
Chapter 10 
 

The Traveling Salesman Problem 
 
10.1 Introduction 
 
The traveling salesman problem consists of a salesman and a set of cities. The salesman has to 
visit each one of the cities starting from a certain one (e.g. the hometown) and returning to the 
same city. The challenge of the problem is that the traveling salesman wants to minimize the total 
length of the trip. 
 
The traveling salesman problem can be described as follows: 
TSP = {(G, f, t): G = (V, E) a complete graph, 
  f is a function V×V  Z, →
  t ∈ Z, 
  G is a graph that contains a traveling salesman tour with cost that does not 
exceed t}.   
 
Example: 
 
Consider the following set of cities: 
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Figure 10.1 A graph with weights on its edges. 
 
The problem lies in finding a minimal path passing from all vertices once. For example the path  
Path1 {A, B, C, D, E, A} and the path Path2 {A, B, C, E, D, A} pass all the vertices but Path1 
has a total length of 24 and Path2 has a total length of 31. 
 
Definition: 
 
A Hamiltonian cycle is a cycle in a graph passing through all the vertices once. 
 
 
 
 
 



Example: 
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Figure 10.2 A graph with various Hamiltonian paths. 
 
P = {A, B, C, D, E} is a Hamiltonian cycle. 
The problem of finding a Hamiltonian cycle in a graph is NP-complete. 
 
Theorem 10.1: 
The traveling salesman problem is NP-complete. 
 
Proof: 
First, we have to prove that TSP belongs to NP. If we want to check a tour for credibility, we 
check that the tour contains each vertex once. Then we sum the total cost of the edges and finally 
we check if the cost is minimum. This can be completed in polynomial time thus TSP belongs to 
NP. 
Secondly we prove that TSP is NP-hard. One way to prove this is to show that Hamiltonian cycle 

 TSP (given that the Hamiltonian cycle problem is NP-complete). Assume G = (V, E) to be an 
instance of Hamiltonian cycle. An instance of TSP is then constructed. We create the complete 
graph  = (V, 

P≤

G′ E ′ ), where E ′  = {(i, j):i, j ∈ V and i ≠ j. Thus, the cost function is defined as: 
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Now suppose that a Hamiltonian cycle h exists in G. It is clear that the cost of each edge in h is 0 
in G as each edge belongs to E. Therefore, h has a cost of 0 in G′ ′ . Thus, if graph G has a 
Hamiltonian cycle then graph G  has a tour of 0 cost. ′
Conversely, we assume that G’ has a tour h’ of cost at most 0. The cost of edges in E’ are 0 and 1 
by definition. So each edge must have a cost of 0 as the cost of h’ is 0. We conclude that h’ 
contains only edges in E. 
So we have proven that G has a Hamiltonian cycle if and only if G’ has a tour of cost at most 0. 
Thus TSP is NP-complete. 
 



10.2 Methods to solve the traveling salesman problem 
 
10.2.1 Using the triangle inequality to solve the traveling salesman problem 
 
Definition: 
If for the set of vertices a, b, c ∈ V, it is true that t (a, c) ≤ t(a, b) + t(b, c) where t is the cost 
function, we say that t satisfies the triangle inequality. 
 
First, we create a minimum spanning tree the weight of which is a lower bound on the cost of an 
optimal traveling salesman tour. Using this minimum spanning tree we will create a tour the cost 
of which is at most 2 times the weight of the spanning tree. We present the algorithm that 
performs these computations using the MST-Prim algorithm. 
 
Approximation-TSP 
Input: A complete graph G (V, E) 
Output: A Hamiltonian cycle 
 
1.select a “root” vertex r ∈ V [G]. 
2.use MST-Prim (G, c, r) to compute a minimum spanning tree from r. 
3.assume L to be the sequence of vertices visited in a preorder tree walk of T. 
4.return the Hamiltonian cycle H that visits the vertices in the order L. 
The next set of figures show the working of the proposed algorithm. 
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Figure 10.3 A set of cities and the resulting connection after the MST-Prim algorithm has been 
applied.. 



  
In Figure 10.3(a) a set of vertices is shown. Part (b) illustrates the result of the MST-Prim thus the 
minimum spanning tree MST-Prim constructs. The vertices are visited like {A, B, C, D, E, A) by 
a preorder walk. Part (c) shows the tour, which is returned by the complete algorithm. 
 
Theorem 10.2: 
Approximation-TSP is a 2-approximation algorithm with polynomial cost for the traveling 
salesman problem given the triangle inequality. 
 
Proof: 
Approximation-TSP costs polynomial time as was shown before. 
 
