
Chapter 35

Suffix Arrays: A New Method for On-Line
String Searches

Udi Manber*
Gene Myers#

Abstract

A new and conceptually simple data structure, called a
sufsuc array, for on-line string searches is introduced in
this paper. Constructing and querying suffix arrays is
reduced to a sort and search paradigm that employs novel
aIgorithms. The main advantage of suffix arrays over
suffix trees is that they are three to five times more space
efficient. Suffix arrays permit on-line string searches of
the type, “Is W a substring of A?” to be answered in
time 0 (Z’ +- IogN), where P is the length of W and N is
the length of A, which is competitive with (and in some
cases slightly better than) suffix trees. The only drawback
is that in those instances where the underlying alphabet is
finite and small, suffix trees can be constructed in 0 (N)
time in the worst-case versus 0 (NlogN) time for suffix
arrays. We show, however, that suffix arrays can be con-
structed in 0 (N) expected time, regardless of the alphabet
size. We believe that suffix arrays will prove to be better
in practice than suffix trees for many applications.

1. Introduction

Finding all instances of a string W in a large text A is an
important pattern matching probIem. There are many
appIications in which a fixed text is queried many times.

In these cases, it is worthwhile to construct a data struc-
ture to allow fast queries. Suffur trees are data structures
that admit efficient on-line siring searches. A suffix tree
for a text A of length N over an alphabet C can be built in
0 (N log 1 C I) time and 0 (N) space cWei73, McC761.
Suffix trees permit on-line string searches of the type, “Is
W a substring of A?” to be answered in O(Plog 1x1)
time, where P is the length of W. We explicitly consider
the dependence of the complexity of the algorithms on
I Z I, rather than assume that it is a fixed constant, because
C can be quite large for many applications. Suffix trees
can also be constructed in time 0 (N) with 0 (P) time for
a query, but this requires 0 (N I I: I) space, which renders
this method impractical in many applications.

Suffix trees have been studied and used extensively.
A survey paper by Apostolic0 [Apo85] cites over forty
references. Suffix trt~s have been refined from tries to
minimum state finite automaton [BBE85], generalized to
on-line construction [MR80, BB8q, and real-time con-
struction [SliSO], and parallelized [AI86]. Suffix trees
have been applied to fimdamental string problems such as
finding the longest repeated substring lJVei731, finding all
squares or repetitions in a string [AP83], computing sub-
string statistics [AP85], approximate string matching
LV86, Mye881, and string comparison CEH86]. They
have also been used to address other types of problems

* Supported in part by an NSF Presidential Young Investigator Award (grant DCR-8451397),

with matching funds from AT&T.

Supported in part by the NIH (grant ROl LMO496O-01).

319

such as text compression @PE8 11, compressing assembly
code LFWM84], inverted indices [Car75], and analyzing
genetic sequences [CHM86]. Galil [Ga85] lists a number
of open problems concerning suffix trees and on-line
string searching.

In this paper, we present a new data structure,
called a suffuc array, that is basically a sorted list of all the
suffixes of A. When coupled with information about the
longest common prefixes (lcps) of adjacent elements in
the suffix array, string searches can be answered in
0 (P + IogN) time with a simple augmentation to a classic
binary search. The suffix array and associated Zcp infor-
mation occupy a mere 2N integers, and searches are
shown to require at most P + [log, (N-l)] single-symbol
comparisons. The construction of the suffix array and Zcp
information require 0 (NlogN) time in the worst ease.
Under the assumption that all strings of N symbols are
equally likely, the expected length of the longest repeated
substring is 0 (1ogNl log] C I) cKGO831. By further
refining our algorithms to take advantage of this fact, we
can construct a suffix array and its Icp information in
0 (N) expected time.

Our approach distills the nature of a suffix tree to
its barest essence: A sorted array coupled with another to
accelerate the search. Suffix arrays may be used in lieu of
suffix trees in the many applications of this ubiquitous
structure. Our search and sort approach is distinctly dif-
ferent and, in theory, provides superior querying time at
the expense of somewhat slower construction. Galil
[Ga85, Problem 91 poses the problem of designing algo-
rithms that are not dependent on 1x1 and our algorithms
meet this criterion, i.e., 0 (P +logN) search time with an
0 (N) space structure, independent of X. In practice, an
implementation based on a blend of the ideas in this paper
compares favorably with an implementation based on
suffix trees. Our suffix array structure requires only 5N
bytes on a VAX, which is three to five times more space
efficient than any reasonable suffix tree encoding. Search
times are competitive, but suffix arrays do require three to
ten times longer to build. For these reasons, we believe
that suffix arrays will become the data structure of choice
for the many applications where the text is very large. In
fact, we recently found that the basic concept of suffix
arrays (sans the lcp and a provable efficient algorithm)
has been used in the Oxford English Dictionary (OED)
project at the university of Waterloo [Go89]. Suffix
arrays have also been used as a basis for a sublinear

approximate matching algorithm [ME89].

