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Abstract

We present a linear time algorithm to sort all the suffixes of a string over a large alphabet of
integers. The sorted order of suffixes of a string is also called suffix array, a data structure introduced
by Manber and Myers that has numerous applications in pattern matching, string processing, and
computational biology. Though the suffix tree of a string can be constructed in linear time and the
sorted order of suffixes derived from it, a direct algorithm for suffix sorting is of great interest due to
the space requirements of suffix trees. Our result is one of the first linear time suffix array construction
algorithms, which improve upon the previously knowm@gn) time direct algorithms for suffix
sorting. It can also be used to derive a different linear time construction algorithm for suffix trees.
Apart from being simple and applicable for alphabets not necessarily of fixed size, this method of
constructing suffix trees is more space efficient.
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1. Introduction

Suffix trees and suffix arrays are important fundamental data structures useful in many
applications in string processing and computational biology. The suffix tree of a string is a
compacted trie of all the suffixes of the string. The suffix tree of a string of lengtver
an alphabet” can be constructed in @log|X|) time and Qn) space, or in @) time
and Qn|X|) spacg17-19] These algorithms are suitable for small, fixed size alphabets.
Subsequently, Fara¢B] presented an @) time and space algorithm for the more general
case of constructing suffix trees over integer alphabets. For numerous applications of suffix
trees in string processing and computational biology]8ke

The suffix array of a string is the lexicographically sorted list of all its suffixes. Manber
and Myers introduced the suffix array data strucf@@ as a space-efficient substitute for
suffix trees. Gonnet et g]7] have also independently developed the suffix array, which
they refer to as the PAT array. As a lexicographic-depth-first traversal of a suffix tree can
be used to produce the sorted list of suffixes, suffix arrays can be constructed in linear
time and space using suffix trees. However, this defeats the whole purpose if the goal is
to avoid suffix trees. Hence, Manber and Myers presented a direct construction algorithm
that runs in Qrlogn) worst-case time and @) expected time. Since then, the study
of algorithms for constructing suffix arrays and for using suffix arrays in computational
biology applications has attracted considerable attention.

The suffix array is often used in conjunction with another array, cétfedrray, contain-
ing the lengths of the longest common prefixes between every pair of consecutive suffixes
in sorted order. Manber and Myers also presented algorithms for constriggiagay in
O(nlogn) worst-case time and @) expected time, respective]¢6]. More recently, Ka-
sai et al[12] presented a linear time algorithm for constructingltpearray directly from
the suffix array. While the classic problem of finding a pattBrim a string7" of lengthn
can be solved in QP|) time for fixed sizeX using a suffix tree of’, Manber and Myers’
suffix array based pattern matching algorithm takégPQ+ logn) time, without any re-
striction onX'. Recently, Abouelhoda et 4R,3] have improved this to QP|) time using
additional linear time preprocessing, thus making the suffix array based algorithm superior.
In fact, many problems involving top-down or bottom-up traversal of suffix trees can now
be solved with the same asymptotic run-time bounds using suffix gitag$ Such prob-
lems include many queries used in computational biology applications including finding
exact matches, maximal repeats, tandem repeats, maximal unique matches and finding all
shortest unigue substrings. For example, the whole genome alignment tool MUBImer
uses the computation of maximal unique matches.

While considerable advances are made in designing optimal algorithms for queries
using suffix arrays and for computing auxiliary information that is required along with
suffix arrays, the complexity of direct construction algorithms for suffix arrays remained
O logn) so far. Several alternative algorithms for suffix array construction have been de-
veloped, each improving the previous best algorithm by an additional constant[fe@tor
15]. We close this gap by presenting a direct linear time algorithm for constructing suffix
arrays over integer alphabets. Contemporaneous to our result, Karkkainefilé{ ahd
Kim et al.[13] also discovered suffix array construction algorithms with linear time com-
plexity. All three algorithms are very different and are important because they elucidate



P. Ko, S. Aluru / Journal of Discrete Algorithms 3 (2005) 143-156 145

different properties of strings, which could well be applicable for solving other problems.
An important distinguishing feature of our algorithm is that it uses omlyb§tes plus

1.25n bits for a fixed size alphabet. Our algorithm is based on a unique recursive formula-
tion where the subproblem size is not fixed but is dependent on the properties of the string.
Recently, Hon et al[9] discovered a linear time construction algorithm for compressed
suffix array.