Assume H* to be an optimal tour for a set of vertices. A spanning tree is constructed by deleting 
edges from a tour. Thus, an optimal tour has more weight than the minimum-spanning tree, which 
means that the weight of the minimum spanning tree forms a lower bound on the weight of an 
optimal tour. 
 

c(t) ≤ c(H*).  10.2 
 
Let a full walk of T be the complete list of vertices when they are visited regardless if they are 
visited for the first time or not. The full walk is W. In our example: 
W = A, B, C, B, D, B, E, B, A,. 
The full walk crosses each edge exactly twice. Thus, we can write: 
 

c(W) = 2c(T).  10.3 
 
From equations 10.2 and 10.3 we can write that  
 

c(W) ≤ 2c(H*),  10.4 
 
Which means that the cost of the full path is at most 2 time worse than the cost of an optimal tour. 
The full path visits some of the vertices twice which means it is not a tour. We can now use the 
triangle inequality to erase some visits without increasing the cost. The fact we are going to use is 
that if a vertex a is deleted from the full path if it lies between two visits to b and c the result 
suggests going from b to c directly. 
In our example we are left with the tour: A, B, C, D, E, A. This tour is the same as the one we get 
by a preorder walk. Considering this preorder walk let H be a cycle deriving from this walk. Each 
vertex is visited once so it is a Hamiltonian cycle. We have derived H deleting edges from the full 
walk so we can write: 

c(H) ≤ c(W)  10.5 
 
From 10.4 and 10.5 we can imply: 
 

c(H) ≤ 2 c(H*). 10.6 
 
This last inequality completes the proof. 
 



10.2.2 The general traveling salesman problem 
 
Definition: 
If an NP-complete problem can be solved in polynomial time then P = NP, else P ≠ NP. 
 
Definition: 
An algorithm for a given problem has an approximation ratio of ρ(n) if the cost of the S solution 
the algorithm provides is within a factor of ρ(n) of the optimal S* cost (the cost of the optimal 
solution). We write: 
 

max( S/S*, S*/S) ≤ ρ(n). 10.7 
 
If the cost function t does not satisfy the triangle inequality then polynomial time is not enough to 
find acceptable approximation tours unless P = NP. 
 
Theorem 10.3: 
If P≠NP then there is no approximation algorithm with polynomial cost and with approximation 
ratio of ρ for any ρ≥1 for the traveling salesman problem. 
 
Proof: 
Let us suppose that there is an approximation algorithm A with polynomial cost for some number 
ρ≥1 with approximation ratio ρ. Let us assume that ρ is an integer without loss of generality. We 
are going to try to use A to solve Hamiltonian cycle problems. If we can solve such NP-complete 
problems then P = NP. 
Let us assume a Hamiltonian-cycle problem G = (V, E). We are going to use algorithm A to 
determine whether A contains Hamiltonian cycles. Assume G′  = (V, E ′ ) to be the complete 
graph on V. Thus: 
 

E ′   = {(a, b): a, b ∈ V and a ≠ b}  10.8 
Each edge in E ′  is assigned an integer: 
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Consider the traveling salesman problem ( G′ , t). Assume there is a Hamiltonian cycle H in the 
graph G. Each edge of H is assigned a cost of 1 by the cost function t. Hence ( , t) has a tour of 
cost |V|. If we had assumed that there is not a Hamiltonian cycle in the graph G, then a tour in G

G′
′  

must contain edges that do not exist in E. Any tour with edges not in E has a cost of at least  
 

(ρ|V| + 1) + (|V| - 1) = ρ|V| + |V| 10.10 
> ρ|V| 

 
Edges that do not exist in G are assigned a large cost the cost of any tour other than a Hamiltonian 
one is incremented at least by |V|. 
Let us use the approximation algorithm described in 10.2.1 to solve the traveling salesman 
problem ( G , t). ′
A returns a tour of cost no more than ρ times the cost of an optimal tour. Thus, if G has a 
Hamiltonian cycle then A must return it. If G does not have a Hamiltonian cycle, A returns a tour 



whose cost is more than ρ|V|. It is implied that we can use A to solve the Hamiltonian-cycle 
problem with a polynomial cost. Therefore, the theorem is proved by contradiction. 
 
10.2.3 A heuristic solution proposed by Karp 
 
According to Karp, we can partition the problem to get an approximate solution using the divide 
and conquer techniques. We form groups of the cities and find optimal tours within these groups. 
Then we combine the groups to find the optimal tour of the original problem. Karp has given 
probabilistic analyses of the performance of the algorithms to determine the average error and 
thus the average performance of the solution compared to the optimal solution. Karp has 
proposed two dividing schemes. According to the first, the cities are divided in terms of their 
location and only. According to the second, the cities are divided into cells that have the same 
size. Karp has provided upper bounds of the worst-case error for the first dividing scheme, which 
is also called Adaptive Dissection Method. The working of this method is explained below. 
 
