is a prefix of some suffix of T.

Start at the root and follow the edges
labeled with the characters of S

If we “fall off” the trie -- i.e. there is no
outgoing edge for next character of S, then
Sis not a substring of T

If we exhaust S without falling off, Sis a
substring of T

a b \$

QQQQ)
0 00

_S=baa
Yes it's a substring

OQQ
Q 0
0 0
0

Suffix trie o

a b \$
How do we check whether a string Sis a (‘ ‘ ‘
substring of T? a o\ a
Note: Each of T's substrings is spelled out ‘ ‘ ‘
along a path from the root. l.e., every S 2 \$
substring is a prefix of some suffix of T. < ‘ ‘
a B \$ b
Start at the root and follow the edges C) <> ‘
labeled with the characters of S s b
If we “fall off” the trie -- i.e. there is no O <> ‘
outgoing edge for next character of S, then -
Sis not a substring of T \S(e_s ait)’jzbsibstring
—

If we exhaust S without falling off, Sis a
substring of T

Suffix trie 0

a b \$
How do we check whether a string Sis a ‘ ‘. ‘
substring of T? a b \$ 3
Note: Each of T's substrings is spelled out ‘ ‘ ‘
along a path from the root. l.e., every - : 2 \$
substring is a prefix of some suffix of T. ‘ <> ‘

a a \$
Start at the root and follow the edges C) ‘ ‘ CS\ X
S b

labeled with the characters of S
2 'S =baabb

If we “fall off” the trie -- i.e. there is no O ‘ No, not a substring
outgoing edge for next character of S, then

Sis not a substring of T

If we exhaust S without falling off, Sis a
substring of T

Suffix trie 0

a b \$

How do we check whether a string S'is a ‘ “ ‘
suffix of T? a b \s

Same procedure as for substring, but ‘ ‘ ‘ “

additionally check whether the final node in

the walk has an outgoing edge labeled $ ‘ ‘, ‘
‘ S =baa
Not a suffix

OQQ
Q 0
0 0
0

Suffix trie

How do we check whether a string S'is a
suffix of T?

Same procedure as for substring, but
additionally check whether the final node in
the walk has an outgoing edge labeled $

S =aba
Is a suffix

Suffix trie Q

How do we count the number of times " ‘ ‘

a string S occurs as a substring of T?
Follow path corresponding to S. . ‘ ‘

Either we fall off, in which case S =aba
answer is 0, or we end up at node n ” 2 occurrences

and the answer = # of leaf nodes in

a 3 $
the subtree rooted at n.
O OO
S s

Leaves can be counted with depth-first

traversal. Q ‘

N}

O

Suffix trie

How do we find the longest repeated
substring of T?

Find the deepest node with more
than one child

a pb \$

(OO 0O O
OO OO
%) b 5
OO O
O O

Suffix trie: implementation

class SuffixTrie(object):

def __init_ (self, t):
""" Make suffix trie from t """
t += '$' # special terminator symbol
self.root = {}
for i in xrange(len(t)): # for each suffix
cur = self.root
for ¢ in t[i:]: # for each character in i'th suffix
if ¢ not in cur:
cur[c] = {} # add outgoing edge if necessary
cur = curfc]

def followPath(self, s):
""" Follow path given by characters of s. Return node at
end of path, or None if we fall off. """
cur = self.root
for c in s:
if ¢ not in cur:
return None
cur = curfc]
return cur

def hasSubstring(self, s):
""" Return true iff s appears as a substring of t """
return self.followPath(s) is not None

def hasSuffix(self, s):

""" Return true iff s is a suffix of t """ Python examp|e:
node = self.followPath(s)

return node is not None and '$' in node http//nbwewerlpvthonorg/6603756

http://nbviewer.ipython.org/6603756
http://nbviewer.ipython.org/6603756

Suffix trie

- ?
How many nodes does the suffix trie have? T=a3aaa

Is there a class of string where the number
of suffix trie nodes grows linearly with m?

Yes: e.g. a string of m a’s in a row (a™)

* 1 Root

 m nodes with
incoming a edge

e m+ 1 nodes with
incoming $ edge

2m + 2 nodes

Suffix trie

Is there a class of string where the number N /O\
of suffix trie nodes grows with m?2? I = aaabbb /Q :

8 R

Yes: anb”

¢ o
e 1 root

* n nodes along “b chain,” right ‘ b¢ Figure & example
* n nodes along “a chain,” middle by Carl Kinasford
 n chains of n“b” nodes hanging off each”“a chain” node ‘ y-ar J
*2n+ 1 $ leaves (not shown)

n2 + 4n + 2 nodes, where m = 2n

Suffix trie: upper bound on size

Could worst-case # nodes be worse than O(m?2)?

Max # nodes from top to bottom
= length of longest suffix + 1
=m+1

Suffix trie

)
—/

Deepest leaf

Max # nodes from left to right
= max # distinct substrings of any length
<m

O(m?) is worst case

Suffix trie: actual growth

Built suffix tries for the first
500 prefixes of the lambda
phage virus genome

Black curve shows how #
nodes increases with prefix
length

suffix trie nodes

50000 100000 150000 200000 250000

0

—— mAh2
—6— actual
e m

///I))

I I I I I
0 100 200 300 400

Length prefix over which suffix trie was built

500