It is well known that the suffix tree of a string can be constructed from the sorted order
of its suffixes and thécp array[6]. Because thé&p array can be inferred from the suffix
array in linear timg12], our algorithm can also be used to construct suffix trees in linear
time for large integer alphabets, and of course, for the special case of fixed size alphabets.
Our algorithm is simpler and more space efficient than Farach’s linear time algorithm for
constructing suffix trees for integer alphabets. In fact, it is simpler than linear time suffix
tree construction algorithms for fixed size alphaljg®-19] A noteworthy feature of our
algorithm is that it does not construct or use suffix links, resulting in additional space
advantage. To the best of our knowledge, all direct suffix tree construction algorithms that
achieve linear run-time exploit the use of suffix links.

The remainder of this paper is organized as follows: In Se&@jave present our linear
time suffix sorting algorithm. A detailed analysis of the space requirement of our algorithm
is presented in Sectidh An implementation strategy that further improves the run-time in
practice can be found in SectidnWe compare our algorithm with other previous work in
Sectionb. Section6 concludes the paper.

2. Suffix sorting algorithm

Consider a string” = t112... . t, over the alphabelr = {1...n}. Without loss of gener-
ality, assume the last characterbccurs nowhere else ifi, and is the lexicographically
smallest character. We denote this character by ‘$’.T.et 1;1; 11 ..., denote the suffix
of T starting withz;. To store the suffiXl;, we only store the starting position number
For stringse and 8, we usex < 8 to denote thatr is lexicographically smaller thag.
Throughout this paper the tersorted orderefers to lexicographically ascending order.

A high level overview of our algorithm is as follows: We classify the suffixes into two
types,S and L. Suffix T; is of type S if T; < T;+1, and is of typeL if T;4+1 < T;. The
last suffix 7,, does not have a next suffix, and is classified as both §yped typeL.

The positions of the typ& suffixes inT partitions the string into a set of substrings.

We substitute each of these substrings by its rank among all the substrings and produce a
new string7’. This new string is then recursively sorted. The suffix array ofjives the
lexicographic order of all typé suffixes. Then the lexicographic order of all suffixes can

be deduced from this order.

We now present complete details of our algorithm. The following lemma allows easy
identification of typeS and typeL suffixes in linear time.

Lemma 1. All suffixes ofl’ can be classified as either tygeor type L in O(n) time.

Proof. Consider a suffiX; (i < n).



146 P. Ko, S. Aluru / Journal of Discrete Algorithms 3 (2005) 143-156

T MI SSI SSIPPI $
Type L SLLSLLSLLTLLS
Pos 1 23456789 101112

Fig. 1. The string “MISSISSIPPI$" and the types of its suffixes.

Case 1: If #; # t;11, we only need to compatgandz; 1 to determine if7; is of typesS or
typeL.

Case 2: If t; =t;11, find the smalles§ > i such that; # ;.
if ¢; > #;, then suffixesl;, T; 11, ..., Tj_1 are of types.
if t; <1;, then suffixesT;, T;11, ..., Tj_1 are of typeL.

Thus, all suffixes can be classified using a left to right scah of O(n) time. O

The type of each suffix of the string MISSISSIPPI$ is showifig. 1. An important
property of typeS and typeL suffixes is, if a typeS suffix and a typel suffix both begin
with the same character, the ty§esuffix is always lexicographically greater than the type
L suffix. The formal proof is presented below.