Let us assume that the n cities are distributed in a rectangle. This rectangle is divided in B = 2k 

sub rectangles. Each sub rectangle contains at most t cities where k = log2[(N-1)/(t-1)]. The 
algorithm computes an optimum tour for the cities within a sub-rectangle. These 2k optimal tours 
are combined to find an optimal tour for the N cities. Let us explain the working of the division 
algorithm. Assume Y to be a rectangle with num being the number of cities. The rectangle is 
divided into two rectangles in correspondence of the [num/2] th city from the shorter side of the 
rectangle. This city is true that belongs to the common boundary of the two rectangles. The rest of 
the division process is done recursively.  
The results for this algorithm are presented below. 
Assume a rectangle X containing N cities and t the maximum allowed number of cities in a sub-
rectangle. Assume W to be the length of the walk the algorithm provides and Lopt

 to be the length 
of the optimal path. Then the worst-case error id defined as follows: 
 

W-Lopt  ≤  3/2 ∑2k
i=1 Per(Yi) 10.11 

Where  Per (Yi) is the perimeter of the ith rectangle. 
If a,b are the dimensions of the rectangle we can imply an upper bound for ∑2k

i=1 Per(Yi) : 
 

∑2k
i=1 Per(Yi) ≤  3/2 2*2a+b/2 (2k/2 + k/2 ) 10.12 

 
Now we can write: 
 

W-Lopt  ≤  3/2 2*2a+b/2 (2k/2 + k/2 ) 10.13 
Where 2α  = a and 2β = b. 
 
If a = b then we can imply that: 
 

W-Lopt  ≤  3/2[2a(2k/2 + k/2 )] 10.14 
 
There are two possibilities for k: 
 

If k even W-Lopt  ≤  3a2k/2 +1 10.15 
If k odd  W-Lopt  ≤  3a3/ 2 *2k/2 10.16 

 
Assuming that log2(N-1)/(t-1) is an integer we can express this equation in terms of N and t: 
 



If k even W-Lopt  ≤  3a2 )1/()1( −− tN  10.17 

If k odd W-Lopt  ≤  3a
2

3  )1/()1( −− tN  10.18 

 
Observation: The points distribution does not affect the result. 
It should be noted however that these results only hold for uniform distributions. We now assume 
random distributions to generalize the results. 
Let us assume a rectangle X of area v(X), within which there are randomly distributed N cities, 
following a uniform distribution. Let us denote the length of an optimal tour through the N cities 
to a random variable TN(X).Thus there exists a positive constant β such as that ∀ε>0 
 

Prob limN ∞(TN(X)/ )(XNv -β >ε = 0 10.19 
 
This result from equation 10.12 shows that the relative error between a spanning walk and an 
optimal tour can be estimated as: 

∀ε>0 Prob limN ∞(W- TN(X)/ TN(X) – S/ t )>ε = 0  10.20 
Where S>0. 

 
Let us assume a rectangle X[a, b] with ab = 1. 
Let Tt(X) be an optimal tour through t<N cities in the rectangle. We are going to compare the 
average length of this tour to the average length of an optimal tour through all the N cities. 
 
βx(t) is defined as: βx(t) = E(Tt(X))/ t . 
 
From equation 10.20 we get that limt ∞ x(t) = β. 
Thus, there exists the following bound: 

β

 
 βx(t) - β ≤ 6(a+b)/ t . 
We can say that the length of a tour through t<N cities tends to be almost the same as the length 
of the optimal tour. 
 
 
 
 
 
 
10.2.4 Trying to solve the traveling salesman problem using greedy algorithms 
 
Assume the asymmetric traveling salesman problem. We use the symbol of (Kn,c) whre c is the 
weight function and n is the number of vertices. We assume the symmetric traveling salesman 
problem to be defined in the same way but Kn symbols a complete undirected graph. If we try to 
find an approximate solution to an NP-hard problem using heuristics, we need to compare the 
solutions using computational experiments. There is a number called domination number that 
compares the performance of heuristics. A heuristic with higher domination number is a better 
choice than a heuristic with a lower domination number. 
 



Definition: 
The domination number for the TSP of a heuristic A is an integer such as that for each instance I 
of the TSP on n vertices A produces a tour T that is now worse than at least d(n) tours in I 
including T. 
If we evaluate the greedy algorithm and the nearest neighbor algorithm for the TSP, we find that 
they give good results for the Euclidean TSP but they both give poor results for the asymmetric 
and the symmetric TSP. We analyze below the performance of the greedy algorithm and the 
nearest neighbor algorithm using the domination number. 
 
Theorem 10.4: 
The domination number of the greedy algorithm for the TSP is 1. 
 
Proof: 
We assume an instance of the ATSP for which the greedy algorithm provides the worst tour. Let 
nmin{i, j} be the cost of each arc(i, j). We assume the following exceptions: c(i, i+1) = in, for i = 
1,2,..,n-1, c(i, 1) = n2 –1for i = 3,4,…,n-1 and c(n,1) = n3 . 
We observe that the cheapest arc is (1,2). Thus the greedy algorithm returns the tour (1,2,…,n,1). 
We can compute the cost of T as: 
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Assume a tour H in the graph such as that c(H) ≥ c(T). The arc (n,1) must be contained within the 
tour h as 
 

c(n,1) > n max{c(i,j) : 1≤i≠j ≤n,(i,j)≠(n,1)}. 10.22 
 

It is implied that there is a Hamiltonian path P from 1 to n with a cost of ∑ −

=

1

1

n

i
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Let ei be an arc of P with a tail i. It is true that c(ei) ≤ in+1. P mut have an arc (ek) that goes to an 
edge with an identification number smaller than the number of the edge it starts from. We can 
now write: 
 

c(ek) ≤ (k-1)n + 1 and 10.23 
c(P) ≤ +(n-1)-n. 10.24 ∑ −
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i
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The theorem is proven by contradiction. 
 
