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1 Introduction

A smooth number is a number with only small prime factors. In particular, a posi-
tive integer is y-smooth if it has no prime factor exceeding y. Smooth numbers are
a useful tool in number theory because they not only have a simple multiplicative
structure, but are also fairly numerous. These twin properties of smooth numbers
are the main reason they play a key role in almost every modern integer factoriza-
tion algorithm. Smooth numbers play a similar essential role in discrete logarithm
algorithms (methods to represent some group element as a'power of another), and
a lesser, but still important, role in primality tests.

In this article we shall survey some of the more interesting theoretlcal and
practical algorithms for factoring, computing discrete logarithms, and primality
testing, and will especially highlight the central role of smooth numbers in the -
subject.

2 A “fundamental lemma”

We begin with a problem that does not appear to have anything to do with our
main topic. We shall first see that smooth numbers play an essential role in both
the theoretical and algorithmic solution of the problem. We next shall show how
the problem is the key ingredient in a robust class of factoring algorithms.
Suppose we choose integers independently and with uniform distribution
in the interval [1,z]. How many should we choose so that almost surely some
nonempty subset of our choices will have a product that is a square? The answer
depends on the function exp(vInzInlnz), which we shall abbreviate as L(x).

Lemma 2.1. Let € be an arbitrarily small positive number. If we choose L(:v)\/i“
integers from [1, z] (independently and with uniform distribution), then as x — oo,
the probability tends to 1 that some nonempty subsct product is a square, whereas
if we choose L(x)*/—é“e integers, the probability tends to 0.

A proof of the first statement, which is considerably easier than a proof of the
second, is implicit in [BLP, Theorem 10.1], and explicit in [P4, Proposition 4.1].
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A proof of the entire result will be given in a forthcoming paper of the author.
For our purposes it will be interesting to sce why Lemma 2.1 is true. In addition,
there is an algorithmic problem implicit in Lemma 2.1. Namely, if you arc actually
choosing the random integers and want to explicitly find a subset product that is
a squarc, what is an cfficient way to do this?

If we choose a number n € [1, 2] with aslarge prime factor p, then it is unlikely
that p? divides n and it will probably be a long wait before we cver sce another
number m € [1,z] divisible by p. Thus, it is unlikcly that we can use n in a subsct
product that is a squarc. That is, the numbers that we can potentially use in the
subset product are smooth numbers. Let y be some positive number, which we
shall specify shortly. If we have chosen more y-smooth numbers than there are
primes up to y, then some nonempty subset of these numbers has a product that
is a squarc. This follows from a simple linear algebra argument. Each y-smooth
integer n has an exponent vector v(n) of length the number of primes up to y.
Indeed, if p < y is prime, then the coordinate in v(n) corresponding to p is the
exponent on p in the prime factorization of n. Let m(y) denote the number of
primes up to y. So if we have more than 7(y) of these exponent vectors, they must
be linearly dependent. In particular, they are dependent over the field Fo of two
elements. A dependency here is represented as a nonempty subset sum being the
0O-vector, which corresponds exactly to the corresponding subset product being a
square.

Let v(z,y) denote the number of y-smooth integers up to x. Then the ex-
pected number of choices of random integers in [1,z] to find one y-smooth number
is z/v(z,y), so that the expected number of choices to find 7(y)+1 such y-smooths
is z(m(y) + 1)/¢¥(x,y). We thus wish to choose y as a function of z so as to min-
imize this expression. It turns out that the optimal value of y is about L(:z:)\/ﬁ/ 2

and the resulting expected number is about L(a:)‘/i This is how the upper bound
in Lemma 2.1 is shown.

This proof sketch also serves to suggest how the algorithmic problem implicit
in Lemma 2.1 may be efficiently solved. Namely, for y = L(:c)‘/i/ 2, test each choice
of a number n € [1,z] to see if it is y-smooth, discarding those that are not. When
m(y) + 1 successes n have been found, create the exponent vectors v(n), and with
Gaussian elimination over Fs, find a subset product that is a square.

The lower bound in Lemma 2.1 shows us that we cannot do substantially
better; that is, smooth numbers are essentially forced upon us. The proof is tricky,
but not especially deep, the idea being that for each fixed k, almost surely a
subset whose product is a square will contain a number with kth largest prime
factor maximal over the subset and k& other numbers in the subset, each divisible
by a different one of these k large primes. Further, a calculation shows that it is
unlikely that we will see such a (k + 1)-tuple if we only choose L(x)V 2k/(kt1)—e
numbers. Because k may be taken arbitrarily large, we get our result.

