
1 Preparation Before Lab

 Data structures

 In computer science a trie, or

strings over an alphabet. Unlike a binary search tree, no node in the tree stores the key associated with that

node; instead, its position in the tree shows what key it is associated with.

pointers, one pointer for each character in the alphabet and

of the string associated with that node

associated with every node, only with leaves

 A trie is a tree data structure tha

and store only the tails as separate data. One character of the string is stored at each level of the tree, with the

first character of the string stored at the root

 The term trie comes from "retrie

encourage the use of "try" in order to distinguish it from the more general

 For example, in the case of alphabetical keys,

for each of the 26 alphabet characters and one for blank

To access an information node containing a key, we need to move

appropriate branch based on the alphabetical characters composing the key. All trie_node fields that neither

point to a intern node nor to an leaf

 Figure 1 illustrates an example

BICYCLE, BIKE, BUS, CAR, CARAVANE,

Laboratory Module D

TRIE TREES

, or prefix tree, is an ordered multi-way tree data structure that is used to store

Unlike a binary search tree, no node in the tree stores the key associated with that

node; instead, its position in the tree shows what key it is associated with. Each node contains an array of

each character in the alphabet and all the descendants of a node have a common prefix

of the string associated with that node. The root is associated with the empty string and values are normally not

associated with every node, only with leaves.

is a tree data structure that allows strings with similar character prefixes to use the same prefix data

and store only the tails as separate data. One character of the string is stored at each level of the tree, with the

first character of the string stored at the root.

trieval." Due to this etymology it is pronounced [tri] ("tree"), althoug

in order to distinguish it from the more general tree.

For example, in the case of alphabetical keys, each node has an array of (27) pointers to its branches, one

for each of the 26 alphabet characters and one for blank (“ ”). The keys are stored in leaf (information) nodes.

To access an information node containing a key, we need to move down a series of branch nodes follo

appropriate branch based on the alphabetical characters composing the key. All trie_node fields that neither

intern node nor to an leaf node are represented using null pointers.

igure 1 illustrates an example trie for alphabetical keys. The trie stores the keys AEROPLANE,

CARAVANE, CARRIAGE, TRAIN.

 Fig. 1. An example trie

tree data structure that is used to store

Unlike a binary search tree, no node in the tree stores the key associated with that

ach node contains an array of

ll the descendants of a node have a common prefix

alues are normally not

ar character prefixes to use the same prefix data

and store only the tails as separate data. One character of the string is stored at each level of the tree, with the

it is pronounced [tri] ("tree"), although some

array of (27) pointers to its branches, one

(“ ”). The keys are stored in leaf (information) nodes.

down a series of branch nodes following the

appropriate branch based on the alphabetical characters composing the key. All trie_node fields that neither

trie stores the keys AEROPLANE,

 To access these information nodes, we follow a path beginning

depending on the characters forming the key, until the appropriate information node holding the key is reached.

Thus the depth of an information node in a trie depends on the similarity of its first few characters

fellow keys. Here, while AEROPLANE and TRAIN occupy shallow levels (level 1 branch node) in the trie, CAR,

CARRIAGE, CARAVAN have moved down by 4 levels of branch nodes due to their uniform prefix “CAR”.

Observe how we move down each level of the branch node with the help of the characters forming the key. The role

played by the blank field in the branch node is evident when we move down to access CAR. While the information

node pertaining to CAR positions itself under the blank field, tho

themselves to pointers from A to R respectively of the same branch node.

 We shall see how to construct a basic TRIE data structure in C++.

(usually a string – here an array of chars) and an array of

results that can be returned by the character position in alphabet with respect to ‘a’ and the blank character. And

each node has a variable called as ‘NotLeaf’ to mark the end of a word

intern one.

 The basic element - Node of a TRIE

typedef struct trie_node{

 bool NotLeaf;

 trie_node *pChildren[NR];

 var_type word[20];

}node;

 where :

#define NR 27 // the American alphabet(26 letters) plus blank.

typedef char var_type; // the key is a set of characters

The constructors for a trie_node simply sets all

and for leaves we store in word[] the desired

trie_node *NewIntern() ;

trie_node *NewLeaf(char word []) ;

Algorithms in pseudocode. Example

The main abstract methods of the TRIE ADT are

1. bool search (char string[]).