Theorem 10.5: 
Let n≥4. The domination number of the nearest neighbor algorithm for the asymmetric traveling 
salesman problem is at most n-1 and at least n/2. 
 
Proof: 
Assume all arcs such as that (i,i+1) 1≤ i <n, have a cost of iN, all arcs such as that (i,i+2) 1≤ i ≤ n-
2 have a cost of iN+1, all the other arcs that start from an edge with an identification number 
smaller than that of the edge hey end(forward arcs) have a cost of iN+2 and all the other arcs that 
start from an edge with a greater identification number than that of the edge they end (backward 
arcs) have a cost of (j-1)N. 
If nearest neighbor starts at i, which is neither 1 nor n, it has a cost of  



l = ∑ -N+1. 10.25 kN
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Any tour has a cost of at least l. Let us define the length of a backward arc as i-j. Let F be the set 
of tours described above and T1 a tour not in F. T1 is a tour, so the cost of T1 is at most  

2
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1
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 -qN - |B|N , 10.26 

where B is the set of backward arcs and q is the sum of length of the arcs in B. 
We conclude that the cost of T1 is less than l, which would mean that T1 belongs to F. So all 
cycles that do not belong to F have a cost less than those who belong to F. 
We assume that nearest neighbor does not have a domination number of at least n/2. Nearest 
neighbor constructs n tours. By assumption the number of cities is at least 4, so we have at least 3 
tours that may coincide. Let F = x1x2xnx1 be a tour such as that F = Fi=Fj= Fk. We could assume 
that i=1 and 2<j≤1+(n/2). Foe every m with j<m≤n let Cm be the tour provided by deleting 
consecutive arcs and adding backward arcs. We should note that  
c(Cm)≥ c(Cf) since c(xi,xi+1)≤ c(xj,xj+1). 
This is true as we used nearest neighbor from xj to construct Fj. and 
c(xm,xm+1)≤ c(xm,xi+1) since nearest neighbor chose the (xm,xm+1) on Fj when the arc (xm,xi+1) was 
available. 
We can state now that the domination number is at least  
n-j+1≤ n/2. 
The theorem is proven by contradiction. 
 
Definition: 
A tour x1 x2 x3 xn x1 , x1 = 1 in a symmetric traveling salesman problem is called pyramidal if 
x1<x2<xn<x1≤xk+1 >…>xn.  
The number of pyramidal tours in a symmetric traveling salesman problem is: 
2n-3. 
 
 
 
Theorem 10.6: 
Let n≥4. The domination number of nearest neighbor for the symmetrical traveling salesman 
problem is at most 2n-3. 
 
Proof: 
We consider an instance of symmetric traveling salesman problem, which proves that nearest 
neighbor has a domination number of 2n-3. 
Let all edges {ι, ι+1}, 1≥ i < n have cost of iN. 
Let all edges {i,i+2} have a cost of  iN+1  
Let all the remaining edges {i,j}, i<j , cost iN+2. 
Let us assume that CNN is the cost of the cheapest tour provided by the nearest neighbor 
algorithm. It is then clear that  
 

CNN = c(12…n1) = +N+2. 10.27 ∑
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Assume a tour on the graph. Let it be x1 x2 xn x1 . 
We assume a directed cycle T’ which is constructed by orienting all the edges on the tour. For a 
backward arc in the cycle e(j,i), we define its length as q(e) = j-i.  
We express the sum of the lengths of the backward arcs in the cycle as q(T’). 
Assume the most expensive non-pyramidal tour T. Let Cmax- be the cost of this tour.  
We have to show that  
 

Cmax  < C nn, 10.28 
 
 as there are 2n-3  pyramidal tours. 
It is true that q(T’)  ≥ n for every T’.  
Assume a non pyramidal tour H of cost Cmax and ei  = (i,j) be an arc of H’. 
If e1  is forward then c (e1) ≤ iN +2. 
If e1 is backward then c(e1) ≤ jN +2 – q(ei)N. 
Thus we can write: 

Cmax ≤∑  - q(H’)N ≤  +2n 10.29 
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As q(H’) ≥ n. From the preceding equations, we conclude that indeed  
 

Cmax  < C nn 
  
Thus, the theorem is proven. 
 