Lemma 2. A typeS suffix is lexicographically greater than a ty@esuffix that begins with
the same first character.

Proof. Suppose a typ# suffix 7; and a typel suffix T; are two suffixes that start with the
same character. We can writeT; = ckcia and7; = c!c28, wherec* andc! denotes the
character repeated fok, [ > 0 times, respectively;1 > ¢, c2 < ¢; o andg are (possibly
empty) strings.

Case 1: If k <[ thency is compared to a charactein ¢!. Thency > ¢ = T; <T;.

Case 2: If k > [ thenc, is compared to a charactein ¢*. Thenc > ¢, = T, <T;.

Case 3: If k =1 thency is compared ta2. Sincec1 > ¢ andc¢ > c2, thency > c2 =
Tj < Tl

Thus a typeS suffix is lexicographically greater than a tyfiesuffix that begins with the
same first character.o

Coroallary 3. In the suffix array off', among all suffixes that start with the same character,
the typeS suffixes appear after the tyfdesuffixes.

Proof. Follows directly fromLemma2 0O

Let A be an array containing all suffixes &f not necessarily in sorted order. Lethe
an array of all suffixes of typ#, sorted in lexicographic order. Using), we can compute
the lexicographically sorted order of all suffixes®fas follows:
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T M
Type
Pos 1

Order Of Type S suffixes 121 8| 5] 2

Bucket
After Step 2

Sorted Order

$ 1 M P S

1211 8 5 2| 1| 9 1003 4 6 7

12011 8| 5| 2| 1[10| 9] 7| 4] 6| 3

ENNCrS sy

Fig. 2. lllustration of how to obtain the sorted order of all suffixes, from the sorted order oftgpéixes of the

string MISSISSIPPIS.

(1) Bucket all suffixes off' according to their first character in arrad. Each bucket
consists of all suffixes that start with the same character. This step takgside.

(2) ScanB from right to left. For each suffix encountered in the scan, move the suffix
to the current end of its bucket i, and advance the current end by one position to
the left. More specifically, the move of a suffix in arrdyto a new position should
be taken as swapping the suffix with the suffix currently occupying the new position.
After the scan ofB is completed, byCorollary 3 all type S suffixes are in their correct
positions inA. The time taken is QB|), which is bounded by ).

(3) ScanA from left to right. For each entry[i], if T4pi1—1 is a typeL suffix, move it to
the current front of its bucket i, and advance the front of the bucket by one. This
takes Qn) time. At the end of this stepd contains all suffixes of in sorted order.

In Fig. 2 the suffix pointed by the arrow is moved to the current front of its bucket
when the scan reaches the suffix at the origin of the arrow. The following lemma proves
the correctness of the procedure in step 3.

Lemma 4. In step3, when the scan reachefi], then suffixl4f;; is already in its sorted

position inA.

Proof. By induction oni. To begin with, the smallest suffix ifi must be of typeS and
hence in its correct positioA[1]. By inductive hypothesis, assume thaitl], A[2], ...,

Ali] are the firsti suffixes in sorted order. We now show that when the scan reaches
Ali + 1], then the suffix in it, i.e.Ta[;+1; is already in its sorted position. Suppose not.
Then there exists a suffix referenced Ajk] (k > i 4+ 1) that should be iM[i + 1] in
sorted order, i.eTak) < Tafi+1)- As all type S suffixes are already in correct positions,
both Tajx) and T4[i+1) must be of typel. BecauseA is bucketed by the first character of
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the suffixes prior to step 3, and a suffix is never moved out of its bugket, and 74 +1
must begin with the same character, say.et Taji+1) = co and Tk = cB. SinceT 4
istypeL, B < Tapk). FromTap < Tafi+1), B < a. Sincep < T4, and the correct sorted
position of T4 is Ali + 1], B must occur inA[1]... A[i]. BecauseB < «, Tapx) should
have been moved to the current front of its bucket befage, 17. Thus,T 4 can not occur
to the right ofT4[; 413, a contradiction. O

