
a

bet of
oduced
ng, and
nd the
ue to
ruction

trees.
hod of
Journal of Discrete Algorithms 3 (2005) 143–156

www.elsevier.com/locate/jd

Space efficient linear time construction of
suffix arrays✩

Pang Koa,∗, Srinivas Alurua,b

a Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
b Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University,

Ames, IA 50011, USA

Available online 15 September 2004

Abstract

We present a linear time algorithm to sort all the suffixes of a string over a large alpha
integers. The sorted order of suffixes of a string is also called suffix array, a data structure intr
by Manber and Myers that has numerous applications in pattern matching, string processi
computational biology. Though the suffix tree of a string can be constructed in linear time a
sorted order of suffixes derived from it, a direct algorithm for suffix sorting is of great interest d
the space requirements of suffix trees. Our result is one of the first linear time suffix array const
algorithms, which improve upon the previously known O(n logn) time direct algorithms for suffix
sorting. It can also be used to derive a different linear time construction algorithm for suffix
Apart from being simple and applicable for alphabets not necessarily of fixed size, this met
constructing suffix trees is more space efficient.
 2004 Elsevier B.V. All rights reserved.

Keywords:Computational biology; Pattern matching; String algorithms; Suffix array; Suffix sorting

✩ Research supported by IBM Faulty Award and NSF under ACI-0203782.
* Corresponding author.

E-mail addresses:kopang@iastate.edu(P. Ko),aluru@iastate.edu(S. Aluru).
1570-8667/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2004.08.002

http://www.elsevier.com/locate/jda
mailto:kopang@iastate.edu
mailto:aluru@iastate.edu


144 P. Ko, S. Aluru / Journal of Discrete Algorithms 3 (2005) 143–156

many
g is a

ets.
ral
f suffix

nber
or
hich
e can
linear

goal is
orithm
dy
ional

uffixes

’

perior.
now

ding
ding all
er

ueries
with
ined
n de-
r
uffix

om-
idate
1. Introduction

Suffix trees and suffix arrays are important fundamental data structures useful in
applications in string processing and computational biology. The suffix tree of a strin
compacted trie of all the suffixes of the string. The suffix tree of a string of lengthn over
an alphabetΣ can be constructed in O(n log|Σ |) time and O(n) space, or in O(n) time
and O(n|Σ |) space[17–19]. These algorithms are suitable for small, fixed size alphab
Subsequently, Farach[6] presented an O(n) time and space algorithm for the more gene
case of constructing suffix trees over integer alphabets. For numerous applications o
trees in string processing and computational biology, see[8].

The suffix array of a string is the lexicographically sorted list of all its suffixes. Ma
and Myers introduced the suffix array data structure[16] as a space-efficient substitute f
suffix trees. Gonnet et al.[7] have also independently developed the suffix array, w
they refer to as the PAT array. As a lexicographic-depth-first traversal of a suffix tre
be used to produce the sorted list of suffixes, suffix arrays can be constructed in
time and space using suffix trees. However, this defeats the whole purpose if the
to avoid suffix trees. Hence, Manber and Myers presented a direct construction alg
that runs in O(n logn) worst-case time and O(n) expected time. Since then, the stu
of algorithms for constructing suffix arrays and for using suffix arrays in computat
biology applications has attracted considerable attention.

The suffix array is often used in conjunction with another array, calledlcp array, contain-
ing the lengths of the longest common prefixes between every pair of consecutive s
in sorted order. Manber and Myers also presented algorithms for constructinglcp array in
O(n logn) worst-case time and O(n) expected time, respectively[16]. More recently, Ka-
sai et al.[12] presented a linear time algorithm for constructing thelcp array directly from
the suffix array. While the classic problem of finding a patternP in a stringT of lengthn

can be solved in O(|P |) time for fixed sizeΣ using a suffix tree ofT , Manber and Myers
suffix array based pattern matching algorithm takes O(|P | + logn) time, without any re-
striction onΣ . Recently, Abouelhoda et al.[2,3] have improved this to O(|P |) time using
additional linear time preprocessing, thus making the suffix array based algorithm su
In fact, many problems involving top-down or bottom-up traversal of suffix trees can
be solved with the same asymptotic run-time bounds using suffix arrays[1–3]. Such prob-
lems include many queries used in computational biology applications including fin
exact matches, maximal repeats, tandem repeats, maximal unique matches and fin
shortest unique substrings. For example, the whole genome alignment tool MUMm[5]
uses the computation of maximal unique matches.