2. void insert (char string[]) ;

To access these information nodes, we follow a path beginning from a branch node moving down each level

forming the key, until the appropriate information node holding the key is reached.

Thus the depth of an information node in a trie depends on the similarity of its first few characters

fellow keys. Here, while AEROPLANE and TRAIN occupy shallow levels (level 1 branch node) in the trie, CAR,

CARRIAGE, CARAVAN have moved down by 4 levels of branch nodes due to their uniform prefix “CAR”.

l of the branch node with the help of the characters forming the key. The role

played by the blank field in the branch node is evident when we move down to access CAR. While the information

node pertaining to CAR positions itself under the blank field, those of CARAVAN and CARRIAGE attach

themselves to pointers from A to R respectively of the same branch node.

We shall see how to construct a basic TRIE data structure in C++. Each node of the trie needs to store

n array of chars) and an array of pointers to its branches. The branches correspond to the 26

results that can be returned by the character position in alphabet with respect to ‘a’ and the blank character. And

a variable called as ‘NotLeaf’ to mark the end of a word – indicates if the node is

Node of a TRIE data structure looks like this:

// the American alphabet(26 letters) plus blank.

// the key is a set of characters

The constructors for a trie_node simply sets all pointers in the node to NULL; for intern nodes we have a NULL key

and for leaves we store in word[] the desired (user input) string. We use as constructors 2 functions:

ode. Examples

The main abstract methods of the TRIE ADT are :

from a branch node moving down each level

forming the key, until the appropriate information node holding the key is reached.

Thus the depth of an information node in a trie depends on the similarity of its first few characters (prefix) with its

fellow keys. Here, while AEROPLANE and TRAIN occupy shallow levels (level 1 branch node) in the trie, CAR,

CARRIAGE, CARAVAN have moved down by 4 levels of branch nodes due to their uniform prefix “CAR”.

l of the branch node with the help of the characters forming the key. The role

played by the blank field in the branch node is evident when we move down to access CAR. While the information

se of CARAVAN and CARRIAGE attach

Each node of the trie needs to store a key

its branches. The branches correspond to the 26

results that can be returned by the character position in alphabet with respect to ‘a’ and the blank character. And

indicates if the node is an information or an

pointers in the node to NULL; for intern nodes we have a NULL key

(user input) string. We use as constructors 2 functions:

Searching a TRIE

 To search for a key k in a trie T, we begin at the root which is a branch node. Let us suppose the key k is made

up of characters �� �� �� … ��. The first character of the key K viz. , �� is extracted and the pChildren field

corresponding to the letter �� in the root branch node is spotted. If T->pChildren[�� - 'a'] is equal to NULL, then

thesearch is unsuccessful, since no such key is found. If T->pChildren[�� –‘a’] is not equal to NULL. Then the

pChildren field may either point to an information node or a branch node. If the information node holds K then the

search is done. The key K has been successfully retrieved. Otherwise, it implies the presence of key(s) with a similar

prefix. We extract the next character ,�� of key K and move down the link field corresponding to �� in the branch

node encountered at level 2 and so on until the key is found in an information node or the search is unsuccessful.

The deeper the search, the more there are keys with similar but longer prefixes.

 PSEUDOCODE. The search algorithm involves the following steps:

1. For each character in the string, see if there is a child node with that character as the content.

2. If that character does not exist, return false.

3. If that character exist, repeat step 1.

4. Do the above steps until the end of string is reached.

5. When end of string is reached and if the marker (NotLeaf) of the current Node is set to false, return true,

else return false.

 **Procedure FIND(trie, string)

 begin

 if trie = NULL then

 return FALSE

 else

 nex <- index <- trie

 count <- 0

 while index->NotLeaf and count < lenght(keyWord) and

 index->pChildren[keyWord[count]-'a'] <> NULL do

 next <- index->pChildren[keyWord[count]-'a']

 index <- next

 count <- count +1

 end while

 if next = NULL then

 return TRUE

 else

 data <- next

 if data->word = keyWord then

 return TRUE

 else

 if data->pChildren[26]->word = keyWord then

 return TRUE

 else

 return NULL

 end

 EXAMPLE.