So far, we showed that if all typ& suffixes are sorted, then the sorted position of all
suffixes of T can be determined in @) time. In a similar manner, the sorted position of
all suffixes of 7 can also be determined from the sorted order of all suffixes of fype
To do this, we bucket all suffixes d@f based on their first characters into an arfaywe
then scan the sorted order of typesuffixes from left to right and determine their correct
positions inA by moving them to the current front of their respective buckets. We then
scanA from right to left and whem[i] is encountered, if 4;;—1 is of type S, it will be
moved to the current end of its bucket.

Once the suffixes of’ are classified into typd and typeL, we choose to sort those
type of suffixes which are fewer in number. Without loss of generality, assume thaf type
suffixes are fewer. We now show how to recursively sort these suffixes.

Define position of T to be a typeS position if the suffix7; is of type S, and similarly
to be a typel position if the suffixT; is of type L. The substring; ...¢; is called a typeS
substring if bothi andj are typeS positions, and every position betweeand is a type
L position.

Our goal is to sort all the typ§ suffixes inT. To do this we first sort all the typg
substrings. The sorting generates buckets where all the substrings in a bucket are identical.
The buckets are numbered using consecutive integers starting from 1. We then generate a
new string7’ as follows: Scarf” from left to right and for each typg position inT', write
the bucket number of the tygesubstring starting from that position. This string of bucket
numbers formg”. Observe that each tygesuffix in T naturally corresponds to a suffix in
the new stringl”’. In Lemma 5 we prove that sorting all typ# suffixes ofT is equivalent
to sorting all suffixes of”’. We sortT”’ recursively.

We first show how to sort all the typ® substrings in @) time. Consider the array,
consisting of all suffixes of bucketed according to their first characters. For each sijffix
define itsS-distanceto be the distance from its starting positioho the nearest typ§
position to its left (excluding position). If no type S position exists to the left, ths-
distanceis defined to be 0. Thus, for each suffix starting on or before the first $ype
position inT, its S-distancds 0. The typeS substrings are sorted as follows (illustrated in
Fig. 3):

(1) For each suffix inA, determine itsS-distance This is done by scanning from left
to right, keeping track of the distance from the current position to the nearest type
S position to the left. While at position, the S-distanceof 7; is known and this
distance is recorded in arr®jst. The S-distanceof T; is stored inDist[i]. Hence, the
S-distancedor all suffixes can be recorded in linear time.

(2) Letm be the largesf§-distance Createn lists such that lis§ (1 < j < m) contains all
the suffixes with ar$-distanceof j, listed in the order in which they appear in arvéy
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T MI SSI SSIPPTI S Step 3. Sort all type S substrings
Type S S S S Original
Pos 123 456 7 8 9 101112 12

2 5 8
A |12|2 5 811|1\910|3 4 6 7|

Sort according to list 1
Step 1. Record the S—distances 12 n 7 5
Pos 12345678 910 1112 ) )

12

\S}
|9

Step 2. Construct S—distance Lists

1 Sort according to list 3
: 28]z 5]
3 Sort according to list 4
' 28]z 5]

Fig. 3. lllustration of the sorting of typ#& substrings of the string MISSISSIPPI$.

This can be done by scannidgfrom left to right in linear time, referring t®ist[A[i]]
to putT4y;) in the correct list.

(3) We now sort the typ§ substrings using the lists created above. The sorting is done by
repeated bucketing using one character at a time. To begin with, the bucketing based
on first character is determined by the order in which t§paffixes appear in array.
Suppose the typg& substrings are bucketed according to their first1 characters. To
extend this toj characters, we scan ligt For each suffixl; encountered in the scan
of a bucket of listj, move the typeS substring starting at_; to the current front of
its bucket, then move the current front to the right by one. After a bucket of list
scanned, new bucket boundaries need to be drawn between all thg syestrings
that have been moved, and the ty®ysubstrings that have not been moved. Because
the total size of all the lists is @), the sorting of types substrings only takes @)
time.