 
10.2.5 The branch and bound algorithm and its complexity 
 
The branch and bound algorithm converts the asymmetric traveling salesman problem into an 
assignment problem. Consider a graph V that contains all the cities. Consider Π being the set of 
all the permutations of the cities, thus covering all possible solutions. Consider a permutation of 
this set π∈Π in which each city is assigned a successor, say i,for the πi city. So a tour might be (1, 
π(1), π(π(1)),…,1). If the number of the cities in the tour is n then the permutation is called a 
cyclic permutation. The assignment problem tries to find such cyclic permutations and the 
asymmetric traveling salesman problem seeks such permutations but with the constraint that they 
have a minimal cost. The branch and bound algorithm firstly seeks a solution of the assignment 
problem. The cost to find a solution to the assignment problem for n cities is quite large and is 
asymptotically O(n3). 
If this is a complete tour, then the algorithm has found the solution to the asymmetric traveling 
salesman problem too. If not, then the problem is divided in several sub-problems. Each of these 
sub-problems excludes some arcs of a sub-tour, thus excluding the sub-tour itself. The way the 
algorithm chooses which arc to delete is called branching rules. It is very important that there are 
no duplicate sub-problems generated so that the total number of the sub-problems is minimized.  
Carpaneto and Toth have proposed a rule that guarantees that the sub-problems are independent.  
They consider the included arc set and select a minimum number of arcs that do not belong to that 
set. They divide the problem as follows. Symbolize as E the excluded arc set and as I the included 
arc set. The I is to be decomposed. Let t arcs of the selected sub-tour x1x2 ...xn not to belong to I. 
The problem is divided into t children so that the jth child has Ej excluded arc set and Ij included 
arc set. We can now write: 
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j
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But xj is an excluded arc of the jth  sub-problem and an included arc in the (j+1)st problem. This 
means that a tour produced by the (j+1)st  problem may have the xj arc but a tour produced by the 
jth problem may not contain the arc. This means that the two problems cannot generate the same 
tours, as they cannot contain the same arcs. This guarantees that there are no duplicate tours. 
 
Complexity of the branch and bound algorithm. 
 
There has been a lot of controversy concerning the complexity of the branch and bound 
algorithm. Bellmore and Malone have stated that the algorithm runs in polynomial time. They 
have treated the problem as a statistical experiment assuming that the ith try of the algorithm is 
successful if it finds a minimal tour for the Ith sub-problem. They assumed that the probability of 
the assignment problem to find the solution to the asymmetric traveling salesman problem is e/n 
where n is the number of the cities. Under other assumptions, they concluded that the total 
number of sub-problems is expected to be: 
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=1i
ipo o)i-1 = 1\po = O(n). 10.31 

 
Smith concluded that under some more assumptions the complexity of the algorithm is  
O(n3ln(n)) 
 
The assumptions made to reach this result are too optimistic. Below it will be proven that they do 
not hold and that the complexity of the branch and bound algorithm is not polynomial. 
 
 
Definition: 
The assignment problem of a cost matrix with ci,j = ∞ is called a modified assignment problem. 
Lemma 10.1: 
Assume a n x n random cost matrix. Consider the assignment problem that has s<n excluded arcs 
and t included arcs. Let q(n,s,t) be the probability that the solution of the assignment problem is a 
tour. Then q(n,s,t) is asymptotically 
 

e/n – o(1/n) < q(n,s,t) + o(1/n) if t=0, 10.32 
 

q(n,s,t) - λ/(n-t) + o(1/n) if t>0, 10.33 
where λ, <λ<e is a constant. 

 
Proof: 
See [7] 
Lemma 10.2: 
Consider branch and bound select two nodes that are independent. Assume that the probability 
that a non-root node in the search tree is a leaf is p. Let po be the possibility that the node is the 
root. There exists a constant 0<δ<l-1/e for a non-root node so that if t<δn then p<po, where n is 
the number of cities. 
 



Proof: 
Assume the search tree and a node of it say Y, which is constructed from 10.33.Y, has some 
included and some excluded arcs. Suppose the number of included arcs is t and the number of 
excluded arcs is s, Observe that s is the depth of the node in the search tree. Let the path from the 
root to the node is is Y0,Y1,Y2,…,Y. We can say that Yi has I excluded arcs. The probability of Y 
creating a complete tour is that none of its ancestors provides a solution to the assignment 
problem thus they do not provide a complete tour—but Y does. The probability that Y’s parent 
does not provide a complete tour is (1-q(n,s-1,ts-1)). Consequently the probability that p and Y 
exists and is a leaf taking into account the independence assumption is: 
 

p = q(n.s.t) = ∏ . 10.34 
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Using lemma 10.1, we find that:  
 

p = (λ/(n-t) + o(1/n)) ∏  = 
−

= −
−

1

0

1
s

i tin
λ

 

tn −
λ

(1-∑  + o(1/n), 10.35 
−

= −

1

0

s

i tin
iλ

 
where λo  > λ1  > λ2  > λs-1  > λ >1 are constants. 
We can now show that  
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where λ’ = ½  ∑
−

=

1

0

s

i
iλ

and t’ = 
∑
∑

−

=

−

=
1

0

1

0
s

i

s

i

i

iti

λ

λ
 

 
It is true that 0 < t’ < t.      
Now we can write the probability as: 
 

p = 
tn −

λ
(1-
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) + o(1/n) 10.37 

 
Now we assume that the lemma does not hold thus p≥po where po = e/n. Let δ = (e-λ)/e. we know 
that 1 < λ < e and 0 < δ < 1-1/e. Now it can be shown that: 

t’ > n + 
etne
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−− )(

'
λ
λλ

>n 10.38 

 



but n≥t so t’>t which is a contradiction. Thus, the lemma is proven. 
Lemma 10.3: 
Assume a n x n random matrix. Assume a solution in a modified assignment problem. The 
expected number of sub-tours is asymptotically less than ln(n) and the expected number of arcs in 
a sub-tour is greater than n/ln(n). 
 
