Solving Divide-and-Conquer Recurrences
Victor Adamchik

A divide-and-conquer algorithm consists of three steps:

. dividing a problem into smaller subproblems
. solving (recursively) each subproblem
. then combining solutions to subproblems to get solution to original problem

We use recurrences to analyze the running time of such algorithms. Sdppisséhe
number of steps in the worst case needed to solve the problem of &igeus split a
problem intoa> 1 subproblems, each of which is of the input szhereb>1.

Observe, that the number of subprobleams not necessarily equal ko The total number

of stepsT, is obtained by all steps needed to solve smaller subprobigmplus the
number needed to combine solutions into a final one. The following equation is called
divide-and-conquer recurrenpglation

As an example, consider the mergesort:
-divide the input in half
-recursively sort the two halves
-combine the two sorted subsequences by merging them.

Divide the data in half

(9342213105872

9342211310587 2

"4 N

934221 3105872
l Sort each half.
134922 2357810

& Merge the halves to J
obtain the sorted data
1233457891022
Let T(n) be worst-case runtime on a sequenae kdys:
If n=1, thenT(n) = ®(1) constant time
If n> 1, thenT(n) = 2T(n/2) + B(N)

here®(n) is time to do the merge. Then

15-451: Algorithm Design and Analysis

Other examples of divide and conquer algorithms: quicksort, integer multiphcati
matrix multiplication, fast Fourier trnsform, finding conver hull and more.

There are several techniques of solving such recurrence equations:

. the iteration method
. the tree method
. the master-theorem method
. guess-and-verify
= Tree method

We could visualize the recursion as a tree, where each node representsigerealir
The root is the initial call. Leaves correspond to the exit condition. We cansuofee the
recurrence by looking at the structure of the tree. To illustrate, we take thmplexa

T(n) = 2T(2)+n2
TH=1

Here is aecursion tre¢hat diagrams the recursive function calls

T(n/2) T(n/2)

NN

T(n/4) T(n/4) T(n/4) T(n/4)

T(1) ()
Using a recursion tree we can model the time of a recursive execution iog wte size
of the problem in each node.

(n/2)2 (n/2)2
(/4% | | (n/ay (ay | [(va)

1

1

Using a recursion tree we can model the time of a recursive execution iog wte size
of the problem in each node.

-

(n/2)2 (n/2)2 n2/2
(n/4)2 (n/4)2 (n/4)2 (I"I/4)2 ns/4

The last level corresponds to the initial condition of the recurrence. Since thatweach
leaf is constant, the total work at all leaves is equal to the number of leavesjsvhich

2h — 2Iog2n -n
To find the total time (for the whole tree), we must add up all the terms

1 1 1 —1+log, n 1 k
T(n)=n+n2(1+—+—+—+...)=n+n2 Z (—)
2 4 8 — \2

The sum is easily computed by means of the geometric series

h
2%

k=0

Xh+1 -1

x—1

X+1

This yeilds

15-451: Algorithm Design and Analysis

T(n)=2n’-2n+n = 2n’—n

Check withMathematica
RSolve[{T[n] == 2T[n/2] + n?, T[1]==1}, T[n], n]

{({TN] >n (-1+2n)}}

Example. Solve the recurrence

T(n) = 3T(2)+n

(ni6]|[n16] (nr16])](n16] (nr16][n/16]

The work at all levels is

3 9
n(1+—+—+...)
4 16

Since the height is Ig@, the tree has'®:" leaves. Hence, the total work is given by

—-1+log,n

k
Tm=n > (Z) + 3°%%"T(1)

k=0
By means of the geometric series and taking into account

3log4n — rllog43
the above sum yields
T(n) = 4n —4n°%34 n°%3T(1) = O(n)
m TheMaster Theorem
The master theorem solves recurrences of the form

T(n) = aT(E)+ f(n)

for a wide variety of functionf(n) anda= 1, b> 1. In this section we will outline the

main idea. Here is the recursive tree for the above equation

[f(nsz }]m[fmsz }] (fmszj]m[fmsz J] (f{nszjju[f(m’bz,}]

It is easy to see that the tree @9 " leaves. Indeed, since the height is,logand the

tree branching factor & the number of leaves is

Iogan 1
ah = alOgbn = a@ = n@ = nlOgba

Summing up values at each level, gives
n n
T(n)=f(n) + af(—)+a2 f(_)_,_ L no%aT(D)
b b2

Therefore, the solution is

—1+log, n

T(n) = n°%aT(1) + Z a"f(ﬂ)

k
k=0 b

Now we need to compare the asymptotic behaviof @) with n'°%2. There are three
possible cases.

@(nlogb a) if f(n)= O(nlogb a)
T(n) = {@(n“’gb“ log“tn) if f(n)=©(n°%2log*n), k=0
o(f(n) if f(n)=Q(n'°%3)

The following examples demonstrate the theorem.

Casel T(n)=4T(3)+n

We havef(n) =n and n®%2 = n°%* = n2, thereforef (n) = O(n?). Then the solution is
T(n) = ©(n?) by case 1.

Case2. T(n) = 4T(g) +n
In this casef (n) = n? and f (n) = ©(n?). Then T(n) = ©(n?logn) by case 2.
Case3. T() = 4T(3)+n’

In this casef (n) = n® and f (n) = Q(n°%?) = O(n?). ThenT(n) = O(n®) by case 3.

15-451: Algorithm Design and Analysis

Karatsuba Algorithm

m Multiplication of largeintegers

The brute force approach ("grammar school" method)
123

We say that multiplication of two-digits integers has time complexity at w&)ﬁnz).

We develop an algorithm that has better asymptotic complexity. The ideaed bas
divide-and-conquer technique.