 Using the above algorithm, let’s perform a search for the key

1. See whether "B" is present in the current node's children. Yes

node which is having character "

2. See whether "U" is present in the current node's children. Yes

node which is having character "

3. The current node it’s a leaf, se we compare the searched key “

node, which is “BUS”. The words are different, so

Using the above algorithm, let’s perform a search for the key

1. See whether "B" is present in the current node's children. Yes its

node which is having character "

2. See whether "I" is present in the current node's children. Yes its present, so set the current node to child

node which is having character "

3. See whether "C" is present in the

node which is having character "

4. The current node it’s a leaf, se we compare the searched key “BICYCLE” with the data contained in the

current node, which is “BICYCLE”. It’s the

s perform a search for the key "BU".

" is present in the current node's children. Yes, it’s present, so set the current node to child

node which is having character "B".

" is present in the current node's children. Yes, it’s present, so set the current node to child

node which is having character "U".

se we compare the searched key “BU” with the data contained in the current

”. The words are different, so the function returns false.

s perform a search for the key “BICYCLE”.

" is present in the current node's children. Yes its present, so set the current node to child

node which is having character "B".

" is present in the current node's children. Yes its present, so set the current node to child

node which is having character "I".

" is present in the current node's children. Yes its present, so set the current node to child

node which is having character "C".

The current node it’s a leaf, se we compare the searched key “BICYCLE” with the data contained in the

current node, which is “BICYCLE”. It’s the same word, so the function returns true.

s present, so set the current node to child

s present, so set the current node to child

e data contained in the current

present, so set the current node to child

" is present in the current node's children. Yes its present, so set the current node to child

current node's children. Yes its present, so set the current node to child

The current node it’s a leaf, se we compare the searched key “BICYCLE” with the data contained in the

Insertion into a Trie

 To insert a key K into a trie we begin as we would to search

following the appropriate pChildren fields of the branch nodes, corresponding to the characters of the key. At the

point where the pChildren of the branch node leads to NULL, the key K is

 PSEUDOCODE. Any insertion would ideally b

1. Find the place of the item by following bits

2. If there is nothing, just insert the item there as a leaf node

3. If there is something on the leaf node, it becomes a new in

inner node depending how the item to be inserted and the item that was in the leaf node differs.

4. Create new leaf nodes where you store the item that was to be inserted and the item that was originally in

the leaf node.

*** PROCEDURE B-TREE-SEARCH (x , k)

begin i<=1

while i <= n[x] and k > keyi[x]

do

i <- i + 1

 if i <= n[x] and k = keyi[x] then

 return (x, i)

if leaf[x] then

return NIL

else

Disk-Read(ci[x])

return B-Tree-Search(ci[x], k)

end;

into a trie we begin as we would to search for the key K, possibly moving

following the appropriate pChildren fields of the branch nodes, corresponding to the characters of the key. At the

point where the pChildren of the branch node leads to NULL, the key K is inserted as an information node

Any insertion would ideally be following the below algorithm:

Find the place of the item by following bits

If there is nothing, just insert the item there as a leaf node

If there is something on the leaf node, it becomes a new intern node. Build a new subtree or subtrees to that

inner node depending how the item to be inserted and the item that was in the leaf node differs.

Create new leaf nodes where you store the item that was to be inserted and the item that was originally in

SEARCH (x , k)

for the key K, possibly moving down the trie,

following the appropriate pChildren fields of the branch nodes, corresponding to the characters of the key. At the

inserted as an information node.

ubtree or subtrees to that

inner node depending how the item to be inserted and the item that was in the leaf node differs.

Create new leaf nodes where you store the item that was to be inserted and the item that was originally in

**Procedure Insert(trie, keyWord)

 begin

 lenght <- length(keyWord)

 next <- trie;