While considerable advances are made in designing optimal algorithms for q
using suffix arrays and for computing auxiliary information that is required along
suffix arrays, the complexity of direct construction algorithms for suffix arrays rema
O(n logn) so far. Several alternative algorithms for suffix array construction have bee
veloped, each improving the previous best algorithm by an additional constant facto[10,
15]. We close this gap by presenting a direct linear time algorithm for constructing s
arrays over integer alphabets. Contemporaneous to our result, Kärkkäinen et al.[11] and
Kim et al. [13] also discovered suffix array construction algorithms with linear time c
plexity. All three algorithms are very different and are important because they eluc
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different properties of strings, which could well be applicable for solving other probl
An important distinguishing feature of our algorithm is that it uses only 8n bytes plus
1.25n bits for a fixed size alphabet. Our algorithm is based on a unique recursive for
tion where the subproblem size is not fixed but is dependent on the properties of the
Recently, Hon et al.[9] discovered a linear time construction algorithm for compres
suffix array.

It is well known that the suffix tree of a string can be constructed from the sorted
of its suffixes and thelcp array[6]. Because thelcp array can be inferred from the suffi
array in linear time[12], our algorithm can also be used to construct suffix trees in li
time for large integer alphabets, and of course, for the special case of fixed size alp
Our algorithm is simpler and more space efficient than Farach’s linear time algorith
constructing suffix trees for integer alphabets. In fact, it is simpler than linear time
tree construction algorithms for fixed size alphabets[17–19]. A noteworthy feature of ou
algorithm is that it does not construct or use suffix links, resulting in additional s
advantage. To the best of our knowledge, all direct suffix tree construction algorithm
achieve linear run-time exploit the use of suffix links.

The remainder of this paper is organized as follows: In Section2, we present our linea
time suffix sorting algorithm. A detailed analysis of the space requirement of our algo
is presented in Section3. An implementation strategy that further improves the run-tim
practice can be found in Section4. We compare our algorithm with other previous work
Section5. Section6 concludes the paper.

2. Suffix sorting algorithm

Consider a stringT = t1t2 . . . tn over the alphabetΣ = {1 . . . n}. Without loss of gener
ality, assume the last character ofT occurs nowhere else inT , and is the lexicographicall
smallest character. We denote this character by ‘$’. LetTi = ti ti+1 . . . tn denote the suffix
of T starting withti . To store the suffixTi , we only store the starting position numberi.
For stringsα andβ, we useα ≺ β to denote thatα is lexicographically smaller thanβ.
Throughout this paper the termsorted orderrefers to lexicographically ascending order

A high level overview of our algorithm is as follows: We classify the suffixes into
types,S andL. Suffix Ti is of typeS if Ti ≺ Ti+1, and is of typeL if Ti+1 ≺ Ti . The
last suffix Tn does not have a next suffix, and is classified as both typeS and typeL.
The positions of the typeS suffixes inT partitions the string into a set of substring
We substitute each of these substrings by its rank among all the substrings and pro
new stringT ′. This new string is then recursively sorted. The suffix array ofT ′ gives the
lexicographic order of all typeS suffixes. Then the lexicographic order of all suffixes c
be deduced from this order.

We now present complete details of our algorithm. The following lemma allows
identification of typeS and typeL suffixes in linear time.

Lemma 1. All suffixes ofT can be classified as either typeS or typeL in O(n) time.

Proof. Consider a suffixTi (i < n).
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Fig. 1. The string “MISSISSIPPI$” and the types of its suffixes.

Case 1: If ti �= ti+1, we only need to compareti andti+1 to determine ifTi is of typeS or
typeL.