Consider the above integers and split each of them in two parts
123 =12 * 10 + 3

45 = 4 * 10 + 5
and then multiply them:
123*45 = (12*10 + 3)(4*10 + 5) =
12 %4 %102+ (12%5+4%3) x10 + 3%5
In general, the integer which hasligits can be represented as

num=x % 10" +vy

where
n
m:floor(—)
2
.. (N
X:CGI|IH<—)
2
oo 3)
= floor| —
y 2
Example,

154517766 = 15451 * 10* + 7766

Consider twan-digits numbers

numy, = X3 *10° + X
num = y1 % 10° + yp
Their product is

NUMy * NUME = X % Yq % 107P + (Xq # Yo + Xo * Y1) * 10P + Xo * Yo

Just looking at this general formula you can say that just instead of one natitpliove
have 4.

Where is the advantage?

numbersx;, Xo andyi, Yo have twice less digits.

The wor st-case complexity

Let T(n) denote the number of digit multiplications needed to multiply veldgits num-
bers.

The recurrence (since the algorithm does 4 multiplications on each step)

T(n) =4T(3)+0M), T(c) = 1
Note, we ignore multiplications by a base!!! Its solution is given by
T(n) = 4°%" = n?

The algorithm is still quadratic!

The Karatsuba Algorithm
1962, Anatolii Karatsuba, Russia.
NUMY % NUM = Xg * Yp % 10PP 4+ (Xq # Yo + Xo # Y1) * 10P + Xo * Vo

The goal is to decrease the number of multiplications from 4 to 3.
We can do this by observing that

(X1 +Xo) * (Y1 + Yo) = Xy # Y1 + Xo* Yo+ (X1 * Yo + Xo * Y1)
It follows that
UMy = NUMp = X% Y1 10°P+ (0 +%0) # (Y2 +Y0) =X # Y1 = X Yo)+ 10° + X0+ o

and it is only 3 multiplications (see it ?).
The total number of multiplications is given by (we ignore multiplications by a base)

T(n)=3T(3)+0m), T()=1

Its solution is

15-451: Algorithm Design and Analysis

T(n) = 3log2n — rlIogzs = nioE-

m Toom-Cook 3-Way Multiplication

1963, A.L.Toom, Russia.
1966, Cook, Harvard, Ph.D Thesis

The key idea of the algorithm is to divide a large integer into 3 parts (rahteR} of size
approximatelyn/3 and then multiply those parts.

Here is the equation of for the total number of multiplications
n
T(n) = 9T(§) + O(n), T =1

and the solution
T(n)=9"%" = n?

Let us reduce the number of multiplications by one
n
T(n) = 8T(§) + O(n)

T(n) = 8'093“ — n|°938 — nt-8&-
No advantage. This does not improve the previous algorithm, that rois-at-)
How many multiplication should we eliminate?

Let us consider that equation in a general form, where paramet@ris arbitrary
n
T(n) = pT(g) +O(n)

T(n) = pIog3n — nIog3 p
Therefore, the new algoritnm will be faster tlﬁ(rml-E’E) if we reduce the number of multi-
plications to five
T(n) = 5|ogsn — n|°935 = ntA47-
This is an improvement over Karatsuba.
Is it possible to reduce a number of multiplications to 5?

Yes, it follows from this system of equations:

X0 Yo = Zo

12(x1 Yo+ Xo Y1) =821 -2, -8Z3+ 24

24(Xo Yo+ X1 Y1+ X ¥2) = —30Zp+ 1621 — 2, + 1623 — 24
12 y1+X1Y2) = -2Z1+Zo+ 22324

24 %, Yo = 6Z0—-4721+72,—473+274

where

Zo =X Yo

Z1 =X+ X1 +X2) (Yot Y1+ Y2)
Zy=(Xo+2X +4X) (Yo+2y1+4Y2)
Zz3=(Xo— Xy +X2) (Yo— Y1+ ¥2)
Zy=Xo— 2% +4X) (Yo—2Yy1+4Y2)

m Further Generalization

It is possible to developfaster algorithm by increasing the number of splits.

Let us consider a 4-way splitting. How many multiplications should we have onteach s
so this algorithm will outperform the 3-way splitting?

T(n) = pT(g) + O(n)

T(n) = p'°%" = n'o% P
We find parametep from
log, p < log;5
which yields
p=7

The following table demonstrates a relationship between splits and the numberngfaault
tions:

split number of *
2 3
3 5
4 7

Intuitively we see that thie-way split require k — 1 multiplications.
This means that instead k# multiplications we do only R— 1.

The recurrence equation for the total number of multiplication is given by
n
TN = 2k-1) T(E) +0(n)
and its solution is

T(n) = 2k — 1)'°%" = nlog2k-1)

Here is the sequence of tkavay splits wherk runs from 2 to 10:

15-451: Algorithm Design and Analysis

nl.58, nl.46, n1.407 n1.36, nl.33, nl.31, n1.307 n1.28, r-11.27...

We can prove that asymptotically multiplication of twaligits numbers require@(n“E)
multiplications, where — 0.

Note, we will NEVER get a linear performance (prove this!)

Is it always possible to find suchk2 1 multiplications?

Consider two polynomials &f— 1 degree

polyn, = a1 X1 +a o X2+ . +ay X+ ag

polyn, = by_1 X1 + by % X2 + ...+ by % X+ bg
when we multiply them we get a polynomial df 2 2 degree
polyn, = polyn, = ay_1 by_1 * x2K2

The above polynomial has exacthk 2 1 coefficients, therefore it's uniquely defined by
2k —1 values.

+ ... +(@1bg+brag)«X + aghg