//

 if trie = NULL then

 trie = create empty internal node

 new_leaf = create leaf with keyWord
 trie->pChildren[keyWord[0]-'a'] <- new_leaf

 exit

 else

 index <- next

 end if

 inWordIndex <- 0//

 while inWordIndex < lenght and index->NotLeaf = true and

 index->pChildren[keyWord[inWordIndex]-'a'] <> NULL)) do

 parent <- next;

 next <- index->pChildren[keyWord[inWordIndex]-'a'];

 index <- next;

 inWordIndex <- inWordIndex + 1

 end while

 if inWordIndex < lenght and index->pChildren[keyWord[inWordIndex]-'a'] = NULL and

 index->NotLeaf = true then

 new_index <- NewLeaf(keyWord)

 index->pChildren[keyWord[inWordIndex]-'a'] <- new_index

 exit

 else

 data <- next

 if data->word = keyWord then

 print "Word already exists in trie !!!"

 else

 oldChildren <- parent->pChildren[keyWord[inWordIndex-1]-'a']

 newWord <- NewLeaf(keyWord)

 prefixLenght <- lenght(keyWord)

 if data->word[0] <> '\0' then

 if lenght(data->word) < prefixLenght then

 prefixLenght = lenght(data->word)

 createIntern <- false

 while inWordIndex <= prefixLenght and (data->word[0] <> '\0' and

 (data->word[inWordIndex-1] = keyWord[inWordIndex-1]) or (data->word[0] == '\0') do

 intern <-NewIntern()

 parent->pChildren[keyWord[inWordIndex-1]-'a'] <- intern

 parent->NotLeaf <- true

 parent <- intern

 inWordIndex <- inWordIndex +1

 createIntern = true

 end while

 if createIntern then

 inWordIndex <- inWordIndex -1

 if inWordIndex <> prefixLenght or (inWordIndex = prefixLenght and

 length(keyWord) = length(data->word)) then

 parent->pChildren[data->word[inWordIndex]-'a'] <- oldChildren

 parent->pChildren[keyWord[inWordIndex]-'a'] <- newWord

 else

 if data->word[0] <> '\0' then

 if lenght(data->word) <= prefixLenght then

 parent->pChildren[26] = oldChildren

 parent->pChildren[keyWord[prefixLenght]-'a'] = newWord

 else

 parent->pChildren[26] = newWord

 parent->pChildren[data->word[prefixLenght]-'a'] = oldChildren

 end if

 else

 for (int count = 0 ; count < 27;count++)

 parent->pChildren[count] = oldChildren->pChildren[count]

 parent->pChildren[26] = newWord

 end if

 end if

 exit

end

Now let’s see how the word "AT" is getting inserted:

• Current node not a leaf. See whether "A" is present in the current node's children (which is root). Yes it’s

present, so set the current node to the child node which is having the character "A".

• The pChildren field corresponding to ‘A’ in the root branch points to an information node holding

“AERPLANE”. This implies that there is already a key with a uniform prefix available in the trie. We now

remove “AERPLANE” and store it in oldChildren and create a new leaf for our word. We open a branch

node to accommodate both “AERPLANE ” and “AT”.

• The second character of the two words doesn’t match, so “AERPLANE” and “AT” can be inserted as

information nodes corresponding to the pChildren fields of ‘E’ and ‘T’.

Now let’s see how the word "BUSY" is getting inserted

• Current node not a leaf. See whether "

present, so set the current node to the child node which is having the character "

• Current node not a leaf. See whether "

present, so set the current node to the child node which is having the chara

• The pChildren field corresponding to ‘U’ points to an information node holding “BUS”. We now remove

“BUS” and store it in oldChildren

accommodate both “BUS” and “BUSY”.

• The second character of the 2 keys matches and so does the third ! Since the matching prefixes of “BUS”

and “BUSY” (“BUS”) is of length 3, the situation now calls for opening three levels of branch nodes

than the root node

The second character of the two words doesn’t match, so “AERPLANE” and “AT” can be inserted as

information nodes corresponding to the pChildren fields of ‘E’ and ‘T’.

Now let’s see how the word "BUSY" is getting inserted:

See whether "B" is present in the current node's children (which is root). Yes it

the current node to the child node which is having the character "B".

See whether "U" is present in the current node's children (which is root). Yes it

present, so set the current node to the child node which is having the character "U".