The sorting of typeS substrings using the above algorithm respects lexicographic or-
dering of typeS substrings, with the following important exception: If a typsubstring is
the prefix of another typ& substring, the bucket number assigned to the shorter substring
will be larger than the bucket number assigned to the larger substring. This anomaly is
designed on purpose, and is exploited latdrémma 5

As mentioned before, we now construct a new sttigorresponding to all typs sub-
strings inT'. Each typeS substring is replaced by its bucket number drds the sequence
of bucket numbers in the order in which the typsubstrings appear ifi. Because every
type S suffix in T starts with a types substring, there is a natural one-to-one correspon-
dence between typgsuffixes of7 and all suffixes off”". Let 7; be a suffix of7” and T}, be
its corresponding suffix iff”. Note that7}, can be obtained frorfi; by replacing every type
S substring inT; with its corresponding bucket number. Similarly,can be obtained from
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T!, by replacing each bucket number with the corresponding substring and removing the
duplicate instance of the common character shared by two consecutiv8 srwstrings.

This is because the last character of a tgmubstring is also the first character of the next
type S substring alond".

Lemma5. Let 7; and 7; be two suffixes of" and let7;, and T]f/ be the corresponding
suffixes of". Then,T; < 7 & T;) < T},.

Proof. We first show thaf’), < T]f, = T; < T;. The prefixes off; and7; corresponding to

the longest common prefix df, andT;, must be identical. This is because if two bucket
numbers are the same, then the corresponding substrings must be the same. Consider the
leftmost position in which7}, and T]f, differ. Such a position exists and the characters

(bucket numbers) of’/, and TJT, in that position determine which df’, and TJ(, is lexico-
graphically smaller. Let be the bucket number ifi, and! be the bucket number 'm’ at

that position. Sincg?, < T’,, it is clear thatt < 1. Leta be the substring correspondlng to
k andg be the substrlng correspondmgltd\lote thatx andg can be of different lengths,
bute cannot be a proper prefix @f. This is because the bucket number corresponding to
the prefix must be larger, but we know that /.

Case 1: g is not a prefix ofx. In this casek <! = a < 8, which impliesT; < T;.
Case 2: 8 is a proper prefix ofx. Let the last character g8 be ¢. The corresponding
position inT is a typesS position. The position of the correspondiagn o must
be a typeL position.
Since the two suffixes that begin at these positions start with the same charac-
ter, by Corollary 3 the typeL suffix must be lexicographically smaller then the
type S suffix. Thus,T; < T;.

From the one-to-one correspondence between the suffix&$ and the typeS suffixes
of T, it also follows thatl; < T; = T}, < T]f/. O

Corollary 6. The sorted order of the suffixes Bf determines the sorted order of the type
S suffixes off".

Proof. Let TC, TC, TC , ... be the sorted order of suffixes &f. Let T;,, T;,, T, - . . be the
sequence obtalned by replacmg each su]’f’lanh the corresponding typ# suffix 7;, .

Then,T;,, T;,, Ti;, . . . is the sorted order of typ@ suffixes ofT. The proof follows directly
fromLemma5 O

Hence, the problem of sorting the tyfesuffixes of7 reduces to the problem of sorting
all suffixes of T’. Note that the characters @f are consecutive integers starting from 1.
Hence our suffix sorting algorithm can be recursively appliefi’to

If the string T has fewer type. suffixes than types suffixes, the typd. suffixes are
sorted using a similar procedure—call the substting. ., ¢; a typeL substring if both
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i and j are typeL positions, and every position betweérand j is a typeS position.
Now sort all the typel. substrings and construct the corresponding stfihgbtained by
replacing each typé& substring with its bucket number. Sortifig gives the sorted order
of type L suffixes.