The upper and lower bound calculations in Lemma 2.1 depend on an estimate
for the number ¥(z,y) of y-smooths up to z: for any fixed, positive real number a,
we have ¥(z, L(x)%) = xL(z)~/(28)+°() a5 & — 0o, see [CEP]. For more on the
distribution and application of smooth numbers, sec [HT] and [V].
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3 Combinations of congruences

In this scction we shall discuss the connection between Lemma 2.1 and factoring,.
An old factoring method due to Fermat is to represent the number to be factored
as the difference of two squares. For example, once can verify mentally that 8051 =
902 — 72, so that 8051 = 83 x 97. The problem with this method is that it is often
very difficult to find two squares that work. ‘

Instead, one may scarch for two squarcs whose difference is a multiple of
the number to be factored. If u? = v2 mod n and u # 4v mod n, then the great-
cst common factor of «w — v and n, which may be computed rapidly via Euclid’s
algorithm, is a nontrivial factor of n.

Assume n is an odd composite that is not a power. Suppose we choose a

random integer A € [1,n] and compute the lcast positive residue Q = A2 mod n.
Then @ is “close” to being a random integer in {1, n]. If Lemma 2.1 is applicable,
we would expect to find a set of such numbers @, with their product a square,
after taking about L(n)‘/i values of A. Multiplying the corresponding congruences
Q@ = A? mod n would thus give rise to a congruence of the shape u? = v? mod n,
from which we would have a chance of factoring n. (It is not certain that such a
congruence could split n because it may be that v = £v mod n.)
, I have just described the “random squares” factorization method of Dixon.
It can be proved that the likelihood of @) being smooth is about the same as a uni-
formly distributed random integer in [1,n], so that this step in the above heuristic
method can be made rigorous. It is also not hard to show that the final congru-
ence is nontrivial with probability at least 1/2, so the random squares method is a
completely rigorous probabilistic factoring algorithm. With special subroutines to
determine if the numbers ) are smooth and to do the linear algebra over F,, the
expected running time for the random squares method is L(n)‘/i*'o(l), see [P3].

A simple, but crucial fact about smooth numbers is that large numbers are
less likely to be y-smooth than small numbers. In the random squares method
we are presented with a stream of random auxiliary numbers @ that we examine
for smoothness, discarding the majority that are not, and stopping when we have
found sufficiently many that are smooth. If we could alter the stream so that the
numbers @ are smaller, then each would have a better chance of being smooth,
and we would not have to examine so many.

One simple way to make ) smaller is to replace it with Q — n if it exceeds
n/2; that is, to use the residue closest to 0 rather than the least positive residue.
To make a square, we now would also have to worry about the sign of the product,
but this can be ecasily handled by adding one extra coordinate to the exponent
vectors v(() to represent the sign of Q. However, reducing the size from n to n/2
is not sufficient to substantially affect the complexity estimate.

If A;/B; is the ith convergent in the continued fraction expansion of \/n,
then the residue Q; of A? mod n that is closest to 0 satisfies |Q;| < 2y/n. Further,
the numbers A;, @; arc casy to find by a simple recursive procedure. If it could be
shown that the numbers @Q; are sufficiently random, then indeed we would have

a significant improvement over the random squares method, with a complexity of
L(n)1+°(1). )
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In some cases it can be shown that the numbers @); arce definitely not sufhi-
ciently random. For example, if the period of the (periodic) continued fraction for
V1 is too short, then the pairs A;, @; may begin repeating before we have found
cnough smooth values of Q;. However, for most numbers n this phenomenon does
not occur, and even when it does, looking at the continued fraction for /an for a
small integer a scems to solve the problem.

This method, duc to Brillhart and Morrison [MB], is known as the continued
fraction mecthod. It completely majorizes the random squarces method. However,
no onc has proved that it is likely to work. Of course, the number n we arce trying
to factor docs not know this! The continued fraction algorithm, like all modern,
practical factoring algorithms, docs not have a rigorous complexity analysis. How-
cver, heuristic analyses help us to compare various methods, and to scc which may
be worthy of further tinkering.