The pChildren field corresponding to ‘U’ points to an information node holding “BUS”. We now remove

and store it in oldChildren and create a new leaf for “BUSY”. We open a branch node to

accommodate both “BUS” and “BUSY”.

character of the 2 keys matches and so does the third ! Since the matching prefixes of “BUS”

and “BUSY” (“BUS”) is of length 3, the situation now calls for opening three levels of branch nodes

The second character of the two words doesn’t match, so “AERPLANE” and “AT” can be inserted as

" is present in the current node's children (which is root). Yes it’s

" is present in the current node's children (which is root). Yes it’s

The pChildren field corresponding to ‘U’ points to an information node holding “BUS”. We now remove

We open a branch node to

character of the 2 keys matches and so does the third ! Since the matching prefixes of “BUS”

and “BUSY” (“BUS”) is of length 3, the situation now calls for opening three levels of branch nodes other

• It is only at level 4 ,where the end of “BUS” is reached,

information nodes corresponding to the pChildren fields of ‘Y’ and blank character, being given the fact

that “BUS” represents a prefix for “BUSY”.

Complexity analysis

 Now that we've seen the basic operations on how to work with a TRIE, we shall now see the space and time

complexities in order to get a real feel of how good a TRIE data structure is. Let

INSERT and SEARCH to measure the complexity.

4 ,where the end of “BUS” is reached, that “BUS ” and “BUSY”

information nodes corresponding to the pChildren fields of ‘Y’ and blank character, being given the fact

that “BUS” represents a prefix for “BUSY”.

Now that we've seen the basic operations on how to work with a TRIE, we shall now see the space and time

complexities in order to get a real feel of how good a TRIE data structure is. Let’s take the two important operations

the complexity.

that “BUS ” and “BUSY”can be inserted as

information nodes corresponding to the pChildren fields of ‘Y’ and blank character, being given the fact

Now that we've seen the basic operations on how to work with a TRIE, we shall now see the space and time

s take the two important operations

 INSERT operation first. Let’s always take into account the worst case timing first and later convince ourselves

of the practical timings. For every Node in the TRIE we had something called as pChildren where the pChildren can

be either an Array or a List. If we choose Array, the order of whatever operation we perform over that will be in

O(1) time, whereas if we use a Linked List the number of comparisons at worst will be 26 (the number of alphabets).

So for moving from one node to another, there will be at least 26 comparisons will be required at each step.

 Having these in mind, for inserting a word of length 'k' we need (k * 26) comparisons. By Applying the Big O

notation it becomes O(k) which will be again O(1). Thus insert operations are performed in constant time

irrespective of the length of the input string (this might look like an understatement, but if we make the length of the

input string a worst case maximum, this sentence holds true).

 Same holds true for the search operation as well. The search operation exactly performs the way the insert does

and its order is O(k*26) = O(1).

2. Sample coding

#include <stdio.h>

#include <stdlib.h>

#include <string>

#include <ctype.h>

#include <conio.h>

#include <iostream>

using namespace std;

#define NR 27 // the American alphabet(26 letters) plus blank.

typedef char var_type; // the key is a set of characters

typedef struct trie_node{

 bool NotLeaf; // indicates if the trie_node struct is a leaf or an intern node

 trie_node *pChildren[NR]; // a list of pointers corresponding to the used alphabet

 var_type word[20]; // the string stored in node

}node;

//function for creating a leaf node

trie_node *NewLeaf(char keyWord[20])

{

 trie_node *t_node;

 int count;

 //allocating the necessary memory

 t_node = (trie_node *)malloc(sizeof(trie_node));

 for(count = 0; count < 27; count++) //the terminal nodes don't have children

 t_node->pChildren[count] = NULL;

 t_node->NotLeaf = false; // the node is a leaf

 strcpy(t_node->word,keyWord); //store in the structure(node->word) the string

 return t_node;

}

//function for creating a intern node

trie_node *NewIntern()

{

 trie_node *t_node;

 int count;

 //allocating the necessary memory

 t_node = (trie_node *)malloc(sizeof(trie_node));

 for(count = 0; count < 27; count++) // initial the intern node don't have children

 t_node->pChildren[count] = NULL;

 t_node->NotLeaf = true; //it isn't a leaf

 t_node->word[0] = 0; //so we store the null string in node

 return t_node;

}

//function performs a search in the TRIE when a string or key is passed.

void Find(trie_node *trie, char keyWord[20])