Proof: 
See [7] 
 
The number of children constructed when we choose a sub-tour with the minimum number of 
arcs is O(n/ln(n)), as is proven in lemma 10.1. 
The nodes at the first depth have t = O(n/ln(n)) included arcs. But as it it shown above t < δn. 
This means that all nodes on the first depth asymptotically follow the inequality: t <  δn. 
Equally all nodes in the ith  depth follow the same inequality except the ones that I is greater than 
O(ln(n)). Assume a node with no included arcs. Its ancestors do not have included arcs either. 
Using lemma 10.1 we can state that the probability that the node or one of its ancestors being a 
solution to the assignment problem is e/n. We can now generalize this and say that the probability 
that a node with no included arcs exists at dth depth and is a leaf node is: 
 

p = e/n(1-e/n)d. 10.39 
 

Observe that this probability is less than e/n or the probability that the root node is a leaf.. It is 
therefore true that if we consider nodes whose depth is no greater than O(ln(n)) the probability 
that they are leaf nodes is less than the probability of the root being a leaf itself. 
The probability that a sub-problem chosen by branch and bound will be solved by the assignment 
problem and will produce an optimal tour is less than the probability that the search will become 
a leaf node. Consider the node that generates the optimal tour. If its depth is greater than ln(n) 
then we have to expand ln(n) nodes each one of which has a probability of producing the optimal 
tour less than po. If the depth of the node is lesser than ln(n) and if we need to expand only a 
polynomial number of nodes according to Bellmore and Malone, then the expanded nodes have a 
probability less than po  of creating the optimal tour. This statement contradicts the polynomial 
assumption. Therefore we can state that the branch and bound algorithm expands more than ln(n) 
nodes to find the optimal tour. This means that the algorithm cannot finish in polynomial time. 
 
10.2.6 The k-best traveling salesman problem, its complexity and one solution using 
the branch and bound algorithm 
  
Consider a graph G = (V, E). The number of the n cities in the graph has to be at least 3. Consider 
an edge e ∈ E. The length of this edge is described by l(e). Consider a vector that contains the 
lengths of the edges of the initial graph. Let us call this vector l. We can now create a weighted 
graph, which consists of the pairs (G, d). Consider a set S of edges. The length of this set is 
described as Ll(S). Consider the set H of all the Hamiltonian tours in the G. We assume that G has 
at least on Hamiltonian tour.  
Definition: 
Let 1 ≤ k ≤ |H|. Any set H(k) satisfying 
Ll(H1) ≤ Ll(H2)≤ … ≤ Ll(Hk) ≤ Ll(H) for all H  
is called a set of k-best tours. 
 
In other words the k-best tour problem is the problem of finding a set of k tours such that the 
length of each tour is at least equal to the length of the greater tour in the set. 



 
Complexity of the k-best traveling salesman problem 
 
Theorem 10.7: 
The k-best TSP is NP-hard for k≥1 regardless if k is fixed or variable. 
 
Proof: 
Consider the case that k is variable. This means that k is included in the input. We have to solve 
TSP itself to find a solution to the k-best TSP. Since the TSP which is NP-hard is part of the k-
best TSP then the k-best TSP is NP-hard too. 
Consider the case that k is fixed. This means that k is not included in the input. It is clear that a 
shortest path can be determined if we know k-best tours. So we can conclude that k-best TSP is 
NP-hard itself too. 
 
Solutions of the k-best TSP 
 
 Solutions provided by partitioning algorithms 
 
Definition: 
For I, O ∈ E, the set {H:I⊆H⊆E\O} is called a restricted set of tours. 
To solve the problem using partitioning algorithms we use the following idea. We partition the 
tours into sets such as that each set is a restricted one. We apply algorithms for solving the 
traveling salesman problem for each one of these restricted sets. We combine the optimal 
solutions for the sets to find the k-best solution. 
There are two known partitioning algorithms for the k-best TSP. The one of them is the Lawler 
algorithm and the other one is the Hamacher and Queyranne algorithm. The difference in these 
two algorithms lies in the way they partition the solutions. They both call an algorithm to solve 
the problem for a restricted set. Their complexity cannot be easily determined since the k-best 
TSP is NP-hard. A clue to figure out which algorithm is the best of the two would be to check 
how many times they call the algorithm to find a solution for the restricted set. 
 