The fastest factoring algorithm that has been rigorously analyzed is the class
group method (see [LP]). This method uses the group of primitive binary quadratic
forms with discriminant either —n, or a small multiple of —n. Smooth numbers
play a key role here as well. The algorithm generates random forms (@, R, S) in the
class group by looking at random words on a small generating set. Corresponding
to the prime factorization of @, we get a factorization of (@, R, S) into correspond-
ing “prime forms”. By accepting only those cases where ) is smooth, we collect
relations between the generating forms and the prime forms. When enough such
relations are collected, we can use them, again via a linear algebra step over Fs,
to construct an “ambiguous form”, namely one whose square is the identity. From
Gauss, we may use such forms to factor the discriminant, which is exactly what
we wish to do. The expected running time of this algorithm is L(n)'*°(), which
is the same as for the simpler continued fraction method discussed above. In con-
trast though, the class group method is rigorous. It is surely not practical, being
majorized in practice by other methods that will be discussed below.

4 Smoothness tests

When presented with an integer n < z, how long does it take to determine if n is
y-smooth? If one uses trial division with the primes up to y, it takes about 7 (y)
steps to determine if most numbers are y-smooth. In factoring algorithms such as
the ones above, the overwhelming majority of the auxiliary numbers () presented
are not y-smooth. If it takes us 7(y) steps per candidate to discover if a number
is y-smooth, then this step of the algorithm dominates all others. It is greatly in
our interest to find a smoothness test faster than trial division.

In [P1] an “early abort strategy” is described, which suggests that one give
up on the trial division of a particular candidate ) if at various strategic points
below y not enough of ¢ has been partially factored. This method loses some y-
smooth numbers, but not many. The average time per number is only about ,/y.
In addition, trial division may be replaced with a fast Fourier transform method
of Pollard and Strassen (sce [P4]), which further reduces the amortized time per
candidate to about y!/*.

The clliptic curve factoring method of Lenstra [L1], [L2] (see Section 6 below)
has the feature that its expected running time to completely factor a number is
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a small function of the second largest prime factor of the number. In particular,
it recognizes y-smooth numbers below @ in O(y® Inx) steps, for any € > 0. It is
with this subroutine as a smoothness test that the complexity estimates of the last
scction arc achicved. ‘ ‘

A few conunents arc in order. The elliptic curve method is not completely
rigorous. However, it is possible to show that most smooth numbers will be fac-
tored quickly with the method. Thus, as with the carly abort strategy above, it
is not crucial that a few y-smooths may pass unrccognized. Nevertheless, it is of
theorctical interest if a smoothness test can be devised that recognizes y-smooth
numbers in time about ¥© and that has no exceptions. This is provided in a recent
mcthod that is similar to the clliptic curve method, but uses Jacobian varictics of
hyperelliptic curves of genus 2 (sce [LPP]).

Is it ever practical to use the clliptic curve method as a subroutine to recognize
smooth auxiliary numbers? We know of no case where it is. This is largely due to
the existence of a far better smoothness test that is applicable when the stream of
auxiliary numbers presented happens to be the consecutive values of a polynomial
with integer coefficients.

Everyone knows the sieve of Eratosthenes as an efficient method of finding
all of the primes up to some point. However, this sieve can also be used to find
y-smooth numbers. One sieves with the primes up to y (and possibly their powers),
and instead of crossing off the multiples of each prime, one keeps a tally at each
number of how frequently it has been “hit”. This tally may be done by adding
the (single precision) logarithms of the primes that hit, and if the sum exceeds a
threshold, the number is reported as being y-smooth.

What makes this sieve work is that the multiples of a given prime p occur in
a regular pattern, namely an arithmetic progression of difference p. If instead of
the consecutive integers to some point, one has the image of this interval under a
polynomial with integer coefficients, one still has regularity for the multiples of p.
They now form the union of several arithmetic progressions of difference p, and we
may sieve just as efficiently as before. For example, no value of 2 + 1 is divisible
by 3, and the multiples of 5 are found in the progressions t = 32 mod 5.

However, the streams of auxiliary numbers @ described in the previous section
are not the consecutive values of a polynomial, and there is no discernible regularity
to where the multiples of a given prime p appear. In the next section we shall
describe two algorithms that can make use of sieving as a smoothness test.