Case 2: If ti = ti+1, find the smallestj > i such thattj �= ti .
if tj > ti , then suffixesTi, Ti+1, . . . , Tj−1 are of typeS.
if tj < ti , then suffixesTi, Ti+1, . . . , Tj−1 are of typeL.

Thus, all suffixes can be classified using a left to right scan ofT in O(n) time. �
The type of each suffix of the string MISSISSIPPI$ is shown inFig. 1. An important

property of typeS and typeL suffixes is, if a typeS suffix and a typeL suffix both begin
with the same character, the typeS suffix is always lexicographically greater than the ty
L suffix. The formal proof is presented below.

Lemma 2. A typeS suffix is lexicographically greater than a typeL suffix that begins with
the same first character.

Proof. Suppose a typeS suffix Ti and a typeL suffix Tj are two suffixes that start with th
same characterc. We can writeTi = ckc1α andTj = clc2β, whereck andcl denotes the
characterc repeated fork, l > 0 times, respectively;c1 > c, c2 < c; α andβ are (possibly
empty) strings.

Case 1: If k < l thenc1 is compared to a characterc in cl . Thenc1 > c ⇒ Tj ≺ Ti .
Case 2: If k > l thenc2 is compared to a characterc in ck . Thenc > c2 ⇒ Tj ≺ Ti .
Case 3: If k = l then c1 is compared toc2. Sincec1 > c and c > c2, thenc1 > c2 ⇒

Tj ≺ Ti .

Thus a typeS suffix is lexicographically greater than a typeL suffix that begins with the
same first character.�
Corollary 3. In the suffix array ofT , among all suffixes that start with the same charac
the typeS suffixes appear after the typeL suffixes.

Proof. Follows directly fromLemma 2. �
Let A be an array containing all suffixes ofT , not necessarily in sorted order. LetB be

an array of all suffixes of typeS, sorted in lexicographic order. UsingB, we can compute
the lexicographically sorted order of all suffixes ofT as follows:
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Fig. 2. Illustration of how to obtain the sorted order of all suffixes, from the sorted order of typeS suffixes of the
string MISSISSIPPI$.

(1) Bucket all suffixes ofT according to their first character in arrayA. Each bucke
consists of all suffixes that start with the same character. This step takes O(n) time.

(2) ScanB from right to left. For each suffix encountered in the scan, move the s
to the current end of its bucket inA, and advance the current end by one position
the left. More specifically, the move of a suffix in arrayA to a new position should
be taken as swapping the suffix with the suffix currently occupying the new pos
After the scan ofB is completed, byCorollary 3, all typeS suffixes are in their correc
positions inA. The time taken is O(|B|), which is bounded by O(n).

(3) ScanA from left to right. For each entryA[i], if TA[i]−1 is a typeL suffix, move it to
the current front of its bucket inA, and advance the front of the bucket by one. T
takes O(n) time. At the end of this step,A contains all suffixes ofT in sorted order.

In Fig. 2, the suffix pointed by the arrow is moved to the current front of its bu
when the scan reaches the suffix at the origin of the arrow. The following lemma p
the correctness of the procedure in step 3.

Lemma 4. In step3, when the scan reachesA[i], then suffixTA[i] is already in its sorted
position inA.

Proof. By induction oni. To begin with, the smallest suffix inT must be of typeS and
hence in its correct positionA[1]. By inductive hypothesis, assume thatA[1],A[2], . . . ,
A[i] are the firsti suffixes in sorted order. We now show that when the scan rea
A[i + 1], then the suffix in it, i.e.,TA[i+1] is already in its sorted position. Suppose n
Then there exists a suffix referenced byA[k] (k > i + 1) that should be inA[i + 1] in
sorted order, i.e.,TA[k] ≺ TA[i+1]. As all typeS suffixes are already in correct position
bothTA[k] andTA[i+1] must be of typeL. BecauseA is bucketed by the first character
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the suffixes prior to step 3, and a suffix is never moved out of its bucket,TA[k] andTA[i+1]
must begin with the same character, sayc. Let TA[i+1] = cα andTA[k] = cβ. SinceTA[k]
is typeL, β ≺ TA[k]. FromTA[k] ≺ TA[i+1], β ≺ α. Sinceβ ≺ TA[k], and the correct sorte
position ofTA[k] is A[i + 1], β must occur inA[1] . . .A[i]. Becauseβ ≺ α, TA[k] should
have been moved to the current front of its bucket beforeTA[i+1]. Thus,TA[k] can not occur
to the right ofTA[i+1], a contradiction. �

So far, we showed that if all typeS suffixes are sorted, then the sorted position of
suffixes ofT can be determined in O(n) time. In a similar manner, the sorted position
all suffixes ofT can also be determined from the sorted order of all suffixes of typL.
To do this, we bucket all suffixes ofT based on their first characters into an arrayA. We
then scan the sorted order of typeL suffixes from left to right and determine their corre
positions inA by moving them to the current front of their respective buckets. We
scanA from right to left and whenA[i] is encountered, ifTA[i]−1 is of typeS, it will be
moved to the current end of its bucket.

Once the suffixes ofT are classified into typeS and typeL, we choose to sort thos
type of suffixes which are fewer in number. Without loss of generality, assume that tS

suffixes are fewer. We now show how to recursively sort these suffixes.
Define positioni of T to be a typeS position if the suffixTi is of typeS, and similarly

to be a typeL position if the suffixTi is of typeL. The substringti . . . tj is called a typeS
substring if bothi andj are typeS positions, and every position betweeni andj is a type
L position.

Our goal is to sort all the typeS suffixes inT . To do this we first sort all the typeS
substrings. The sorting generates buckets where all the substrings in a bucket are id
The buckets are numbered using consecutive integers starting from 1. We then gen
new stringT ′ as follows: ScanT from left to right and for each typeS position inT , write
the bucket number of the typeS substring starting from that position. This string of buc
numbers formsT ′. Observe that each typeS suffix in T naturally corresponds to a suffix
the new stringT ′. In Lemma 5, we prove that sorting all typeS suffixes ofT is equivalent
to sorting all suffixes ofT ′. We sortT ′ recursively.

We first show how to sort all the typeS substrings in O(n) time. Consider the arrayA,
consisting of all suffixes ofT bucketed according to their first characters. For each suffiTi ,
define itsS-distanceto be the distance from its starting positioni to the nearest typeS
position to its left (excluding positioni). If no type S position exists to the left, theS-
distanceis defined to be 0. Thus, for each suffix starting on or before the first tyS
position inT , its S-distanceis 0. The typeS substrings are sorted as follows (illustrated
Fig. 3):

(1) For each suffix inA, determine itsS-distance. This is done by scanningT from left
to right, keeping track of the distance from the current position to the neares
S position to the left. While at positioni, the S-distanceof Ti is known and this
distance is recorded in arrayDist. TheS-distanceof Ti is stored inDist[i]. Hence, the
S-distancesfor all suffixes can be recorded in linear time.

(2) Letm be the largestS-distance. Createm lists such that listj (1� j � m) contains all
the suffixes with anS-distanceof j , listed in the order in which they appear in arrayA.
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Fig. 3. Illustration of the sorting of typeS substrings of the string MISSISSIPPI$.

This can be done by scanningA from left to right in linear time, referring toDist[A[i]]
to putTA[i] in the correct list.

(3) We now sort the typeS substrings using the lists created above. The sorting is don
repeated bucketing using one character at a time. To begin with, the bucketing
on first character is determined by the order in which typeS suffixes appear in arrayA.
Suppose the typeS substrings are bucketed according to their firstj −1 characters. To
extend this toj characters, we scan listj . For each suffixTi encountered in the sca
of a bucket of listj , move the typeS substring starting atti−j to the current front of
its bucket, then move the current front to the right by one. After a bucket of listj is
scanned, new bucket boundaries need to be drawn between all the typeS substrings
that have been moved, and the typeS substrings that have not been moved. Beca
the total size of all the lists is O(n), the sorting of typeS substrings only takes O(n)

time.

