Lecture Notes #17

Single-Source Shortest Paths in Directed Acyclic Graphs

There is no cycle in a directed acyclic graph (DAG). Hence, no negative-weight cycle can

exists in a DAC, and SPs are well defined.

Single-source shortest paths problem for DAGs can be solved more efficiently by using

topological sort.

Topological sort of a DAG GG = (V, E) is a linear ordering of all its nodes such that if G

has an edge (u,v), then u appears before v in the ordering.

A topological sort of GG can be viewed as an ordering of its nodes along a horizontal line

so that all directed edges go from left to right.

Topological Sort Algorithm

It is an application of depth-first search (see pp. 540 - 551 of the textbook).

procedure Topsort(()

{

for all v € G do mark v “unvisited”;

while there exists a node v € G marked “unvisited” do Sort(G, v)

}

procedure Sort(G,v)

{

mark v “visited”;

print v;

for each u € Adj[v] do if u is marked “unvisited” then Sort(G, u)

For an example, see Figure 1. The time complexity of Topsort is O(|V| + |E]).

@ (b)

Figure 1: (a) A DAG. (b) The same graph shown topologically sorted.

Shortest Paths for DAGs

The following algorithm solves the single-source shortest paths problem for DAGs.

procedure DAG-Shortest-Paths(G, s, w)
{
Topsort();
Initialize-Single-Source(G, s);
S =
for each node u, taken in topologically sorted order do
{
for each node v € Adj[u] do Relax(u,v,w)
S = S5U {u};
}

The subroutines [Initialize-Single-Source and Relax, which are the ones used for the

Bellman-Ford algorithm, are repeated below:

procedure [nitialize-Single-Source(G, s)

{
for each node v € V of G do

{
d[v] := oo; 7[v] := nil
}
d[s] := 0;
¥

procedure Relax(u,v,w) /* operation for a relaxation step on edge (u,v) */

{
if d[v] > d[u] + w(u,v) then
{
d[v] :=du] + w(u,v); w[v] := u
}
¥

Example 1 Figure 2 shows the execution of DAG-Shortest-Paths on a DAG.

@ (b)

©) (d)

©) (M)

Figure 2: Execution of algorithm DAG-Shortest-Paths on a DAG. (a) Given DAG. (b) After
topological sorting. (c) - (h) correspond to 6 iterations. A newly darkened circle (node) in

each iteration is the node u in the iteration. Values in (h) are final lengths of shortest paths

from s.

Correctness of the Algorithm
Let §(s,v) be defined as before:

5(5,0) min{w(p)|s L v}, if a path from s to v exi sts
s,v) =
’ otherwise

Let P =v; — vg = v3 — - -+ = vy, be a path. The nodes in {vy,vq,---,v;_1} are called the

predecessors of v; in P.

Define the shortest path P from s to v such that all predecessors of v are in S as the shortest
path from s to v with respect to S.

Lemma 1 Let (uy,uz,- -, uy,) be the list of nodes in topologically sorted order with n = |V/|,
and u; = s. Right after j-th ileration of the outer for-loop of DAG-Shortest-Paths, dluy],
k > j, is the weight of the shortest path (SP) from s to uy with respect to S. Furthermore,

dlujir] = 6(s,ujpr).
Proof.

Base: j = i. After the i-th iteration of the outer for-loop, S = {s} and d[u] = w(s, ug).

Clearly, the lemma is true.
Hypothesis: Suppose the lemma is true for j = m <n — 1.

Induction: Consider j = m + 1. In the (m + 1)-th iteration, w41 is included into S and
Relaz(wyq1,v,w) is called for every v € Adj[tm41], which is to the right of w,41.

If .41 is not reachable from s, then v is also not reachable from s, and d[v] remains to

have value oo.

If U471 is reachable from s, then v is also reachable from s. If d[v] > d[um41]+w(Upmy1,v),
i.e. the SP from s to v with respect to {u;, wir1, -+, Uy} is longer than the SP from s to v
with ;41 as immediate predecessor, d[v] value is updated as d[v] := d[tmt1] + W(Umi1,).
By the hypothesis, this new d[v] value is the weight of the shortest path (SP) from s to v

with respect to new S = {u;, i1,y Upg1 }-

Furthermore, if v = w49, then, d[v] = é(s,v), because there is no other node in

{Um+3, Upta, -, U, } from which w42 can be reached (by the topological order of nodes).

5

Hence, the lemma is true for the (m + 1)-th iteration. This completes the induction and the

proof of the lemma.

Theorem 1 Algorithm DAG-Shortest-Paths, run on a weighted DAG G = (V, F) with

source s, terminates with d[v] = §(s,v) for all nodes v € V.

Proof. By Lemma 1, after the j-th iteration, d[u;11] = d(s,u;j41) is finalized. After n — 1

iterations, d[v] = §(s,v) for all nodes v € V. The outer for-loop runs for n iterations. The

last iteration is actually redundant. i

Time Complexity Analysis
e Topsort takes O(|V| + |F|) time.
e [nitialize-Single-Source takes O(|V]) time.

e Outer for-loop runs |V/| iterations. But regardless of the outer for-loop, the inner for-
loop runs a total of |F| iterations since each edge is “traversed” from left to right
exactly once. FEach iteration of the inner loop takes O(1) time. Hence, the nested

for-loops take O(|V| + |F|) time.

Hence, total running time is O(|V| + |E]).