5 The quadratic sieve and the number field sieve

Say we wish to factor the odd number n, which has been already verified to be
compositc and not a power. Consider the quadratic polynomial Q(t) = t2 — n. For
e small and |t — /n| < n®, we have |Q(t)| < 3n!/2+¢. Thus, the values of Q(t) for
t close to \/n are relatively small. If it could be assumed that the values of Q(t)
for t in this range are about as likely to be smooth as random integers of the same
size, then Lemma 2.1 suggests that with = = 3n1/2+< before L(z)V2+e < L(n)!+2¢
values of ¢ arc examined, there will be a nonempty subset such that the product
of the corresponding values of Q(t) is a square, say u?. If v is the product of these
valucs of ¢, then because Q(t) = 2 mod n, we have u? = v2 mod n. So, as before,
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the greatest common factor of «w — v and n may provide a nontrivial factor of n.
This algorithm then is exactly the same as the random squares method and the
continued fraction method discussed in Section 3, but now the strecam of auxiliary
numbers Q(t) arc the consccutive values of a polynomial with integer cocfficients,
so that we may usc a sicve as a smoothness test.

This is the basic quadratic sicve method (sce [P1]). Though the values Q(t)
arc slightly larger than the auxiliary numbers @ in the continued fraction algo-
rithm, sicving is so good a smoothness test that this small defect is not important.
When the quadratic sicve method is used today, we do not use only one polyno-
mial, but a family of many polynomials of the form at? +:2bt + ¢, where a, b, ¢
arc chosen in a certain range and with b2 — ac = n. This idea of Montgomery
(scce [P2]) mitigates somewhat the growth of the size of the polynomial values,
for when the values of ore polynomial become large, we switch to another. The
multiple polynomial quadratic sieve currently enjoys the record for the factoriza-
tion of the largest number of no special form and without small prime factors that
has ever been factored. This number is the 129-digit composite announced as a
cryptographic challenge in Martin Gardner’s Scientific American column in 1977.
It was factored in 1994 by D. Atkins, M. Graff, A. Lenstra, P. Leyland, and a host
of others who volunteered time on their workstations.

A word must be said about the linear algebra subroutines used to assemble
the congruences into congruent squares at the final stage of the algorithm. To
achieve the complexity estimate L(n)!*°(1) for the quadratic sieve (and the earlier
algorithms mentioned), one cannot use Gaussian elimination as the linear algebra,
subroutine. Instead, there are methods due to Wiedemann, Lanczos, and others
that are used. These methods exploit the facts that the matrix of exponent vectors
is sparse, and that the algebra is done over the field F5 of two elements. In practice
so far, we have largely been able to get by with Gaussian elimination and variations
of it. Although it is easy to distribute the sieving stage of the algorithm to many
unextraordinary computers, so far it is awkward to do this with the linear algebra
stage, and for the record numbers factored these days, supercomputers are used for
the matrix. Clearly more work is needed for this step of combination of congruences
algorithms. For more on this subject, see [C], [LO], [M], [PS].

The reader may have noticed that many factoring algorithms seem to end
up with either rigorous or heuristic complexity of L(n)'*°(). This is due to the
auxiliary numbers that we examine for smoothness, which in the algorithms we
have described so far (except for the random squares method) are all bounded
by the common expression n!/2t°(1) If we could reduce the size of these num-
bers that we hope to find smooth, we could reduce the complexity of the algo-
rithm. The number field sieve allows us to do just this. In this algorithm the
auxiliary numbers are about exp(c(Inn)?/3(Inlnn)/3). Putting this bound in for
z in Lemma 2.1 suggests that the complexity of the number field sieve is about
exp((4¢/3)/2(Inn)/3(Inlnn)?/3). In the original version of the number field sieve,
invented by Pollard in the late 1980’s, only numbers near a high power are fac-
tored, and in this case, the number ¢ turns out to be (16/3)'/3. This method was
later generalized to arbitrary numbers n by Buhler, H. Lenstra, and the author,
but at the cost of increasing the number ¢ to (64/3)!/3.
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In sum, the number field sieve is asymptotically fast because it achicves a
dramatic reduction in the number of digits of the auxiliary numbers: they have
about the 2/3 power of the number of digits of n, as opposed to about half the
number of digits of n in the quadratic sieve. How then does the number field sieve
work?

