
Home Archive

Solving 2-List Coloring (by
Reducing to 2-SAT)
Wednesday, 23 Mar 2016

This article is rendered using the MathJax JavaScript

library. A PDF version is available here.

Introduction

The 2-LIST COLORING problem consists in �nding a coloring

of a graph where each node has a

set of possible colors assigned to it such that

. That is, each node has a list of two colors that

we can use in a coloring.

In order to solve this problem, we will introduce the 2-SAT

problem, to which we can reduce 2-LIST COLORING. We can

then solve an instance of 2-SAT in polynomial time and

obtain an answer that is equivalent to the answer of our

original problem.

As we know, the COLORING problem is NP-Complete.

However, when we restrict the possible colors that we can

use to a list of two colors per node, there is a polynomial

time solution.

2-SAT Problem

The general SAT problem consists in determining if a

Boolean formula with restrictions on its variables can be

assigned some set of values such that it evaluates to true.

G = (V ,E) v ∈ V (G)

C(v)

|C(v)| = 2

https://www.santi.cf/index.html
https://www.santi.cf/blog/archives.html
https://www.santi.cf/blog/solving-2-list-coloring-by-reducing-to-2-sat.html
https://mathjax.org/
https://www.santi.cf/files/cs/2-List-Coloring.pdf

Equivalently, it is �nding out whether the formula isn’t a

contingency—a formula that always evaluates to false. (In

that case, it could make sense to replace the whole

formula with a constant.)

The 2-SAT problem is a special case of SAT where each

clause contains only two terms. For example, an instance

of 2-SAT could be: ; or

.

Complexity

While the SAT problem is NP-Complete, there are several

algorithms that solve 2-SAT in polynomial time. One of

those algorithms is Aspvall, Plass and Tarjan’s

algorithm.

Aspvall, Plass and Tarjan’s Algorithm

This algorithm [0] works by �nding the strongly

connected components of a digraph that is constructed

from the input formula. Strongly connected components

are digraphs’ counterpart of connected components, with

the added requirement that nodes be reachable in both

directions. That means that for any pair of nodes and

in a strongly connected component there is a path

and another path .

The digraph that we construct from the input formula is

called an implication graph and it consists of one node

for each term (a variable and its negation are di�erent

nodes), and one edge for each implication (pointing in that

same direction). So, for example, if the formula includes

the clause , the digraph has

and .

(a ∨ b) ∧ (c ∨ d) ∧ (e ∨ f)

(a ⇒ b) ∧ (c ⇒ d)

u v

u → v

v → u

(a ⇒ ¬b) G {a, ¬b} ∈ V (G)

(a, ¬b) ∈ E(G)

If a variable and its negation are in the same connected

component there is a cycle of implications that includes

them. That would imply that and . In

that case there is no possible assigment that satis�es the

formula, because we cannot assign and the

same value.

In order to �nd those strongly connected components,

APT’s algorithm uses another algorithm: Kosaraju’s

algorithm.

Kosaraju’s Algorithm

This algorithm has two stages. It starts by marking all

nodes as unvisited and creates an empty stack. Then it

starts exploring the digraph using DFS (Depth-First Search)

from unvisited nodes, adding the new-found nodes to the

stack. It starts searches until all nodes in the graph are in

the stack.

For the second stage, it inverts all the arcs in the digraph

and marks all nodes as unvisited. Then, while the stack is

not empty, it takes the �rst unvisited node from it and

starts a DF search from that node (marking all reachable

nodes as visited). The set of nodes obtained by each DF

search is a strongly connected component of the digraph.

Complexity

Kosaraju’s algorithm runs in time if the digraph

is represented using an adjacency list.

Reducing 2-List Coloring to 2-SAT

Constructing a Boolean Formula

x ⇒ ¬x ¬x ⇒ x

x ¬x

O(n + m)

Given a node , let . For

simplicity, we will assume, without loss of generality, that

colors are ordered increasingly in each list.

We will now study what could happen with any neighbour

 of and its colors.

1.

In this case there are no clashes between the colors that

we can choose for and . Any combination we select

is valid.