 
Using the branch and bound method to derive solutions for the k-best traveling salesman problem 
 
Since the branch and bound method is used for solving the classic traveling salesman problem 
(although in greater time than polynomial) it is worthy to modify it to solve the k-best TSP. 
Initially the branch and bound tree contains only one node, the root node. As the algorithm 
proceeds each node of the tree expands taking into computation edges from the graph. At a given 
moment the branch and bound tree contains information about what are the best tours so far. As 
an analogue to the original branch and bound, which contains information, what is the best 
candidate for the optimal path. When the algorithm ends, the initially empty tree has information 
about the set of k-best tours. 
We considered a restricted set of tours as is defined above. Let us assume a node in the branch 
and bound tree with this restricted set. First of all the algorithm determines a lower bound which 
we will express as LB(I, O) : Ll(H) ≥ LB(I, O) for every tour H. 
It is true that if LB(I, O) ≥ U then we should not take into account any tour that exists in the tree. 
The algorithm continues until the above holds for all the tours ; that is to say that we cannot take 
into account any tour in the tree. At that moment we should say that the tree is equal to H(k). 
If LB(I, O) < U then we have to distinguish two cases. If the graph contains k tours, then the 
longest of them is removed. The tour from the tree is removed from the tree and added to the 



graph. At that point, the information about the longest tour is updated. If the graph contains less 
than k tours, then we do not have to remove any tour. The longest tour from the tree is added to 
the graph and the information about the longest tour is updated. 
Below is the formal expression of the algorithm. It uses a recursive procedure named EXPLORE 
that runs through all the nodes in the branch and bound tree and performs the computations we 
have explained. It searches the tree at a depth-first way. It has three parameters I, O and the 
graph. The I is the partial tour. The algorithm starts by taking the empty sets I ,O and the graph 
and calling the procedure EXPLORE for these sets. 
 
Modified Branch and bound for finding k-best tours for the traveling salesman problem 
Input: (G, d), the set of tours H and an integer so that 1 ≤ k ≤ |H| 
Output: A set H(k) of best tours in the (G, d). 
 
Procedure EXPLORE (I, O, G) 
 1 Begin 
 2    Find (LB(I, O)) for (G, d) 
 3     If (LB(I, O) <U)) 
 4       Then if  |I| = n-1 
 5          Then begin 
 6              H is the completion of the partial tour I 
 7              If(|G| = k) 
 8               Then 
 9                 Remove one of the longest tours in G 
10                G = G ∪ {H} 
11                If (|G| = k) 
12                  Then 
13                  U is the length of a longest tour in G 
14      End 
15      Else begin 
16         Find a branching edge E 
17         EXPLORE (I∪{e},O,G) 
18         Find LB(I, O∪ {e} taking into account (G, d) 
19         If (LB(I, O∪ {e}) <U) 
20            Then  
21              EXPLORE (I, O∪ {e}, G) 
22       End 
23 Begin 
24    U <= ∞ 
25    H(k) <= 0 
26    EXPLORE (0, 0, H(k)) 
27    End 
 
It has been shown by experiments that the complexity of the branch and bound algorithm 
increases dramatically as k gets larger. It is a result that we should expect as the branch and 
bound algorithm gets much slower as the number of cities increase in the classic traveling 
salesman problem. 
 



10.3 Geometric solutions 
 
10.3.1 A heuristic solution based on continuous approximation 
 
We assume that the cities are distributed over a region that has the shape of a circular sector. The 
starting point is on the sector vertex. It is not obligatory that this point is actually the point at 
which the traveling salesman starts the tour, but we need to ensure that the tour visits the vector. 
We also assume that the distribution of the cities is uniform to be able to state that the probability 
of finding a city does not depend on the location of the city. Let us assume that we have N points 
C of which are cities the salesman visits and N = C + 1 are the cities plus the starting city. The 
way the tour is constructed is explained below. 
We divide the circular vector into three parts. There are two inner circular sectors that share the 
vertex as the border and the remaining ring sector. Figure 10.4 shows the division of the circular 
sector. 
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Figure 10.4 The circular sector after it has been divided in three regions. 
 
 
 
 

We name the inner sectors A and C and the ring sector B. The division can be described 
completely by R’. We can write now: 

p = 
R
R'

 10.40 

 
We visit each one of the regions and construct paths in these regions. In the final step, we 
combine the paths. Figures 10.5 and 10.6 show the working of the algorithm. 



 
 

 
 
 
 
 
 
 
 
 
 
  
Figure 10.5 The cities in the three sections               Figure 10.6 All the cities have been                                                  
                  have been connected                                                        connected 
 