The sorting of typeS substrings using the above algorithm respects lexicographi
dering of typeS substrings, with the following important exception: If a typeS substring is
the prefix of another typeS substring, the bucket number assigned to the shorter subs
will be larger than the bucket number assigned to the larger substring. This anom
designed on purpose, and is exploited later inLemma 5.

As mentioned before, we now construct a new stringT ′ corresponding to all typeS sub-
strings inT . Each typeS substring is replaced by its bucket number andT ′ is the sequenc
of bucket numbers in the order in which the typeS substrings appear inT . Because ever
typeS suffix in T starts with a typeS substring, there is a natural one-to-one corresp
dence between typeS suffixes ofT and all suffixes ofT ′. Let Ti be a suffix ofT andT ′

i′ be
its corresponding suffix inT ′. Note thatT ′

i′ can be obtained fromTi by replacing every type
S substring inTi with its corresponding bucket number. Similarly,Ti can be obtained from
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i′ by replacing each bucket number with the corresponding substring and removi

duplicate instance of the common character shared by two consecutive typeS substrings.
This is because the last character of a typeS substring is also the first character of the n
typeS substring alongT .

Lemma 5. Let Ti and Tj be two suffixes ofT and letT ′
i′ and T ′

j ′ be the corresponding

suffixes ofT ′. Then,Ti ≺ Tj ⇔ T ′
i′ ≺ T ′

j ′ .

Proof. We first show thatT ′
i′ ≺ T ′

j ′ ⇒ Ti ≺ Tj . The prefixes ofTi andTj corresponding to
the longest common prefix ofT ′

i′ andT ′
j ′ must be identical. This is because if two buc

numbers are the same, then the corresponding substrings must be the same. Con
leftmost position in whichT ′

i′ and T ′
j ′ differ. Such a position exists and the charact

(bucket numbers) ofT ′
i′ andT ′

j ′ in that position determine which ofT ′
i′ andT ′

j ′ is lexico-
graphically smaller. Letk be the bucket number inT ′

i′ andl be the bucket number inT ′
j ′ at

that position. SinceT ′
i′ ≺ T ′

j ′ , it is clear thatk < l. Let α be the substring corresponding
k andβ be the substring corresponding tol. Note thatα andβ can be of different lengths
but α cannot be a proper prefix ofβ. This is because the bucket number correspondin
the prefix must be larger, but we know thatk < l.

Case 1: β is not a prefix ofα. In this case,k < l ⇒ α ≺ β, which impliesTi ≺ Tj .
Case 2: β is a proper prefix ofα. Let the last character ofβ be c. The corresponding

position inT is a typeS position. The position of the correspondingc in α must
be a typeL position.

Since the two suffixes that begin at these positions start with the same c
ter, byCorollary 3, the typeL suffix must be lexicographically smaller then t
typeS suffix. Thus,Ti ≺ Tj .

From the one-to-one correspondence between the suffixes ofT ′ and the typeS suffixes
of T , it also follows thatTi ≺ Tj ⇒ T ′

i′ ≺ T ′
j ′ . �

Corollary 6. The sorted order of the suffixes ofT ′ determines the sorted order of the ty
S suffixes ofT .

Proof. Let T ′
i′1
, T ′

i′2
, T ′

i′3
, . . . be the sorted order of suffixes ofT ′. Let Ti1, Ti2, Ti3, . . . be the

sequence obtained by replacing each suffixT ′
i′k

with the corresponding typeS suffix Tik .

Then,Ti1, Ti2, Ti3, . . . is the sorted order of typeS suffixes ofT . The proof follows directly
from Lemma 5. �

Hence, the problem of sorting the typeS suffixes ofT reduces to the problem of sortin
all suffixes ofT ′. Note that the characters ofT ′ are consecutive integers starting from
Hence our suffix sorting algorithm can be recursively applied toT ′.