The paper is organized as follows. In Section 2, we
present the search algorithm under the assumption that the
suffix array and the lcp information have been computed.
In Section 3, we show how to construct the sorted suffix
array. In Section 4, we give the algorithm for computing
the Icp information. In Section 5, we modify the algo-
rithms to achieve better expected running times. We end
with empirical results and comments about practice in
Section 6.

2. Searching

Let A = aoal - * * aNml be a large text of length N.
Denote by Ai = aiai+l * . ’ UN-1 the suffix of A that starts
at position i. The basis of our data structure is a lexico-
graphically sorted array, Pos, of the suffixes of A; namely,
Pos [k] is the start position of the kth smallest suffix in the
set tAosA , . ..ANvl) . The sort that produces the array
Pos is described in the next Section. For now we assume
that Pos is given; namely, APos [ol < Apos[l~ < . . . c
AP,, IN-~,, where “<” denotes the lexicographical order.

For a string u, let ZP be the prefix consisting of the
first p symbols of u if u contains more than p symbols,
and u otherwise. We define the relation <,, to be the lexi-
cographical order of p-symbol prefixes; that is, u cP v iff
up < vp. We define the relations $, , =P, P, >P, and &, in a
similar way. Note that, for any choice of p, the Pos array
is also ordered according to $, because u c v implies
u $ v. All suffixes that have equal p-prefixes, for some
p <N, must appear in consecutive positions in the Pos
array, because the Pas array is sorted lexicographically.
These facts are central to our search algorithm.

Suppose that we wish to find all instances of a
string W=wOwl •.‘w+~ of lengthPIN inA. Let&=
min(k: W$Ap,[kl or k=N) and Rw =
max(k:ApO,~~l~p Work=-I). Since Pm is in $-
order, it follows that W matches aiUi+l * * * ai+p-r if and
onlyifi=Pos[k] forsomekc [&,R,]. Thus,if&and
Rw can be found quickly, then the number of matches is
Rw-Lr++l and their left endpoints are given by
Pas [Lw], Pas r&+1], ..Pos [Rw]. But Pas is in $-order,
hence a simple binary search can find Lw and Rw using
0 (1ogN) comparisons of strings of size at most P; each
such comparison requires 0 (P) single-symbol comparis-
ons. Thus, the Pos array allows us to find all instances of
a string in A in time 0 (P 1ogN). The algorithm is given

320

in Fig. 1.

1. if W SP ApoS~oI then
2. L,tO
3. else if W >p ApoSINmlI then
4. r,tN
5. else
6. I 6% RI t NAN--l)
7. while R -L > 1 do
8. [M t (L+R)/2
9.
10.

if W Ip ApoSIMI then
RtM

11. else
12. LtM

1
13. Lw+-R

I
Figure 1: An 0 (PlogN) search for Lw.

The algorithm in Fig. 1 is very simple, but its run-
ning time can be improved. We show next that the IP-
comparisons involved in the binary search need not be
started from scratch in each iteration of the while loop.
We can use information obtained from one comparison to
speedup the ensuing comparisons. When this strategy is
coupled with some additional precomputed information,
the search is improved to P +rlogZ(N-l)l single-symbol
comparisons in the worst case, which is a substantial
improvement.

Let lcp (v, w) be the length of the longest common
prefix of v and w. When we lexicographically compare Y
and w in a left-to-right scan that ends at the first unequal
symbol we obtain lcp(v, w) as a byproduct. We can
modify the binary search in Fig. 1 by maintaining two
variables, 1 and r, such that I = Icp (ApoJftI, W), and
‘=b6%‘bos[~]). Initially, 1 is set by the comparison of
W and ApoS loI iu line 1, and r is set in the comparison
against ApoS[~-l] in line 3. Thereafter, each comparison
of W against ApostMl in line 9, permits I or r to be
appropriateIy updated in line 10 or 12, respectively. By
so maintaining I and r, h =min (I, r) single-symbo1

(a)

comparisons can be saved when comparing ~~~~~~~ to W,

bea.se AP,, [L] =I W =r Amos [R 1 implies Apos[kl =h W for
all k in [L, R 1 including M. While this reduces the
number of single-symbol comparisons needed to deter-
mine the $-order of a midpoint with respect to W, it
turns out that the worst case running time is still
0 (P log N).

To reduce the number of single-symbol comparis-
ons to P +rlogz (N-l)1 in the worst case, we use precom-
puted information about the Zcps of A~,,IMI with each of
A PCS [L] and Apdj[R]. Consider the set of all triples
(L, M, R) that can arise in the inner loop of the binary
search of Fig. 1. There are exactly N -2 such triples,
each with a unique midpoint ME 11, N-21, and for each
triple OIL CM CR IN-l. Suppose that (LM, M, Rnr) is
the unique triple containing midpoint M. Let Llcp be an
array of size N - 2 such that LZcp [M] =
Zcp (ApoSILH1, Ap,,SIMI), and Let Rlcp be another array of
size N - 2 such that RZcp[M] = Zcp (Apas[MI, ApoSIR,l).
The construction of the two (N-2)-element arrays, Llcp
and Rlcp, can be interwoven with the sort producing Pos
and will be shown in Section 4. For now, we assume that
the Llcp and Rlcp arrays have been precomputed.