{

 trie_node *next, *index, *data;

 int count;

 next = trie; //start searching from the trie root

 if(next == NULL) //trie is empty

 {

 cout << "Word not found in trie !!!!" << endl ;

 exit(1);

 }

 else

 index = next;// index - the current node from trie

 count = 0; // start searching for the first letter of the word(index of letter in word is 0)

 while((index->NotLeaf == true) && (count < strlen(keyWord)) && (index->pChildren[keyWord[count]-

'a'] != NULL))

 {

 next = index->pChildren[keyWord[count]-'a'];

 index = next;

 count ++ ;

 }

 if(next == NULL)

 cout << "Word not found in trie !!!!" << endl;

 else

 {

 data = next;

 //the string is in a leaf

 if(!strcmp(data->word,keyWord))

 cout << "Key exists --- Word found in trie !!!!" << endl;

 else//the string is in the blank pointer(prefix for others words stored in trie)

 if((data->pChildren[26]) && !strcmp(data->pChildren[26]->word,keyWord))

 cout << "Key exists --- Word found in trie !!!!" << endl ;

 else

 cout << "Word not found in trie !!!!" << endl ;

 }

}

//function for inserting a string into the trie

trie_node *Insert(trie_node *trie, char keyWord[20])

{

 trie_node *next, *index, *parent;

 trie_node *new_leaf, *data, *new_index;

 trie_node *oldChildren, *newWord, *intern;

 int inWordIndex, prefixLenght, lenght = strlen(keyWord);

 next = trie;

 if(next == NULL) //trie empty

 {

 trie = NewIntern();

 new_leaf = NewLeaf(keyWord);

 trie->pChildren[keyWord[0]-'a'] = new_leaf;

 return trie;

 }

 else

 index = next;

 inWordIndex = 0;

 while((inWordIndex < lenght) &&(index->NotLeaf == true)&&(index-

>pChildren[keyWord[inWordIndex]-'a'] != NULL))

 {

 parent = next;

 next = index->pChildren[keyWord[inWordIndex]-'a'];

 index = next;

 inWordIndex++;

 }

 if((inWordIndex < lenght) && (index->pChildren[keyWord[inWordIndex]-'a'] == NULL) && (index-

>NotLeaf == true))

 {

 new_index = NewLeaf(keyWord);

 index->pChildren[keyWord[inWordIndex]-'a'] = new_index;

 return trie;

 }

 else

 data=next;

 if(!strcmp(data->word,keyWord))

 cout << "Word already exists in trie !!!" << endl;

 else

 {

 oldChildren = parent->pChildren[keyWord[inWordIndex-1]-'a'];

 newWord = NewLeaf(keyWord);

 prefixLenght= strlen(keyWord);

 if(data->word[0] != '\0')

 if(strlen(data->word) < prefixLenght)

 prefixLenght = strlen(data->word);

 }

 bool createIntern = false;

 while((inWordIndex <= prefixLenght)&&(((data->word[0] != '\0')&& (data->word[inWordIndex-1] ==

keyWord[inWordIndex-1])) || (data->word[0] == '\0')))

 {

 intern = NewIntern();

 parent->pChildren[keyWord[inWordIndex-1]-'a'] = intern;

 parent->NotLeaf = true;

 parent = intern;

 inWordIndex++;

 createIntern = true;

 }

 if(createIntern)

 inWordIndex--;

 if((inWordIndex != prefixLenght) || ((inWordIndex == prefixLenght)&&(strlen(keyWord) == strlen(data-

>word))))

 {

 parent->pChildren[data->word[inWordIndex]-'a'] = oldChildren;

 parent->pChildren[keyWord[inWordIndex]-'a'] = newWord;

 }

 else

 if(data->word[0] != '\0')// doar un cuv care il are ca prefix pe keyWord sau invers

 if(strlen(data->word) <= prefixLenght)

 {

 parent->pChildren[26] = oldChildren;

 parent->pChildren[keyWord[prefixLenght]-'a'] = newWord;

 }

 else

 {

 parent->pChildren[26] = newWord;

 parent->pChildren[data->word[prefixLenght]-'a'] = oldChildren;

 }

 else// 2 sau mai multe cuv care au acelasi prefix

 {

 for (int count = 0 ; count < 27;count++)

 parent->pChildren[count] = oldChildren->pChildren[count];

 parent->pChildren[26] = newWord;