If the stringT has fewer typeL suffixes than typeS suffixes, the typeL suffixes are
sorted using a similar procedure—call the substringti , . . . , tj a typeL substring if both
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i and j are typeL positions, and every position betweeni and j is a typeS position.
Now sort all the typeL substrings and construct the corresponding stringT ′ obtained by
replacing each typeL substring with its bucket number. SortingT ′ gives the sorted orde
of typeL suffixes.

Thus, the problem of sorting the suffixes of a stringT of lengthn can be reduced t
the problem of sorting the suffixes of a stringT ′ of size at most�n

2�, and O(n) additional
work. This leads to the recurrence

T (n) = T

(⌈
n

2

⌉)
+ O(n).

Theorem 7. The suffixes of a string of lengthn can be lexicographically sorted inO(n)

time and space.

3. Space requirement

We now consider the space requirement of our suffix array construction algorithm
algorithm can be decomposed into the following parts:

(1) Classifying the types of all suffixes.
(2) Sorting all suffixes according to their first character.
(3) Constructingm lists according to theS-distanceof each suffix, and the sorted order

their first character.
(4) Sorting all typeS substrings by repeated bucketing using them lists.
(5) Constructing a new stringT ′ according to the bucket numbers of typeS substrings.
(6) Recursively applying our algorithm, and obtaining the sorted order of typeS suffixes.
(7) Constructing the suffix array from the sorted order of all typeS suffixes.

Except for step 4, the calculation of space requirement for each of the steps listed
is straightforward, and offers little room for improvement by using a more efficient
plementation. Therefore we limit the focus of our analysis to efficient implementati
step 4.

As mentioned previously, the sorting of all typeS substrings is done by repeated buc
eting using one character at a time. Suppose the typeS substrings are bucketed accordi
to their firstj − 1 characters. To extend this toj characters, we scan listj . For each suffix
Ti encountered, move the typeS substring starting atti−j to the current front of its bucke
and advance the current front by one.

In Manber and Myers’ algorithm[16], the suffixes are also moved to the front of th
respective buckets in each iteration. However, their space-efficient scheme does no
to our algorithm because every suffix will be moved at most once in each iteration o
algorithm. On the other hand, a typeS substring may be moved multiple times in ea
recursion step of our algorithm. In order to achieve O(n) runtime, we must be able t
locate the current front of the bucket containing a given typeS substring in constant time

Let arrayC be an array containing all typeS substrings, bucketed according to th
first characters. A typeS substring is denoted by its starting position inT . Array C can be
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generated by copying from arrayA computed in step 2. LetR be an array of sizen, such
that if C[i] = j , thenR[j ] = k wherek is the position of the end of the bucket containingj .
R can be constructed by a right to left scan ofC. Let lptr be an array of the same size asC,
such that ifi is the last position of a bucket inC, thenlptr[i] = j wherej is the current
front of that bucket. For all other positionsk, lptr[k] = −1.

Each of them lists is itself bucketed according to the first character of the suffi
As previously mentioned, for each suffixTi encountered in the scan of a bucket in listj ,
type S substring starting atti−j is moved to the current front of its bucket. The buc
containingti−j can be found by referring toR[i − j ], and the current front of its bucke
can then be found by referring tolptr[R[i − j ]]. The current front is advanced by incr
mentinglptr[R[i − j ]]. Note that the effect of moving a typeS substring starting atti−j is
achieved by adjusting the values ofR[i − j ] andlptr[R[i − j ]] instead of actually moving
it in C.

After scanning an entire bucket of listj , all the elements ofC that have been move
should be in a new bucket in front of their old bucket. To accomplish this, we note th
lptr at the end of each old bucket inC is pointing to the current front of the old bucke
which is immediately next to the last element of the new bucket. Thus the bucket
j is scanned again. For suffixTi encountered in the scan, typeS substring starting a
ti−j is moved into the new bucket by first settingR[i − j ] = lptr[R[i − j ]] − 1, then we
set lptr[R[i − j ]] = R[i − j ] if lptr[R[i − j ]] = −1 or decrementlptr[R[i − j ]] by one
otherwise.