Consider an iteration of the search loop for triple
(L, M, R), and, without loss of generality, assume that
I2 r. Let h = mux(Z, r) and let Ah he the difference
between the value of h at the beginning and at the end of
the iteration. There are three cases to consider’, based on
whether LZcp[M] is greater than, equal to, or less than 1.
The cases are illustrated in Fig. 2(a), 2(b), and 2(c),
respectively. The vertical bars denote the lcps between W
and the suffixes in tire Pos array (except for 1 and r, these
Zcps are not known at the time we consider M). The
shaded areas illustrate LZcp[M]. For each case, we must
determine whether Lw is in the right half or the left half
(the binary search step) and we must update the value of

’ The first two cases can be combined in the program. We use three
cases only for description puposes.

1111 r

R

Figure 2: The three cases of the 0 (P + log N) search.
321

Hence, the use of the arrays Lkp and Rlcp (the Rlcp
array is used when I < r) reduces the number of single-
symbol comparisons to no more than Ah+1 for each itera-
tion. Summing over all iterations and observing that
C Ah 5 P, the total number of single-symbol comparisons
made in an on-line string search is at most
P +[logz (N-1)1, and 0 (P + 1ogN) time is taken in the
worst-case. The precise search algorithm is given in Fig.
3.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

1 f- ~CP(AP,[OI 9 w)
T + ICP CAP,, [N-II. W)
if I = P or w[I ap,, [ol+l then

L,tO
else if T < P or w, I apos[+l]+r then

Lw+-N
else

(6% R) c (0, N-l)
whileR-L > 1 do

(M t (L+R)/2
iflrrthen

if Lcp [M] 2 2 then
m + i + ~CP (Apes [M 1+1 P WI

else m t Lcp [M]
else

22.

if Rep [M] L r then
m +-- r + ICP @P~~[MI+,, W,)

else m tRcp[M]
ifrn=Por~,Ia~,[~~+~then

(RR, r)+-- W, m)
else (L, I) t (M, m)

I
LwtR

1

either I or r. It turns out that both these steps are easy to
make:

Case 1: LZcp[M] > I (Fig. 2(a)): in this case,
A pOs[MI =!+I A,,[Lj fl+l W, and so W must be in the right
half and I is unchanged,

Case 2: LZcp[Ml = 2 (Fig. 2(b)): in this case, we
know that the first I symbols of Pos [M] and Ware equal;
thus, we need to compare only the I + lth symbol, I + 2t.h
symbol, and so on, until we find one, say r+j, such that
W I+i Pos [Ml. The I + jth symbol determines whether Lw
is in the right or left side. In either case, we also know
the new value of I or 1 - it is I + j. Since 1 = h at the
beginning of the loop, this step takes Ah+1 single-symbol
comparisons.

Case 3: Llcp[M] < I (Fig. 2(c)): in this case, since
W matched 1 symbols of L and c I symbols of A4, it is
clear that Lw is in the left side and than the new value of T
is Llcp [Ml.

Figure 3: An 0 (P +logN) search for Lw.

3. Sorting

The sorting is done in rlog2(N+1)1 stages. In the first
stage, the suffixes are put in buckets according to their
fust symbol. Then, inductively, each stage further parti-
tions the buckets by sorting according to twice the
number of symbols. For simplicity of notation, we
number the stages 1, 2,4, 8, etc., to indicate the number
of affected symbols. Thus, in the H” stage, the suffixes
are sorted according to the &-order. For simplicity, we
pad the suffixes by adding blank symbols, such that the
lengths of all of them become N + 1. (This padding is not
necessary, but it simplifies the discussion.) The first stage
consists of a bucket sort according to the lirst symbol of
each suffix. The suffixes ate divided into ml buckets
(ml I I C I), each holding the suffixes with the same first
symbol. Assume that after the P stage the suffixes are
partitioned into mH buckets, each holding suffixes with
the same H first symbols, and that these buckets are sorted
according to the &-relation. We will show how to sort
the elements in each N-bucket to produce the h-order in
0 (N) time. Our sorting algorithm uses similar ideas to
those in [KMR72].

Let Ai and Aj be two suffixes belonging to the same
bucket after the H” step; that is, Ai=H Aj- We need to
compare Ai and Aj according to the next H symbols. But,
the next H symbols of Ai (Ai) are exactly the first H sym-
b01~ Of Ai+H (Ajm). By the assumption, we already knOW

the relative order, according to the <H-relation, of Ai+H
and Aj+H- It remains to see how we can use that
knowledge to complete the stage efficiently. We first
describe the main idea, and then show how to implement
it efficiently.