Thus, the problem of sorting the suffixes of a strifigof lengthn can be reduced to
the problem of sorting the suffixes of a strifig of size at mosf51, and Q) additional
work. This leads to the recurrence

T(n) = T(%D +0Mm).

Theorem 7. The suffixes of a string of lengthcan be lexicographically sorted i®(n)
time and space.

3. Spacerequirement

We now consider the space requirement of our suffix array construction algorithm. The
algorithm can be decomposed into the following parts:

(1) Classifying the types of all suffixes.

(2) Sorting all suffixes according to their first character.

(3) Constructingn lists according to th&-distanceof each suffix, and the sorted order of
their first character.

(4) Sorting all typeS substrings by repeated bucketing usingihbsts.

(5) Constructing a new strin§j’ according to the bucket numbers of tyfesubstrings.

(6) Recursively applying our algorithm, and obtaining the sorted order of§yqséfixes.

(7) Constructing the suffix array from the sorted order of all t§uffixes.

Except for step 4, the calculation of space requirement for each of the steps listed above
is straightforward, and offers little room for improvement by using a more efficient im-
plementation. Therefore we limit the focus of our analysis to efficient implementation of
step 4.

As mentioned previously, the sorting of all tySesubstrings is done by repeated buck-
eting using one character at a time. Suppose the $ypabstrings are bucketed according
to their firstj — 1 characters. To extend this jacharacters, we scan ligt For each suffix
T; encountered, move the tygesubstring starting at_; to the current front of its bucket
and advance the current front by one.

In Manber and Myers’ algorithrfiL6], the suffixes are also moved to the front of their
respective buckets in each iteration. However, their space-efficient scheme does not apply
to our algorithm because every suffix will be moved at most once in each iteration of their
algorithm. On the other hand, a ty@esubstring may be moved multiple times in each
recursion step of our algorithm. In order to achievé:Oruntime, we must be able to
locate the current front of the bucket containing a given tyeibstring in constant time.

Let arrayC be an array containing all typ& substrings, bucketed according to their
first characters. A typ§ substring is denoted by its starting positiorifinArray C can be
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generated by copying from array computed in step 2. LeR be an array of size, such
thatif C[i] = j, thenR[j] = k wherek is the position of the end of the bucket containjng
R can be constructed by a right to left scantofLet Iptr be an array of the same size@s
such that ifi is the last position of a bucket i1, thenlptr[i] = j where is the current
front of that bucket. For all other positiosIptr[k] = —1.

Each of them lists is itself bucketed according to the first character of the suffixes.
As previously mentioned, for each suffix encountered in the scan of a bucket in Jist
type S substring starting at;_; is moved to the current front of its bucket. The bucket
containingr;—; can be found by referring t&[i — j1, and the current front of its bucket
can then be found by referring tptr[R[i — j]]. The current front is advanced by incre-
mentinglptr[R[i — j]]. Note that the effect of moving a ty@esubstring starting at_; is
achieved by adjusting the values®fi — j] andIptr[R[i — j]] instead of actually moving
itin C.

After scanning an entire bucket of ligt all the elements o€ that have been moved
should be in a new bucket in front of their old bucket. To accomplish this, we note that the
Iptr at the end of each old bucket @ is pointing to the current front of the old bucket,
which is immediately next to the last element of the new bucket. Thus the bucket of list
j is scanned again. For suffi encountered in the scan, tygesubstring starting at
t;—; is moved into the new bucket by first setti®yi — j] = Iptr[R[i — j]] — 1, then we
setlptr[R[i — j]] = R[i — j]if Iptr[R[i — j]] = —1 or decremenlptr[R[i — j]] by one
otherwise.