Supposc f, g arc irrcducible, monic polynomials over Z for which there is
an integer m with f(m) = g(m) = 0 mod n. Say a, 8 arc complex numbers with
f(a) = g(B) = 0. Consider the substitution homomorphisms ¢ : Z[a] — Z/(n),
Y Z[B) — Z/(n), where ¢(a) = () = m + (n). Thus, for any integers a, b
we have the congruence ¢(a + ba) = ¥(a + bf) mod n. It is via this family of
congruences as a, b vary over small (coprime) integers that we hope to assemble
our congruent squares. But we actually will construct the squares in the rings Z[a],
Z[3], which is no loss because the homomorphic image of a square is a square. Not
only is there no loss, there can be a substantial gain.

We define a member of Z[a] to be smooth if its norm to Z is smooth. How-
ever, the norm function masks the proliferation of prime ideals that may lie over
a rational prime. Taking this into account, and adding some extra information
afforded by a few random quadratic characters (to get over the obstructions of
possibly complicated class groups, unit groups, and quotient groups of Z[al, Z[B]
in their maximal orders), our above method using exponent vectors allows one
to construct squares. Finding the square roots of these squares is not as simple
as before, but it is a tractable problem. The auxiliary numbers we wish to find
smooth are the products of the norms to Z of a + ba and a + b3, where a, b run
over small coprime integers. This is a polynomial in a and b, and we may use a
sieve as a smoothness test. The size of these auxiliary numbers depends on the
largest coefficients of f and g and their degrees.

One way to construct the polynomials f and g is to first pick d, the degree of
f, next pick m = [n!/4], and write n in the base m, so that n = m? + ¢g_;m?1 +
+++ 4 co. Then we let f(t) =%+ cy_1t1 + ... + ¢y and g(t) = ¢t — m. There are
other strategies too, and in particular it is not essential that the polynomials be
monic. For more on the number field sieve see [LL] and [P4].

The largest number of no special form that the number field sieve has factored
has 119 digits, a recent accomplishment of Contini, Dodson, A. Lenstra, and Mont-
gomery. It is likely though that this will change soon. The very favorable heuristic
complexity estimate has concentrated much attention on the number field sieve,
people are beginning to find the improvements necessary to make it a practical
algorithm, and it is thought that before long it will replace the quadratic sieve as
the champion method for numbers of no special form.

6 The elliptic curve method

The elliptic curve method of H. Lenstra uses smooth numbers in an intrinsically
different way than the previous factorization methods discussed. Based on a beau-
tiful method of Pollard to discover those prime factors p in a number for which
p — 1 is smooth, it makes use of the following observation. If G is a finite group
(written additively), then there is a simple algorithm to test if the order of an
element g € G is a y-smooth number below z. Indeed, let M be the least common
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multiple of the y-smooth numbers below x and form M g. This calculation can be
donc in O(7(y) In x) group operations by the repeated doubling method. Then the
order of g is a y-smooth number below x if and only if Mg is the identity.

This obscrvation is used as follows. Supposc p < g arc prime factors of the
number n we wish to split. Let a, b be integers with 4a® 4+ 27b% coprime to n and
let P = (xg,yo) be an integer point on the elliptic curve E : y? = 23 +az +b. Let
E(p), E(q) be the clliptic curve groups mod p and mod g, respectively. If P mod p
has y-smooth order in F(p), but P mod g doecs not have y-smooth order in E(q),
then we can use this to split n. Indeed, let M be the least common multiple of the
y-smooth numbers below (n!/4 +1)2. We cannot dircctly work in the groups E(p)
and E(q) because we do not know p and gq. However, we can try to add points on
E modulo n. If the addition law brecaks down it is because we are trying to invert
a nonzcro, noninvertible residuec modulo n. But Euclid’s algorithm, which is used
for inversion, would in this casc split n. The addition law breaks down when we
try to add two points R, S such that R+.S is the identity modulo some factor of n,
but not the identity modulo some other factor of n. This is exactly what happens
when we try to compute M P modulo n, because this is the identity in F(p) and
it is not the identity in E(q).

We can attempt to do this calculation even if we do not know beforehand
that P has y-smooth order in E(p), but not in E(q). If it works we have split n.
If it does not work, we have the option of trying again with a larger value of y, or
more interestingly, trying again with another triple a, b, P. We can easily generate
many such triples by choosing a, xg, yo at random, and solving for b.