We start with the first bucket, which must contain
the smallest suffixes according to the &-relation. Let Ai
be the tirst suffix in the first bucket (i.e., Pos [l] = i), and
consider Ai-H (if i -H c 0, then we ignore Ai and take the
suffix of Pas [2], and so on). Since Ai starts with the
smallest H-Symbol string, AI-H should be the first in its
W-bucket. Thus, we move Ai+ to the beginning of its
bucket and mark this fact. For every bucket, we need to
know the number of suffixes in that bucket that have
already been moved and thus placed in G-order. The
algorithm basically scans the suffixes as they appear in
the &-order, and for each Ai it moves AI-H (if it exists) to
the next available place in its H-bucket. While this basic
idea is simple, its efficient implementation (in terms of
both space and time) is not trivial. We describe it below.

We maintain three integers arrays, Pos, Prm, and
Count, and two boolean arrays, BH and B2H, all with N

322

elements2. At the start of stage H, Pos [i] contains the
start position of the irh smallest suffix, Prm[i] is the
inverse of Pos, namely, Prm [Pos [i]] = i, and BH [i] is 1
iff Pos [i] contains the leftmost suffix of an H-bucket
(i.e.. AP,,[~I ~HAP~~[~-II). Count and B2H ae temporary
arrays; their use will become apparent in the description
of a stage of the sort. A radix sort on the Erst symbol of
each suffix is easily tailored to produce Pos, Prm, and BH
for stage 1 in 0 (N) time. Assume that Pos, Prm, and BH
have the correct values after stage H, and consider stage
2H.

We Erst reset Prm [i] to point to the leftmost cell of
the H-bucket containing the irh suffix rather than to
suffix’s precise place in the bucket. We also initialize
Count [i] to 0 for all i. AI1 operations above can be done
in 0 (N) time. We then scan the Pos array in increasing
order, one bucket at a time. Let I and r (I Ir) mark the
left and right boundary of the H-bucket currently being
scanned. Let 7’i (the H-tail of ZJ denote Pos [i]-H. For
every i, 1 li Ir, we increment Count [Prm [Tj]], set
Prm [Ti] = Prm [Ti] + Count [Prm [Ti]] - 1, and set
B2H[Prm [Ti]] to 1. In effect, all the suffixes whose
H +l” through 2Hfh symbols equal the unique H-prefix of
the current H-bucket are moved to the top of their H-
buckets. The B2H field is used to mark those prefixes that
were moved. Before the next H-bucket is considered, we
make another pass, find all the moved suffixes, and reset
the B2H fields such that only the leftmost of them in each
2H-bucket is set to 1, and the rest are reset to 0. This way,
the B2H fields correctly mark the beginning of the 2H-
buckets. Thus the scan updates Prm and sets B2H so that
they are consistent with the SW-order of the suffixes. In
the final step, we update the Pos array (which is the
inverse of Prm), and set BH to B2H. All the steps above
can clearIy be done in 0 (N) time, and, since there are at
most rlog2(N+l)l stages, the sorting requires 0 (NlogN)
time in the worst case. Average-case analysis is
presented in Section 5.

4. Finding Longest Common Prefixes

The 0 (P + 1ogN) search algorithm requires precomputed
information about the lcps between the suffixes starting at
each midpoint A4 and its left and right boundaries LM and
RM. We Erst show how to compute the lcps between
suffixes that are consecutive in the sorted Pos array. We
wilI see later how to compute all the necessary Zcps. The
key idea is the following. Assume that after stage H we

’ In fact, two integers am sufficient, and since these integers am always
positive we can use their sign bit for the boolean values. ‘bus, the space
requirement is only two integers per symbol. We present a slightly
simplified version in this paper.

know the lcps between suffixes in adjacent buckets (after
the Erst stage, the Zcps between suffixes in adjacent buck-
ets are 0). At stage 2H the buckets are partitioned accord-
ing to 2H symbols. Thus, the lcps between suffixes in
newly adjacent buckets must be at least H and at most
W-l. Furthermore, if Ap and A, are in the same H-
bucket but are in distinct W-buckets, then

If we can maintain, after stage H, information about all
lcps whose values are less than H, then computing lcps in
stage 2H will be straightforward from (1). But, this is too
much information. We are interested only in computing
lcps between adjacent suffixes in the Enal order, not
between every pair of prefixes. Instead of computing all
lcps, we maintain an 0 @Q-space data structure that
enables us to compute any lcp whose value is less than H
in 0 (logN) time. We will describe this data structure,
which we call an intend free, after we establish our basic
approach.

We define height(i) = lcp (Apes [i-l], APm(i])r
1 <ilN-1, where Pos is the final sorted order of the
sufExes. These N-l height values are computed in an
array Hgt [il. The computation is performed inductively,
together with the sort, such that Hgt [i] achieves its
correct value at stage H iff height(i) <H, and it is
undefined (specificaIly, N + 1) otherwise. Notice that, if
height (i) < H, then Ap,,Ii-rl and APosril must be in dif-
ferent H-buckets since H-buckets contain suffixes with
the same H-symbol prefix.

Let PosH, HgtH, and PrmH be the values of the
given arrays at the end of stage H. In stage 2H of the sort,
the &-ordered list Pos w is produced by sorting the
suffixes in each H-bucket of the sH-ordered list PosH.
The following lemma captures the essence of how we
compute Hgr w from HgfH given Posw and Prmw.