Itis easy to see that all the values®findlIptr are set correctly at the end of the second
scan. The amount of work done in this step is proportional to the size of ath thsts,
which is Q(n). Two integer arrays of size and two integer arrays of size at mggt] are
used. Assuming each integer representation takes 4 bytes of space, the total space used in
this step is 12 bytes. Note that it is not necessary to actually move the fypebstrings in
C as the final positions of typ& substrings after sorting can be deduced frBnin fact,
we constructl”’ directly usingR. Array C is only needed to initializ&k andlptr. We can
initialize R from C, then discard”, and initializelptr from R, thus further reducing the
space usage to &(bytes. However, this reduction is not necessary as construction of
lists in step 3 requires LZoytes, making it the most space-expensive step of the algorithm.

To construct then lists, we use a stable counting sort dnusing the S-distance
as the key. The total amount of space used in this part of the algorithm is 3 integer
arrays—one forA, one for them lists, and a temporary array. The fact that we discard
almost all arrays before the next recursion step of our algorithm except the strings, and
that each subsequent step uses only half the space used in the previous step, makes the
construction of then lists in the first iteration the most space consuming stage of our
algorithm.

It is possible to derive an implementation of our algorithm that uses only three integer
arrays of size: and three boolean arrdy&wo of sizen and one of siz¢51). The space
requirement of our algorithm is &2bytes plus%n bits. This compares favorably with
the best space-efficient implementations of linear time suffix tree construction algorithms,

1 The boolean arrays are used to mark bucket boundaries, and to denote the type of each suffix.
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which still require 2@ bytes[2]. Hence, direct linear time construction of suffix arrays
using our algorithm is more space-efficient.

In case the alphabet size is constant, it is possible to further reduce the space require-
ment by eliminating the calculation of the lists in the first iteration. This is possible
because the typ# substrings can be sorted character by character as individual strings
in O(n) time if the alphabet size is constant. This reduces the space required to only
8n bytes plus (n bits for the first iteration. Note that this idea cannot be used in sub-
sequent iterations because the striigto be worked on in the subsequent iterations
will still be based on integer alphabet. So we resort to the traditional implementation
for this and all subsequent iterations. As a result, the space requirement for the com-
plete execution of the algorithm can be reduced tob§tes plus 1252 bits. This is
competitive with Manber and Myers’ @logn) time algorithm for suffix array con-
struction [16], which requires only 8 bytes. In many practical applications, the size
of the alphabet is a small constant. For instance, computational biology applications
deal with DNA and protein sequences, which have alphabet sizes of 4 and 20, respec-
tively.

4. Reducing thesize of T’

In this section, we present an implementation strategy to further reduce the §ize of
Consider the result of sorting all ty@esubstrings off’. Note that a typeS substring is a
prefix of the corresponding typg suffix. Thus, sorting typeS substrings is equivalent to
bucketing types suffixes based on their respective typsubstring prefixes. The bucketing
conforms to the lexicographic ordering of tySesuffixes. The purpose of forming’ and
sorting its suffixes is to determine the sorted order of tysaiffixes that fall into the same
bucket. If a bucket contains only one tyfSesubstring, the position of the corresponding
type S suffix in the sorted order is already known.

Let T/ = b1bs...by,. Consider a maximal substring ...»; (j < m) such that each
by (i <k < j) contains only one typé substring. We can shortelf by replacing each
such maximal substring; . .. b; with its first characteb, . Sincej < m the bucket number
corresponding to ‘$’ is never dropped, and this is needed for subsequent iterations. It is
easy to directly compute the shortened versiorr gfinstead of first computing”’ and
then shortening it. Shortenirly’ will have the effect of eliminating some of the suffixes
of T', and also modifying each suffix that contains a substring that is shortened. We already
noted that the final positions of the eliminated suffixes are already known. It remains to be
shown that the sorted order of other suffixes are not affected by the shortening.