 }

 return trie;

}

//function for displaying the words stored in the trie

void DisplayTrie(trie_node *trie, int nivel)

{

 int count;

 if(trie)

 {

 if (trie->NotLeaf != true) // if trie_node is a leaf(a word is stored in)

 { // display the string at his level

 for (count = 0; count <= nivel; count++)

 cout << " ";

 cout << trie->word << endl;

 }

 // display all the words stored through trie children

 for (count = 26; count >= 0; count--)

 DisplayTrie(trie->pChildren[count], nivel + 4);

 }

}

int main()

{

 trie_node *trie;

 char UserInputWord[20], cont_insert=' ';

 int option = 0; //stores the user's input(the chosen option)

 trie = NULL;

label_menu:

 while(option != 5)

 {

 //display menu

 cout << endl << " Menu: " << endl;

 cout << "___" << endl;

 cout << " 1. Create tree\n 2. Insert node\n 3. Search for node\n 4. Display tree\n 5. Exit\n";

 //get user input

 cout << "\n\n\nInput choice: ";

 cin >> option;

 switch (option)

 {

 case 1: //Create tree

 while(cont_insert != 'n')

 {

 // get user input string

 cout << endl << "Insert word :";

 cin >> UserInputWord;

 trie = Insert(trie,UserInputWord);

 cout << "\n Continue ? <y/n>";

 cont_insert = getch();

 }

 break;

 case 2: //Insert node

 cout << endl << "Insert word :";

 cin >> UserInputWord;

 Insert(trie,UserInputWord);

 break;

 case 3: //Search for node

 cout << endl << "Searched word :";

 cin >> UserInputWord;

 Find(trie,UserInputWord);

 break;

 case 4: //Display tree

 DisplayTrie(trie,0);

 break;

 case 5: //Exit

 break;

 default:

 cout << "Choose from the displayed options (1-5) !!!";

 goto label_menu;

 }//end switch

 }//end while

 system("PAUSE");

 return 0;

}

3. Assignments

Prefix trees are a bit of an overlooked data structure with lots of interesting possibilities. TRIE is an interesting data-

structure used mainly for manipulating with Words in a language. TRIE has a wide variety of applications in :

• Spell checking. Word completion

• Data compression

• Computational biology

• Routing table for IP addresses

• Storing/Querying XML documents etc.

As a dictionary

 Looking up if a word is in a trie takes O(n) operations, where n is the length of the word. Thus - for array

implementations - the lookup speed doesn't change with increasing trie size. It has been used to store large

dictionaries of English (say) words in spelling-checking programs and in natural-language "understanding"

programs.

 Simple spell checkers operate on individual words by comparing each of them against the contents of a

dictionary, possibly performing stemming on the word. If the word is not found it is considered to be an error, and

an attempt may be made to suggest a word that was likely to have been intended.

 Word completion is straightforward to implement using a trie: simply find the node corresponding to the first

few letters, and then collapse the subtree into a list of possible endings. This can be used in autocompleting user

input in text editors.

Tries and Web Search Engines

 The index of a search engine(collection of all searchable words) is stored into a compressed trie. Each leaf of

the trie is associated with a word and has a list of pages (URLs) containing that word, called occurrence list.

The trie is kept in internal memory. The occurrence lists are kept in external memory and are ranked by relevance.

Boolean queries for sets of words (e.g. Java and coffe) correspond to set operations (e.g. intersection) on the

occurrence lists . Additional information retrievel techniques are used, such as:

- stopword elimination (e.g ignore “the” ,“a” ,“is”).

- Stemming (e.g. identify “add”, “adding”, “added”).

- Link analysis(recognize authoritative pages).

 Tries an Internet Routers

 Computers on the internet(hosts) are identified by a unique 32-bit IP(internet protocol) address, usually written

in “dotted-quad-decimal” notation. E.g. www.google.com is 62.233.189.104. An organization uses a subset of IP

addresses with the same prefix, e.g. IIDT uses 10.*.*.*

Data is sent to a host by fragmenting it into packets. Each packet carries the IP address of its destination.A router

forwards packets to its neighbours using IP prefix matching rules. Routers use tries to do prefix matching.