Lemma 1: If H S height (i) c 2H then height fi) = H +
min (HgtH[k] : k E [min (a, 6) + 1, max(a, b)]), where
a = Prm”[PosW[i-l]+H], and
b=PrmWIPosW[i]+H].

Proof: L&p= Posw[i-11 and q = Posw[i]. As we
have observed, height(i) < 2H implies height(i) =
H+~cP(&H,~$+H). Next observe that Po~~fa]=p+H
and PosZH[b]=q+H by the choice of CL and b. Without
loss of generality, assume that u < b. We now know that
height(i) = H + Icp (u, Y) where u =Apw=HIal, v =APos~~bl,
kp (u, v) <H, and u <H v. Observe that x <H z and
x IH y $f z hply kp (x, z) = mh (kp (x, y), kp @, Z))ini

follows, by induction, that if xa<H&
x0 +-,x1 $, ’ - ’ +fx,, then ICP (x0.&J =
min(Icp(xk-I,xk):kE ll,n]). Thus, lcp(u, v) =

323

min (b (A~osy~~r Apmyk]) : k E b+l, f~ I). Now
lcp (u, v) <H implies that at least one term in the
minimum is less than H. For those terms less than H,
lcp (Apos~[~-l~ ,Apos=~~]) = height(k) = HgtH[k]. This,
combined with the fact that HgtH[k]=N+l >H for all
other terms, gives the result. n

We are now ready to describe the algorithm. In the
first stage, we set Hgt[iJ to 0 if ap~l[i-l] +~p,,l[i], and
N+l otherwise. This correctly establishes Hgt’. At the
end of stage 2H > 1, we have computed Posw, Prmw,
and BHZH (marks the W-buckets). Thus, by Lemma 1,
the following code correctly establishes HgtW from HgtH
when placed at the end of a sorting stage.

fori E [I,N-l]suchthatBH[i]andHgt[i] >Ndo
[a t Prm [Pus [i-l]+H]

b t Prm [Pas [i l+H]
Set (i, H +Min_Height (min (a, b)-+l, max(a, b)))
(these routines are defined below)

1

The routine Set (i, h) sets Hgt [i I to h in our interval tree,
and AC-Height (i, j) determines min (Hgt [k] : k E [i, j])
using the interval tree. We now show how to implement
each routine in time 0 (1ogN) in the worst case. Consider
a balanced and full binary tree with N-l leaves which, in
left-to-right order, correspond to the elements of the array
Hgt. The tree has height 0 (logN) and N-2 interior ver-
tices. Assume that a value Hgt [v] is also kept at each
interior vertex v. We say that the tree is current if for
every interior vertex v, Hgt[v] =
min (Hgt [left(v)], Hgt [right (v)]), where Zeft (v) and
right(v) are the left and right children of v.

Let T be a current tree. We need to perform two
operations on the tree, a query Min-Height (i, j), and a
dynamic operation Set (i, h). The query operation
Min-Height (i, j) computes min(Hgt [k] : k E [i, j]). It
can be answered in O(logN) time as follows. Let
Ica (i, j) be the lowest common ancestor of leaves i and j.
Since the tree is fixed, Icu (i, j) can be found in constant
time with simple arithmetics (see, for example, f$lT841).
Let P be the set of vertices on the path from i to Zca (i, j)
excluding Zca (i, j), and let Q be the similar path for leaf
j. Min-Height (i, j) is the minimum of the following
values: (1) Hgt [i], (2) Hgt [IV] such that right (v)=w and
w $ P for some v E P, (3) Hgt [IV] such that left(v) =w
and w $ Q for some v E Q, and (4) Hgt lj]. These
0 (Iog N) vertices can be found and their minimum com-
puted in 0 (1ogN) time. The operation Set (i, h) sets
Hgt [i] to h and then makes T current again by updating
the Hgt values of the interior vertices on the path from i to

the root. This takes 0 (1ogN) time.

Overall, the time taken to compute the height
va&s in stage H is 0 (N +SetH1ogN) where SetH is the
number of indices i for which height(i) E [H, 2H-11.
Since CSet H = N over all stages, the total additional time
required to compute Hgt during the sort is 0 (NlogN).

The Hgt array gives the lcps of suffixes that are
consecutive in the Pus array. We now show that the
arrays Llcp and Rlcp can be computed similarly. We are
free to choose any full and balanced tree for this the
scheme. Using the tree based on the binary search of Fig-
ure 1 gives us the arrays Llcp and Rlcp needed for the
search in a direct fashion. The tree consists of 2N-3 ver-
tices each labeled with one of the 2N-3 pairs, (L, R), that
can arise at entry and exit from the while loop of the
binary search. The root of the tree is labeled (O,N-1)
and the remaining vertices are labeled either (LM,M) or
(M, RM) for some midpoint M E [l, N-21. Alternately,
the tree’s N-2 interior vertices are (LM, REn) for each
midpoint M, and its N-l leaves are (i-l, i) for
i E [1, N-l] in left to right order. For each interior ver-
tex, kB(&.t,Rd) = (LM,M) and right((LM,RM)) =
(M, RM). Since the tree is full and balanced, it is appropri-
ate for realizing Set and Min-Height if we let leaf (i-l, i)
hold the value of Hgt [il. Moreover, at the end of the
sort, Hgt [(L RI 1 = min(height(k):kE[L+l,R]) =