Consider any two suffixes, = by ...b, andT/ = b; ...b,, such that at least one of the
suffixes contains a substring that is shortened. Let0 be the smallest integer such that
eitherby; or by ; (or both) is the beginning of a shortened substring. The first character of
a shortened substring corresponds to a bucket containing only ong sypestring. Hence,
the bucket number occurs nowhere els&inThereforeb; . ; # b, ;, and the sorted order
of by ...b, andb; ... b, is determined by the sorted orderigf. .. by ; andb; ... by ;. In
other words, the comparison of any two suffixes never extends beyond the first character
of a shortened substring.
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5. Related work

In this section we compare our algorithm with some of the other suffix array construc-
tion algorithms. Since the introduction of suffix array by Manber and My} several
algorithms for suffix array construction have been developed. Some of these algorithms are
aimed at reducing the space usage, while others are aimed at reducing the riatitad.
contains the names and descriptions of the algorithms used in our compdiasda.2
lists the space requirement, time complexity, and restrictions on alphabet size. It is imme-
diately clear that space is sacrificed for better time complexity. We also note that for the
case of constant size alphabet, our algorithm has a better runtime, while maintaining sim-
ilar memory usage compared to algorithms by Manber and Myiéis and Larsson and
Sadakan§l5]. Kurtz [14] has developed a space-efficient way of constructing and storing
suffix trees. Although on average it only uses 10.1 bytes per input character, it has a worst
case of 20 bytes per input character. Indeed, some of the techniques used in his implemen-
tation can be applied to our algorithm as well, and this will lead to further reduction of
space in practice.

Note that we have not included a comparison of the space required by other linear time
algorithms[11,13]in Table 2 To achieve optimal space usage for our algorithm, it is very
important that implementation techniques outlined in Sec3iane properly utilized. Due
to the recent discovery of these results, a thorough space analysis of the other two linear
time algorithms is not yet available in the published literature. Our analysis indicates that
our space requirement would be lower than the space required by Park et al.’s algorithm
[13] and is the same as the space required for Kéarkkainen and Sanders’ aldadiih#ll
three algorithms depend on recursively reducing the problem size—to half the original size
for Park et al.’s algorithm, to two thirds of the original size for Karkkdinen and Sanders’

Table 1

Algorithms and their descriptions

Name Description

Manber and Myers Manber and Myers’ original algoritfit6].

Sadakane Larsson and Sadakane’s algorfitsh

Two-stage suffix sort Itoh and Tanaka'’s two-stage suffix sorting algoritioh
Multikey Quicksort Sorting suffixes as individual strings using ternary QuicKdrt
Our algorithm The algorithm presented in this paper.

Table 2

Comparison of different algorithms

Algorithm Space (bytes) Time complexity Alphabet size
Manber and Myers B O(nlogn) Arbitrary
Sadakane 8 O(nlogn) Arbitrary
Two-stage suffix sort ;41 0n?) 1...n
Two-stage suffix sort I O(n2 logn) Arbitrary
Multikey Quicksort 4 O(n? logn) Arbitrary

Our algorithm 12 O(n) 1...n

Our algorithm & O(n) Constant
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algorithm, and to at most half the original size for our algorithm. The worst-case of reduc-
ing the problem size to only half will be realized when the number of type S and type L
suffixes are the same. This, coupled with the reduction technique presented in gction
will significantly reduce the number of levels of recursion required. For example, in an ex-
periment to build a suffix array on the genome=iColiwhich is approximately 4 million

base pairs (characters) long, we found the number of levels of recursion required is only 8
compared to the 22 that would be required by recursively halving.

6. Conclusions

In this paper we present a linear time algorithm for sorting the suffixes of a string over
an integer alphabet, or equivalently, for constructing the suffix array of the string. Our
algorithm can also be used to construct suffix trees in linear time. Apart from being one of
the first direct algorithms for constructing suffix arrays in linear time, the simplicity and
space advantages of our algorithm are likely to make it useful in suffix tree construction
as well. An important feature of our algorithm is that it breaks the string into substrings of
variable sizes, while other linear time algorithms break the string into substrings of a fixed
size. A C++ implementation of our suffix array construction algorithm can be obtained by
contacting the first author.
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