2.

If we color with , we cannot do the same with . In

all other cases there are no clashes.

3.

Similarly to the previous item, if we assign to then

 needs a di�erent color.

4.

This is the most restrictive case. It forces us to assign

alternating colors to and .

We can then state this terms in Boolean clauses.

Let be the variable that represents node of and

its coloring. We de�ne the value of to represent the

way is colored: If false, is colored with the �rst

color in its list; otherwise, if true, is assigned its

second color.

v ∈ V (G) c(v) = {c0, c1}

w v

c(v) ∩ c(w) = ∅

v w

c(v) ∩ c(w) = {c0}

v c0 w

c(v) ∩ c(w) = {c1}

c1 v

w

c(v) ∩ c(w) = {c0, c1}

v w

Xi vi G

Xi

vi Xi = vi

Xi = vi

Taking those variables we construct the following terms

for each case:

1. true

2.

3.

4.

Associated Digraph

From this formula, we construct a digraph where each

term is a node and each arc follows the implications

between them. Then we �nd its strongly connected

components using APT’s algorithm. As we stated before, if

a variable and its negation are in the same strongly

connected component, the formula is not satis�able—and

that means there isn’t a possible coloring of the original

graph .

However, what if we determine that the formula is

satis�able? That would guarantee that there is some 2 list-

coloring of . But we are looking for an actual 2-list

coloring, so we need to determine how to assign colors to

nodes in from the variables in this formula.

Constructing the Coloring

In order to do that, we take advantage of a property of

Kosaraju’s algorithm: the strongly connected components

are returned in topological order. That is, if a node is in

the -th strongly connected component, is in the -th

one, with , and we explore the digraph in topological

order, appears before .

(¬Xv ⇒ Xw)

(Xv ⇒ ¬Xw)

(¬Xv ⇒ Xw) ∧ (Xv ⇒ ¬Xw)

H

G

G

V (G)

u

i v j

i < j

u v

That tells us that, if we take those and , the original

formula can have the implication , but not in the

other direction—if not they wouldn’t be in

separate components.

Following the truth table for the implication operation, we

want to avoid the case where true false; the only case

where the implication evaluates to false.

Therefore, if we explore strongly connected components

in order, and we assign each source-node’s term a value

such that it evaluates to false, we avoid implications of the

form true false, and always obtain clauses that evaluate

to true in the formula.

Translating back from values to the actual coloring, we

select ’s color as follows:

If the strongly connected component that contains the

node representing variable is returned before ,

then false, and is colored with its �rst color .

Otherwise, if the variable comes after , is

colored with its second choice of color .

In both cases, assuming that the arcs between terms exist

in , we obtain the implication (false true) true.

Complexity

Kosaraju’s algorithm, used in the second part of the

process, runs in . Since the rest of the

operations we do to construct the digraph are linear in the

number of nodes and edges in the original graph, the total

complexity is the same.

u v

u ⇒ v

⇒

⇒

Xi

v

Xi ¬Xi

Xi := v c0

Xi ¬Xi v

c1

H ⇒ ≡

O(n + m)

Recap

So, in order to solve 2-LIST COLORING by reducing it to 2-SAT

we do the following:

1. Translate the relationship between pairs of connected

nodes in and their colors into implications of

two terms.

2. Take all those terms and combine them into a formula

.

3. From construct a digraph where each node

represents a term and each edge is an implication

(pointing in the same direction).

4. Use APT’s algorithm to �nd the strongly connected

components of .

5. Looking at each node of and its neighbors , if SCC(

) = SCC(), then stop: there is no possible coloring. If

SCC() < SCC(), color with and with . If not,

color with and with .

References

[0]: Bengt Aspvall, Michael F. Plass and Robert Endre

Tarjan, A linear-time algorithm for testing the truth of certain

quanti�ed boolean formulas, 1979.

Copyright © 2018 Santiago Gil | Powered by Pelican

G

F

F H

H

v H w

v w

v w v c0 w c1

v c1 w c0

https://getpelican.com/