WAP~~ [r, 1, Amos [R 1% Thus, Llcp[h4] = Hgt[(LM,M)]
and RZcp[M] = Hgt [(M, RM)]. So with this tree, the
arrays Llcp and RZcp are directly available upon comple-
tion of the SOX%.~

5. Linear Time Expected-case Variations

We now consider the expected time complexity of con-
structing and searching suffix arrays under the disttibu-
tional model where all N-symbol strings are equally
likely4. Under this input distribution, the expected length
of the longest repeated substring has been shown to be
210g 1 zl N + 0 (1) [KG083]. This fact provides the central
leverage for all the results that follow. Note that it
immediately imples that, in the expected case, Pas will be
completely sorted after 0 (1oglogN) stages, and the sort-
ing algorithm of Section 3 thus takes 0 (Nlog 1ogN)
expected time.

’ The interval me requks 2N-3 positive integers. However, the obser-
vation that one child of each interior vertex has the same value as its fa-
ther, permits interval trees (and thus the Ucp and Rlcp arrays) to be en-
coded and manipulated as N-l signed integers.

’ The ensuing results also hold under the mom general model where each
text is assumed to be the result of N independent Bernoulli trials of a
1 Z 1 -sided coin toss, which is not necessarily uniform.

324

The expected sorting time can be reduced to 0 (N)
by modifying the radix sort of the first stage as follows.
Let T = llog ,r, Nj and consider mapping each string of T
symbols over C to the integer obtained when the string is
viewed as a T-digit, radix-] C] number. This oft-used
encoding is an isomorphism onto the range [0,] C] r-l] c
[0, N-l], and the I-relation on the integers is identical
with the <r-relation on the corresponding strings. Let
Inrr(A,) be the integer encoding of the T-symbol prefix of
suffix AP. It is easy to compute Int,(A,) for all p in a sin-
gle 0 (N) sweep of the text by employing the observation
that Int,(A,) = up I I; I’-’ +LlnrT(AP+l)/] X]I. Instead of
performing the initial radix sort on the first symbol of
each suffix, perform it on the integer encoding of the first
T symbols of each suffix. This radix sort still takes just
0 (N) time and space because the choice of T guarantees
that the integer encodings are all less than N. Moreover,
it sorts the suffixes according to the <r-relation. Effec-
tively, the base case of the sort has been extended from H
= 1 to H = T with no loss of asymptotic efficiency. Since
the expected length of the longest repeated substring is
T(2+ 0 (T-l)), at most 2 subsequent stages are needed to
complete the sort in the expected case. Thus this slight
variation gives an 0 (N) expected time algorithm for sort-
ing the suffixes.

Corresponding expected-case improvements for
computing the Zcp information, in addition to the sorted
suffix array, are harder to come by. We can still achieve
0 (N) expected-case time, but by employing an approach
to computing height (i) that uses identity (4.1) recursively
to obtain the desired Icps. Let the sort history of a partic-
ular sort be the tree that models the successive refinement
of buckets during the sort. There is a vertex for each H-
bucket except those H-buckets that are identical to the
(H/2)-buckets containing them. The sort history thus has
0 (N) vertices, as each leaf corresponds to a suffix and
each interior vertex has at least two children. Each vertex
contains a pointer to its parent and each interior vertex
also contains the stage number at which its bucket was
split. The leaves of the tree are assumed to be arranged in
an N element array, so that the singleton bucket for suffix
AP can be indexed by p. It is a straightforward exercise to
build the sort history in 0 (N) time overhead during the
sort. Notice that we determine the values height(i) only
after the sort is finished.

Given the sort history produced by the sort, we
determine the Icp of AP and A, as follows. First we find
the nearest common ancestor (nca) of suffixes AP and A,
in the sort history using an 0 (1) time nca algorithm
[HT84, SV88]. The stage number H associated with this
ancestor tells us that lcp (AP, Aq) = H + Icp (AP+H, Aq+H) E

[H, m-11. We then recursively find the Zcp of AP+~ and
A q+n by finding the nca of suffixes AP+n and Aq+~ in the
history, and so on, until an nca is discovered to be the
root of the history. At each successive level of the recur-
sion, the number of the nca is at least halved, and so the
number of levels performed is 0 (log L), where L is the
lcp of AP and A,. Because the longest repeated substring
has expected length O(Zog ,zl N), the N-l Icp values of
adjacent sorted suffixes are found in 0 (NloglogN) ’
expected time.