From the preceding figures, one can see only the tour and not the starting point. This depends 
entirely on the partition. 
The average length of the tour is estimated below. 
The distance between two points of polar coordinates (r, u) is: 
 

d(P1,P2) = min(r1,r2)abs(u1-u2)+abs(r1-r2) = du + dr 10.41 
 
We assume the length of the radial links and the length of the ring links. We express the total tour 
length as the sum of all the path lengths either radial or ring on all sections. We can now write: 
 

l = 2(lA,r + lA,u) + lB,r + lB,,u 10.42 
 
The two multiplier is there because section A and C are the same. We approximate the length of 
the radial links as lA,r = p. 
We can also approximate the length of the ring links in A or C by the number of the points in 
these two regions times the average length of the ring between two points. So we can write: 
 

lA,u = nAdA,u 10.43 
 
By assumption the point are distributed uniformly in all the regions so we can state that: 
 

nA = Cp2/2 10.44 
The average ring length for all the points can be approximated by: 
 

dA,u = drrup

∫
0 6

 = pu/12 10.45 

So the length of the ring in A or C becomes: 
 

lA,u = p3uC/24 10.46 
 

Taking into consideration that the radial distribution has a probability density of f(r) = 2r we 
conclude that the average distance in sector B is: 
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let us make an assumption that we have a uniform radial distribution so as to simplify the above 
expression. Now we can write: 
 

p = 
2

1 p+
 10.48 

 
Now we can compute the length of the ring links in B. We find that  
 

LB,u = 
2

)1( up+
 10.49 

 
 
So the expected radial distance between two points found in B can be expressed as: 
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Once again, we assume a uniform radial distribution and can write that: 
 

dB,r = 
3

1 p−
 10.51 

We compute the length of the radial links in B as the number of points times the expected 
distance between two points. Thus we can write: 
 

lB,r = nB,dB,r = C(1- p2) (1-p)/3 10.52 
 
From the above expressions, we can find the average tour length: 
 

l = 2p + 
12

pppuC
 + 

2
)1( up+

 + 
3
C

(1-p2)(1-p). 10.53 

 
The above expression has a drawback. The results it produces are pessimistic if p is close to 1. 
This is the case when the circular sector is divided into two identical sections, thus having an 
angle of u/2. Now there is no ring B but there still exists a ring that connects the outermost paths 
of A and C. This is the cause that makes the estimation pessimistic. 
We can instead substitute the expression that gives the length of the radial links in B by the more 
accurate: 

lB,u = 
2

)1( up+
 (1-p/2) 10.54 

 
We can take more precise estimations for the total length of the tour by this expression: 
 



l = 2p + 
12

pppuC
 + 

2
)1( up+

(1-p/2) + 
3
C

(1-p2)(1-p). 10.55 

 
This expression is immune to very low values of p (approaching 1) and gives a very accurate 
estimation of the total tour length. 
 
10.3.2 Held – Karp lower bound 
 
Definition: 
A 1-tree problem on n cities is the problem of finding a tree that connects n cities with the first 
city connecting to two cities. 
 
When we try to find a lower bound for the 1-tree problem we try to find a minimum 1-tree. We 
apply the 1-tree problem to the traveling salesman problem by considering that a tour is a tree 
whose each vertex has a degree of two. Then a minimum 1-tree is also a minimal path. 
Figure 10.7 shows a simple 1-tree. 
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Figure 10.7 A simple 1-tree. 
 
Let us consider the geometric traveling salesman problem. We denote to eij the length of the path 
from the i city to the j city. We assume that each city has a weight of πi. So we can say that each 
edge has a cost of  
 

cij = eij + πi πj 10.56 
 
We now compute a new minimum 1-tree taking into account the edge costs. It is clear that the 
new 1-tree we will construct id different from the original 1-tree. Let us consider a set of different 
tours V. Let U be the set of 1-trees constructed by each tour from V. Recall that a tour is a 1-tree 
with each vertex having a degree of 2. This means that the set of tours is included in the set of 1-
trees. Let us express a tour with T and the cost of a tour as L(cij , T) if we take in account the cost 
of the edges. Therefore, it is true that  
 

min LT∈U(cij, T) ≤ min LT∈V(cij, T) 10.57 
 
From equation 3.17 we can write that: 

L(cij , T) = L(eij , T) + ∑ π
=

n

i 1
idT

i 10.58 

 



With dT
i we symbol the degree of i vertex in the 1-tree. 

Consider T to be a tour. This means that dT
i  = 2. So we can now write that: 

 

L(cij , T) = L(eij , T) + π∑
=

n

i 1
i 2        10.59 

 
We assume a minimal tour T’. Equation 3.18 is then transformed as: 
 

min LT∈U(cij, T) ≤ min L(cij, T’) - π∑
=

n

i 1
i 2       10.60 

 
Let us express the length of the optimal tour as c’ = L(eij , T’).Then from equation 10.59 and 
10.60 we can get: 
 

minT∈U{c + π∑
=

n

i 1
idT

i } ≤ c’ + ∑ π
=

n

i 1
i 2 10.61 

This is transformed into: 
 

minT∈U{c + π∑
=

n

i 1
i  (dT

i  -2)} ≤ c’ 10.62 

 
We can finally write that: 
 

w(π) = minT∈U{c + π∑
=

n

i 1
i  (dT

i  -2)} 10.63 

 
Hence the lower bound for Held-Karp is  
 

Held-Karplower-bound = max (w(π)). 10.64 
 

It has been shown that Held Karp is a very good estimate for the minimum tour length although it 
does not give the exact result. 
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