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Today

• Steiner trees: what and why?
• NP-completeness
• Approximation algorithms
• Preprocessing
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Steiner tree

• Given: connected undirected graph
G=(V,E), length for each edge l(e) Î N, set 
of vertices N: terminals

• Question: find a subtree T of G, such that 
each vertex of N is on T and the total length 
of T is as small as possible
– Steiner tree spanning N
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Variants

• Points in the plane
• Vertex weights
• Directed graphs
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Applications

• Wire routing of VLSI
• Customer’s bill for renting communication 

networks in the US
• Other network design and facility location 

problems
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Special cases

• |N| = 1: trivial
• |N| = 2: shortest path
• N = V: minimum spanning tree
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NP-completeness

• Decision version is NP-complete
• Vertex cover

= terminal
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Proof of reduction

• Membership of ST in NP: trivial
• Hardness: take instance G=(V,E), k of Vertex 

Cover
• Build G’ by subdividing each edge
• Set N = set of new vertices
• All edges length 1
• G’ has Steiner Tree with |E|+k – 1 edges, if and 

only if G has vertex cover with k vertices
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Approximation algorithms

• Several different algorithms that guarantee 
ratio 2 (or, more precise: 2 – 2/n).

• Shortest paths heuristic
– Ration 2 – 2/n (no proof here)
– Bases on Prim’s minimum spanning tree 

algorithm
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Shortest paths heuristic

• Start with a subtree T consisting of one 
terminal 

• While T does not span all terminals
– Select a terminal x not in T that is closest to a 

vertex in T. 
– Add to T the shortest path that connects x with 

T.
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Improving the shortest paths 
heuristic

• Take the solution T from the heuristic
• Build the subgraph of G, induced by the vertices 

in T
• Compute a minimum spanning tree of this 

subgraph
• Repeat

– Delete non-terminals of degree 1 from this spanning 
tree

– Until there are no such non-terminals
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Distance networks

• Distance network of G=(V,E) (induced by X)
• Take complete graph with vertex set X

– Cost of edge {v,w} in distance network is length 
shortest path from v to w in G.

• For set of terminals N, the minimum cost of a 
Steiner tree in G equals the minimum cost of a 
Steiner tree in the distance network of G (induced 
by V).
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Distance network heuristic

• Construct the distance network DG(N) (induced by N)
• Determine a minimum spanning tree of DG(N)
• Replace each edge in the minimum spanning tree by a 

corresponding shortest path.
– Let TD be the corresponding subgraph of G
– It can be done such that TD is a tree

• Make the subgraph of G induced by the vertices in TD

• Compute a minimum spanning tree of this subgraph
• Remove non-terminals of degree 1 from this spanning tree, 

until there are no such non-terminals.
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Distance network heuristic has 
ratio 2

• Look at optimal Steiner tree T*
• Take closed walk L around T* visiting each edge twice
• See this as a collection of paths between successive 

terminals
• Delete the longest of these, and we get a walk L’; cost of L’ 
£ cost(T*) * (2 – 2/r)

• cost(TD) £ cost(L’).
– L’ is a spanning tree in DG(N)

• Final network has cost at most cost(TD).
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Example where bound is met
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Upgrading heuristic
• W = Æ ; w = maxint; D = DG(N)
• repeat

– Identify set of three terminals A={a,b,c} such that w= 
cost(TD(N))  – cost(TD’(N’)) – cost(TG(A)) is as large 
as possible

• D’ (N’) is obtained from D (N) by contracting A to one vertex
• TD(N) denotes min spanning tree of D
• TG(A) denotes min steiner tree in G with terminals A

– if (w = = 0) then apply distance network heuristic with 
terminal set W È N; stop

– else add to W the non-terminal of degree 3 in TG(A); 
D=D’
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On upgrading heuristic

• Correctness: when no non-terminal vertex 
of degree 3 in TG(A), then w=0
– TD(N) can be constructed using edges of the 

other two
• Ratio: 11/7
• Other method:

– +- 1.55 (Robins, Zelikowsky, 2000)
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Small number of terminals

• Suppose |N|= r is small.
• Compute distance network DG(V)
• There is a minimum cost Steiner tree in DG(V) that 

contains at most r – 2 non-terminals.
– Any Steiner tree has one that is not longer without non-

terminal vertices of degree 1 and 2
– A tree with r leaves and internal vertices of degree at 

least 3 has at most r – 2 internal vertices
• Polynomial time algorithm for Steiner tree when 

we have O(1) terminals.
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Solving O(1) terminals

• Polynomial time algorithm for Steiner tree when 
we have O(1) terminals:
– Enumerate all sets W of at most r – 2 non-terminals 
– For each W, find a minimum spanning tree in the 

distance network of N È W
– Take the best over all these solutions

• Takes polynomial time for fixed r.
• Heuristics to do this more clever?
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Simple preprocessing

• Steiner tree can be solved separately on each 
biconnected component

• Non terminals of degree at most 2:
– Reduce graph:

• Delete non-terminal of degree 1
• Connect neighbors of non-terminals of degree 2 

– Edge length is sum of lengths of 2 edges

• Long edges can be deleted
– If l(v,w) > d(v,w) then delete edge {v,w}.
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Bottleneck Steiner distance

• Path between v and w can be seen as number of 
successive elementary paths
– Pieces ending/starting at v, w or terminal

• Steiner distance of path: length of largest 
elementary path

• Bottleneck Steiner distance: minimum Steiner 
distance over all paths between v and w

• Can be computed with modification of shortest 
paths algorithm
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Reducing non-terminals

• Consider non-terminal z. Consider network B(z), with 
vertex set N[z] and lengths the bottleneck Steiner 
distances. 

• Write B(z)[W] for subnetwork of B(z) induced by W.
• Lemma. If for every subset W of N(z) of size at least 3, the 

cost of the minimum spanning tree of B(z)[W] is at most 
the cost of the edges {z,w} over all w Î W, then

z has degree at most 2 in at least one minimum cost 
Steiner Tree
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Use of lemma

• Remove z
• For pairs of neighbors v, w of z

– If {v,w} Î E, set length of edge to minimum of 
cost(v,w), cost(v,z)+cost(z,w)

– Otherwise, add edge {v,w} with cost 
cost(v,z)+cost(z,w)
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Long edges

• If d(v,w) < cost(v,w), then edge {v,w} can be 
removed.

• If d(v,w) = cost(v,w), and there is a shortest 
path not via edge {v,w}, then edge can be 
removed.
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Paths with one terminal

Suppose {v,w} is an edge, and there is a 
terminal z with cost(v,w) > 
max(d(v,z),d(w,z)) then {v,w} can be 
removed.
– A Steiner tree with {v,w} can be improved: how 

can we repair a Steiner tree – {v,w}?
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PTm-test (paths with many 
terminals)

• Let b(v,w) the bottleneck Steiner distance from v to w.
• If cost(v,w) > b(v,w) then edge {v,w} can be removed.
• Proof.

– Consider Steiner tree T1 with such edge {v,w}.
– Look at T1 – {v,w}. Splits in two trees T2 and T3.
– Consider bottleneck shortest path from v to w.
– Take elementary path P0 with one edge in T2 and T3.
– Length of P0 at most b(v,w).
– T1 – {v,w}+ P0 has length less than T1 and spans all terminals
– Take subgraph of P0 that spans all terminals and is a tree
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Polynomial solvable cases

• When bounded treewidth
• E.g., for series parallel graphs

– Compute for part with terminals s and t
• Minimum cost subtree in part spanning s and t
• Minimum cost subtree in part spanning s, but not t
• Minimum cost subtree in part spanning t, but not s
• Minimum cost subtree in part spanning neither s and t
• Minimum cost of two subtrees, one spanning s and one 

spanning t

• Strongly chordal graphs with unit costs