The scheme above can be improved to O(N)
expected time by strengthening the induction basis as was
done for the sort. Suppose that we stop the recursion
above when the stage number of an nca becomes less than
T’ = l’/ log tZI NJ. Our knowledge of the expected max-
imum Zcp length implies that, on average, only three or
four levels are performed before this condition is met.
Each level takes CJ (1) time, and we are left having to
determine the lcp of two suffixes, say AP and A,, that is
known to be less than T’. To answer this final lcp query
in constant time, we build a] C] “-by-] C] r’ array
Lookup, where Lookup [Int&x), Ir+(y)] = lcp (x, y> for
all T’-symbol strings x and y. By the choice of T’ there
are no more than N entries in the array and they can be
computed incrementally in an 0 (N) preprocessing step
along with the integer encodings Znt&A,) for all p. So
for the final level of the recursion, lcp (A,,, A,J =
Lookup [Int&A,), Int,#(AJ may be computed in 0 (1)
time via table lookup. In summary, we can compute the
lcp between any two suffixes in 0 (1) expected time, and
so can produce the Zcp array in 0 (N) expected time.

The technique of using integer encodings of
0 (logN)-symbol strings to speedup the expected prepro-
cessing times, also provides a pragmatic speedup for
searching. For any KST, let Buck [k] =
minji :IntK(A,[k])=ij. This bucket array contains
] C] K non-decreasing entries and can be computed from
the ordered suffix array in 0 (N) additional time. Given a
word W, we know immediately that Lw and Rw are
between Buck [k] and Buck[k+l]-1 for k = Inr,(W).
Thus in 0 (K) time we can limit the interval to which we
apply the search algorithm proper, to one whose average
size is Nl] C] K. Choosing K to be T or very close to T,
implies that the search proper is applied to an 0 (1)
expected-size interval and thus consumes 0 (P) time in
expectation regardless of whether the algorithm of Figure
1 or 2 is used. While the use of bucketing does not
asymptotically improve either worst-case or expected-
case times, we found this speedup very important in prac-
tice.

325

6. Practice

A primary motivation for this paper was to be able to
efficiently answer on-line string queries for very long
genetic sequences (on the order of one million or more
symbols Iong). In practice, it is the space overhead of the
query data structure that limits the largest text that may be
handled. Suffix trees are quite space expensive, requiring
roughly 16 bytes of overhead per text character. Utilizing
an appropriate blend of the suffix array algorithms given
in this paper, we developed an implementation requiring 5
bytes of overhead per text character whose construction
and search speeds are competitive with suffix trees.

There are three distinct ways to implement a data
structure for suffix trees, depending on how the outedges
of an interior vertex are encoded. Using a I XI -element
vector gives a structure requiring 8N +4(I z I +2) -I bytes
where Z is the number of interior nodes in the suffix tree.
Encoding each set of outedges with a binary search tree
requires 8N + 201 bytes. Finally, encoding each outedge
set as a linked list requires 8N + 161 bytes. The parameter
Z < N varies as a function of the text. The fust four
columns of Table 1 illustrates the value of Z/N and the
per-text-symbol space consumption of each of the three
coding schemes. These results suggest that the linked
scheme is the most space parsimonious. We developed a
tightly coded implementation of this scheme for the tim-
ing comparisons with our suffix array software.

For our practical implementation, we chose to build
just a suffix array and use the radix-ZV initial bucket sort
described in Section 5 to build it in 0 (N) expected time.
Without the lcp array the search must take O(PlogN)
worst-case time. However, keeping variables 1 and r as
suggested in arriving at the 0 (Z’ + IogN) search,
significantly improves search speed in practice. We
further accelerate the search to 0 (P) expected time by
using a bucket table with K = loglxl N/4 as described in

Random (1 X(=2)
Random (lE1-t)
Random (ICl=8)
Random (I X)=16)
Random (1X1=32)
Text (1X1=96)
Code(lCI=%)
DNA(lZ+l)

II Space (Bytes/text symbol)
S.Trees

I/N Link Tree Vector

.99 23.8 27.8 19.8

.62 17.9 20.4 18.9

.45 15.2 17.0 20.8

.37 13.9 15.4 30.6

.31 13.0 14.2 46.2

.54 16.6 18.8 220.0

.63 18.1 20.6 255.0

.72 19.5 22.4 25.2

Section 5. Our search structure thus consists of an N
integer suffix array and a N/4 integer bucket array, and so
consumes only 5 bytes per text symbol (assuming an
integer is 4 bytes).

Table 1 summarizes a number of timing experi-
ments on texts of length 100,000. All times are in
seconds and were obtained on a VAX 8650 running
UNIX. Columns 6 and 7 give the times for constructing
the suffix tree and suffix array, respectively. Columns 8
and 9 give the time to perform 100,000 successful queries
of length 20 for the suffix tree and array, respectively. In
synopsis, suffix arrays are 3-10 times more expensive to
build, 2-5 times more space efficient, and can be queried
at speeds comparable to suffix trees.