This then is the elliptic curve method. If the prime p has sufficiently many
smooth numbers near it in the “Hasse interval” ((/p—1)?, (/p+1)?), then it can
be shown rigorously that the method is expected to find p as a prime factor of
numbers n divisible by p. It is conjectured that this interval does contain enough
smooth numbers, but it has not been proved. It is interesting that in the longer
interval ((y/p—1)*, (/p+1)*), we can prove that there are many smooth numbers,
which is why the hyperelliptic curve method can be rigorously analyzed — see
[LPP].

An important contrast between the elliptic curve method and combination of
congruences methods, is that in the latter we need to be able to find many smooth
numbers for success, but each auxiliary number is quickly dealt with. In the elliptic
curve method we are successful if just one auxiliary number (which is hidden from
us) is smooth, but it takes a fair amount of time for each trial. The two opposite
cffects balance out. In the worst case the number n has its least prime factor near
v/1, and so the numbers we hope to find smooth are also near \/n. So in the worst
case, the elliptic curve methgﬁl takes L(n)l"'o(l) steps. However, most numbers arc
not in the worst case, so that the elliptic curve method can be considerably faster.
Thus, when presented with a number to factor, one usually tries the elliptic curve
method before attempting the quadratic sieve or the number field sieve.

7 Discrete logarithms and the search for smoothness

Given a cyclic group G = (g) (written multiplicatively), and an clement h in G, the
discrete logarithm problem is to find an integer n with g™ = h. In this problem the
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representation of the group G is of paramount importance. For example, suppose
p is a prime. Then (Z/(p))* is a cyclic group of order p— 1, as is the additive group
Z/(p — 1). However, solving the discrete logarithm problem in the latter group is
a triviality — onc uscs Euclid’s algorithm to solve a lincar congruence. But the
discrete logarithm problem for the former group is hard, or at lcast apparently so.

Onc can find discrete logarithis in the group (Z/(p))* by an algorithmn similar
to the random squarcs method discussed in Section 3. With g the cyclic generator
on which logs arc bascd, consider random powers g™. Elements of the group arc of
course residue classes; say we represent these residue classes by their least positive
mcmber. That is, we represent group clements by positive integers less than p. If
g™ is represented by a smooth integer, we keep it, and otherwise, we discard it.
If we can find sufficiently many independent “relations”, where a power of g is
congruent mod p to a y-smooth number, we can use linear algebra (over the ring
Z/(p — 1)) to solve for the logs of the primes g up to y. Once this pre-calculation
is done, it is now fairly simple to find the log of an element h. Namely, consider
g™h, where again m is a random integer. If this is represented by a y-smooth
number, say []g;*, where the g¢;’s run over the primes up to y, then log, h is

—m + ) a;log, g;. To minimize the expected running time we take y = L(p)‘/i/ 2,
Then the running time of the first phase of this algorithm (to compute the logs

of all of the primes up to y) is about L(p)‘/5 and the running time to compute an
individual log is about L(p)V2/2. See [P3] for more details.

Can these ideas be generalized to the multiplicative group of a finite field F,?
In particular, what would it mean to call a member of F, “smooth”? If ¢ = p*,
where k is large, then the usual representation of F, is Fp[z]/(f), where f is an
irreducible polynomial in F,[z] of degree k. We may represent a group element
as the member of the residue class of least degree. Because F,[z], like Z, is a Eu-
clidean domain, we may give a definition of a smooth element. Say a polynomial
is smooth if it factors completely into low degree irreducibles. There is a theory of
the distribution of smooth polynomials in F,[z] that is analogous to the distribu-
tion of smooth integers — see [Lol], [O], [So]. We thus obtain a rigorous discrete
logarithm algorithm analogous to the one above.

When g = p* with k£ > 1 and k small, the above representation of F; is not
particularly useful for computing discrete logarithms. Indeed, say k = 2. Then
every residue class representative has degree 0 or degree 1, and so everything is
smooth. Instead, we represent the field as Ok /(p), where K is an algebraic number
field of degree k over the rationals and for which the prime p remains inert. In this
case we call a field element smooth, if a canonical representative of the residue
class has smooth norm. A problem is how to define a canonical representative.
This is solved in the case k = 2 in [Lo2] where a rigorous algorithm is described.