It is easy to see that all the values ofR andlptr are set correctly at the end of the seco
scan. The amount of work done in this step is proportional to the size of all them lists,
which is O(n). Two integer arrays of sizen and two integer arrays of size at most�n

2� are
used. Assuming each integer representation takes 4 bytes of space, the total space
this step is 12n bytes. Note that it is not necessary to actually move the typeS substrings in
C as the final positions of typeS substrings after sorting can be deduced fromR. In fact,
we constructT ′ directly usingR. Array C is only needed to initializeR andlptr . We can
initialize R from C, then discardC, and initializelptr from R, thus further reducing th
space usage to 10n bytes. However, this reduction is not necessary as constructionm

lists in step 3 requires 12n bytes, making it the most space-expensive step of the algor
To construct them lists, we use a stable counting sort onA using theS-distance

as the key. The total amount of space used in this part of the algorithm is 3 in
arrays—one forA, one for them lists, and a temporary array. The fact that we disc
almost all arrays before the next recursion step of our algorithm except the string
that each subsequent step uses only half the space used in the previous step, m
construction of them lists in the first iteration the most space consuming stage of
algorithm.

It is possible to derive an implementation of our algorithm that uses only three in
arrays of sizen and three boolean arrays1 (two of sizen and one of size�n

2�). The space
requirement of our algorithm is 12n bytes plus3

2n bits. This compares favorably wit
the best space-efficient implementations of linear time suffix tree construction algor

1 The boolean arrays are used to mark bucket boundaries, and to denote the type of each suffix.
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which still require 20n bytes[2]. Hence, direct linear time construction of suffix arra
using our algorithm is more space-efficient.

In case the alphabet size is constant, it is possible to further reduce the space r
ment by eliminating the calculation of them lists in the first iteration. This is possib
because the typeS substrings can be sorted character by character as individual s
in O(n) time if the alphabet size is constant. This reduces the space required to
8n bytes plus 0.5n bits for the first iteration. Note that this idea cannot be used in
sequent iterations because the stringT ′ to be worked on in the subsequent iteratio
will still be based on integer alphabet. So we resort to the traditional implemen
for this and all subsequent iterations. As a result, the space requirement for the
plete execution of the algorithm can be reduced to 8n bytes plus 1.25n bits. This is
competitive with Manber and Myers’ O(n logn) time algorithm for suffix array con
struction [16], which requires only 8n bytes. In many practical applications, the s
of the alphabet is a small constant. For instance, computational biology applic
deal with DNA and protein sequences, which have alphabet sizes of 4 and 20, r
tively.

4. Reducing the size of T ′

In this section, we present an implementation strategy to further reduce the sizeT ′.
Consider the result of sorting all typeS substrings ofT . Note that a typeS substring is a
prefix of the corresponding typeS suffix. Thus, sorting typeS substrings is equivalent t
bucketing typeS suffixes based on their respective typeS substring prefixes. The bucketin
conforms to the lexicographic ordering of typeS suffixes. The purpose of formingT ′ and
sorting its suffixes is to determine the sorted order of typeS suffixes that fall into the sam
bucket. If a bucket contains only one typeS substring, the position of the correspondi
typeS suffix in the sorted order is already known.

Let T ′ = b1b2 . . . bm. Consider a maximal substringbi . . . bj (j < m) such that each
bk (i � k � j ) contains only one typeS substring. We can shortenT ′ by replacing each
such maximal substringbi . . . bj with its first characterbi . Sincej < m the bucket numbe
corresponding to ‘$’ is never dropped, and this is needed for subsequent iteration
easy to directly compute the shortened version ofT ′, instead of first computingT ′ and
then shortening it. ShorteningT ′ will have the effect of eliminating some of the suffix
of T ′, and also modifying each suffix that contains a substring that is shortened. We a
noted that the final positions of the eliminated suffixes are already known. It remains
shown that the sorted order of other suffixes are not affected by the shortening.