References

SArrays S.Trecs SArcays

5.0 2.6 7.1
5.0 3.1 11.7
5.0 4.6 11.4
5.0 6.9 11.6
5.0 10.9 11.7
5.0 5.3 28.3
5.0 4.2 35.9
5.0 2.9 18.7

Apostolico, A., “The myriad virtues of sub-
word trees,” Combinatorial Algorithms on
Words (A. Apostolico & 2. Galil, eds.),
NATO AS1 Series F: Computer and System
Sciences, Vol. 12, Springer-Verlag (1985),
85-96.

Apostolico, A., and C. Iliopoulos, “Parallel
log-time construction of suffix trees,” CSD
TR 632, Dept. of Computer Science, Purdue
University (1986).

Apostolico, A. and F-P. Preparata, “Optimal
off-line detection of repetitions in a string,”
Theoretical Computer Science 22 (1983),
297-315.

Apostolico, A. and F.P. Preparata, “Struc-
tural properties of the string statistics prob-
lem,” Journal of Computer and System Sci-
ence 31 (1985), 394-411.

Construction Time Search Tbne

S.Trees SArrays

6.0 5.8
5.2 5.6
5.8 6.6
9.2 6.8

10.2 7.0
22.4 9.5
29.3 9.0
14.6 9.2

Table 1: Empirical results for texts of length 100,000.

326

[BB86]

CBBE851

[Car75]

[CHM86]

[EH861

[FwM841

Ed851

[Go891

D-341

[KG0831

[-721

LV861

Blumer, J. and A. Blumer, “On-line con-
struction of a complete inverted file,”
UCSC-CRL-86-11, Dept. of Computer Sci-
ence, University of Colorado (1986).

Blumer, J., Blumer, A., Ehrenfeucht, E.,
Haussler, D., Chen, M.T., and J. Seiferas,
“The smallest automaton recognizing the
subwords of a text,” Theoretical Computer
Science, (1985).

Cardenas, A.F., “Analysis and performance
of inverted data base structures,” Comm. of
the ACM 18,5 (1975), 253-263.

Clift, B., Haussler, D., McConnell, R.,
Schneider, T.D., and G.D. stoma,
“Sequence landscapes,” Nucleic Aciak
Research 4,1(1986), 141-158.

Ehrenfeucht, A. and D. Haussler, “A new
distance metric on strings computable in
linear time,” UCSC-CRL-86-27, Dept.. of
Computer Science, University of Colorado
(1986).

Fraser, C., Wendt, A., and E.W. Myers,
“Analyzing and compressing assembly
code,” Proceedings of the SIGPLAN Sympo-
sium on Compiler Construction (1984).
117-121.

Galil, Z., “Open problems in stringology,”
Combinatorial Algorithms on Words (A.
Apostolico and Z. Gal& eds.), NATO AS1
Series F: Computer and System Sciences,
Vol. 12, Springer-Verlag (1985), l-8.

Gonnet G., Private communication.

Hare& D. and R.E. Tarjan, “Fast algorithms
for finding nearest common ancestors,”
SIAM Journal on Computing 13 (1984),
338-355.
Karlin S., Ghandour G., Ost F., Tavare S.,
and L. J. Kom, “New approaches for cum-
puter analysis of nucleic acid sequences,”
Proc. Natl. Acad. Sci. USA, 80, (September
1983), 5-5664.

Karp R. M., R. E. Miller, and A. L. Rosen-
berg, “Rapid identification of repeated pat-
terns in strings, trees and arrays,” Fourth
Annual ACM Symposium on Theory of Com-
puting, (May 1972), pp. 125-136.
Landau, G.M. and U. Vishkin, “Introducing
efficient parallelism into approximate string

[McC76]

P4=301

FIyd81

WW

cRpEf311

[SSSO]

[SV88]

wei

matching,” Proc. 18th ACM Symposium on
Theory of Computing (1986), 220-230.
McCreight, E-M., “A space-economical
suffix tree construction algorithm,” Journal
of the ACM 23 (1976), 262-272.

Majster, M.E., and A. Reiser, “Efficient on-
line construction and correction of position
trees, SIAM Journal on Computing 9, 4
(1980), 785-807.

Myers, E.W., “Incremental alignment algo-
rithms and their applications,” SIAM Journal
on Computing, accepted for publication.

Myers, E.W., and A. Ehrenfeucht, A sub-
linear algorithm for similarity searching, in
preparation.

Rcxieh, M., Pratt, V.R., and S. Even, “Linear
algorithm for data compression via string
matching,” Journal of the ACM 28, 1 (1981),
16-24.

Slisenko, A.O., “Detection of periodicitics
and string-matching in real time,” Journal of
Soviet Mathematics 22,3 (1983), 1316-1387;
translated from Zpiski Nauchnykh Seminarov
Leningradskogo Otdeleniya Matema-
ticheskogo Instituta im. V.A. Steklova AN
SSSR, 105 (1980), 62-173.

B. Schieber and U. Vi&kin, “On finding
lowest common ancestors: Simplification and
parallelization,” SIAM Journal on Comput-
ing, 17 (December 1988), pp. 1253-1262.

Weiner, P., “Linear pattern matching algo-
rithm,” Proc. 14th IEEE Symposium on
Switching and Automata Theory (1973),
l-11.

327