Although we have not found a way to use something resembling the elliptic
curve method or the quadratic sieve to compute discrete logarithms in Fo, we
have found a way to use analogs of the number field sieve — see [A], [G], [S]. As
with factoring, the analysis is heuristic. Whether these algorithms are practical is
unclear.
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There are of course many other groups around. For example, onc may consider
a prime p for which the elliptic curve group E(p) (sce Scction 6) is cyclie. Docs
it make sense to say an clement of E(p) is smooth? No onc has thought of a way
to make sense of this (except for some very special cases), and for this rcason, we
know of no fast ways to compute discrete logs in elliptic curve groups. These groups
have been proposed as vehicles for public key cryptography preciscly because we
have no notion of smoothness for them.

8 Smooth numbers and primality testing

The central problem in primality testing is to decide if a given input is prime or
composite. This problem is generally considered much casicr than factoring com-
posites. One of the simpler ideas in the subject involves Fermat'’s “little thcorem”:
aP = a mod p for all integers a. It is computationally easy to compute the residue
of a? mod p, and if this is not a, then p has been proved composite.

This simple test done with a = 2 is enough to recognize most composite
numbers. However, for any fixed base a there are infinitely many pseudoprimes to
the base a, namely composite integers n for which o™ = a mod n. In fact, there
are infinitely many Carmichael numbers. These are composite integers n for which
a™ = a mod n for every integer a. It had been conjectured that there are infinitely
many Carmichael numbers essentially by Carmichael himself when he introduced
them in 1910. The proof that there are infinitely many was accomplished in 1992 by
Alford, Granville, and the author [AGP], and is based on a 1956 heuristic argument
of Erdés. This heuristic method begins by assuming that there are many primes
p for which p — 1 is y-smooth. In fact, there should be a positive proportion of
all primes below 3¢ with this property, where ¢ is an arbitrary but fixed number.
Erdés himself had proved such a result in 1935 for some particular ¢ > 1, and
recently Friedlander proved it for any ¢ < 2y/e. With this and other tools, we were
able to prove that there are more than 22/7 Carmichael numbers up to =, when z is
sufficiently large. It is interesting that the Erdds heuristic method in fact suggests
that there are more than !¢ Carmichael numbers up to .

There are stronger tests than Fermat’s little theorem for which there is no
analog of a Carmichael number, and such that on input of a composite number,
the test is expected to prove the number composite in only O(1) iterations. One
of these is using Selfridge’s strong pseudoprime test to random bases, a result
of Rabin. From the work of Miller, Bach, and others we know that every odd
composite n will fail a strong pseudoprime test to some base less than 2In%n,
provided that the Riemann hypothesis for Dirichlet L-functions holds. Thus, if
this hypothesis holds, we have a deterministic polynomial time primality test. In a
sequel to [AGP], the authors show that therc are infinitely many odd composites
n that.pass the strong pscudoprime test for each base up to (In n)c/ Ininlnn

Do we have unconditional tests that end up proving a prime input is prime?
Surely we should not be satisfied with a probabilistic composite recognition test
that fails to recognize our input as composite after several tries.

There arc in fact very fast primality proving algorithms. The fastest known
deterministic test has complexity (In p)cinin Inn and so is “almost” polynomial,
scc [APR]. As with the discussion above on Carmichael numbers, this test uscs
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auxiliary primes p for which p — 1 is y-smooth. Certain versions of this test are
quite practical, sce [BH], [CL]. There is a probabilistic test that expects to find a
rigorous proof of primality in expected polynomial time. Though not very practical,
simpler, but heuristic versions of it have been used on very large primes, sce [AH],
[AM], [GK], [L2].

The central unsolved problem in primality testing is to sce if there is a deter-
ministic, polynomial time algorithm to distinguish between primes and composites.
Towards this end, onc may ask for a deterministic, polynomial time algorithm that
succeeds in provipg prime most or many primes up to a bound z. Recently, Konya-
gin and the author [KP] have described such an algorithm that proves prime more
than z'=¢ primes up to z. It is no mystery on which primes the algorithm works.
It works on precisely those primes p for which p — 1 has a large smooth divisor.

The author gratefully acknowledges W. Alford, A. Granville, and H. Lenstra,
for their helpful critical comments on an earlier draft of this paper.
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