Consider any two suffixesT ′
k = bk . . . bm andT ′

l = bl . . . bm, such that at least one of th
suffixes contains a substring that is shortened. Letj � 0 be the smallest integer such th
eitherbk+j or bl+j (or both) is the beginning of a shortened substring. The first charac
a shortened substring corresponds to a bucket containing only one typeS substring. Hence
the bucket number occurs nowhere else inT ′. Thereforebk+j �= bl+j , and the sorted orde
of bk . . . bm andbl . . . bm is determined by the sorted order ofbk . . . bk+j andbl . . . bl+j . In
other words, the comparison of any two suffixes never extends beyond the first ch
of a shortened substring.
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5. Related work

In this section we compare our algorithm with some of the other suffix array cons
tion algorithms. Since the introduction of suffix array by Manber and Myers[16], several
algorithms for suffix array construction have been developed. Some of these algorith
aimed at reducing the space usage, while others are aimed at reducing the runtime.Table 1
contains the names and descriptions of the algorithms used in our comparison.Table 2
lists the space requirement, time complexity, and restrictions on alphabet size. It is
diately clear that space is sacrificed for better time complexity. We also note that f
case of constant size alphabet, our algorithm has a better runtime, while maintainin
ilar memory usage compared to algorithms by Manber and Myers[16], and Larsson an
Sadakane[15]. Kurtz [14] has developed a space-efficient way of constructing and sto
suffix trees. Although on average it only uses 10.1 bytes per input character, it has a
case of 20 bytes per input character. Indeed, some of the techniques used in his imp
tation can be applied to our algorithm as well, and this will lead to further reductio
space in practice.

Note that we have not included a comparison of the space required by other linea
algorithms[11,13] in Table 2. To achieve optimal space usage for our algorithm, it is v
important that implementation techniques outlined in Section3 are properly utilized. Due
to the recent discovery of these results, a thorough space analysis of the other two
time algorithms is not yet available in the published literature. Our analysis indicate
our space requirement would be lower than the space required by Park et al.’s alg
[13] and is the same as the space required for Kärkkäinen and Sanders’ algorithm[11]. All
three algorithms depend on recursively reducing the problem size—to half the origin
for Park et al.’s algorithm, to two thirds of the original size for Kärkkäinen and Sand

Table 1
Algorithms and their descriptions

Name Description

Manber and Myers Manber and Myers’ original algorithm[16].
Sadakane Larsson and Sadakane’s algorithm[15].
Two-stage suffix sort Itoh and Tanaka’s two-stage suffix sorting algorithm[10].
Multikey Quicksort Sorting suffixes as individual strings using ternary Quicksort[4].
Our algorithm The algorithm presented in this paper.

Table 2
Comparison of different algorithms

Algorithm Space (bytes) Time complexity Alphabet si

Manber and Myers 8n O(n logn) Arbitrary
Sadakane 8n O(n logn) Arbitrary
Two-stage suffix sort 4n O(n2) 1. . . n

Two-stage suffix sort 4n O(n2 logn) Arbitrary
Multikey Quicksort 4n O(n2 logn) Arbitrary
Our algorithm 12n O(n) 1. . . n

Our algorithm 8n O(n) Constant
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algorithm, and to at most half the original size for our algorithm. The worst-case of re
ing the problem size to only half will be realized when the number of type S and ty
suffixes are the same. This, coupled with the reduction technique presented in Se4,
will significantly reduce the number of levels of recursion required. For example, in a
periment to build a suffix array on the genome ofE. Coli which is approximately 4 million
base pairs (characters) long, we found the number of levels of recursion required is
compared to the 22 that would be required by recursively halving.

6. Conclusions

In this paper we present a linear time algorithm for sorting the suffixes of a string
an integer alphabet, or equivalently, for constructing the suffix array of the string
algorithm can also be used to construct suffix trees in linear time. Apart from being o
the first direct algorithms for constructing suffix arrays in linear time, the simplicity
space advantages of our algorithm are likely to make it useful in suffix tree constru
as well. An important feature of our algorithm is that it breaks the string into substrin
variable sizes, while other linear time algorithms break the string into substrings of a
size. A C++ implementation of our suffix array construction algorithm can be obtaine
contacting the first author.
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