Recursion Problems: Group A

The following problems all involve recursion, memoization, or dynamic programming. Try to see if
you can come up with the most efficient solutions possible!

1. Generate all strings of n pairs of balanced parentheses. For example, if n = 3, you'd gener-

ate the strings ((0)), (00), ()0, 0(0), OOO0.
2. You are given a pyramid of numbers like the one shown here:
137
42 -15
-4 13 45
21 14 -92 33

Values in the pyramid can be both positive or negative. A path from the top of the pyramid
to the bottom consists of starting at the top of the pyramid and taking steps diagonally left
or diagonally right down to the bottom of the pyramid. The cost of a path is the sum of all
the values in the pyramid. Find the path from the top of the pyramid to the bottom with
the highest total cost.

3. A palindromic tree is a tree that is the same when it's mirrored around the root. For exam-
ple, the left tree below is a palindromic tree and the right tree below is not:

Given a tree, determine whether it is a palindromic tree.

4. The Fibonacci strings are a series of recursively-defined strings. Fo is the string a, F1 is
the string be, and Fn+2 is the concatenation of Fn and Fn+1. For example, F2 is abe, F3 is
becabe, Fa is abebcabe, etec. Given a number n and an index k&, return the kth character of
the string Fn.

Recursion Problems: Group B

The following problems all involve recursion, memoization, or dynamic programming. Try to see if
you can come up with the most efficient solutions possible!

1. Given a number n, generate all distinct ways to write n as the sum of positive integers.
For example, with n = 4, the optionsare 4,3 +1,2+2,2+1+1,and 1+ 1+ 1 + 1.

2. In a binary tree, a common value subtree is a complete subtree where every node has the
same value. (A complete subtree is a subtree consisting of a node and all its children). De-
termine the largest common value subtree in a nonempty binary tree.

3. Suppose you have a multiway tree where each node has an associated integer value. Find
a set of nodes with the maximum possible sum, subject to the constraint that you cannot
choose a node and any of its children at the same time.

4. Suppose that you have a group of people that you need to assign into different houses. For
each house, you know the number of people that the house can hold. Additionally, you
know that some people insist that they not be put into the same house as some other peo-
ple. Given the list of pairs of people that can't be put into houses and the house capacities,
determine how to distribute the people into the houses, or report that it's impossible.

Recursion Problem Solutions: Group A

1. Generate all strings of n pairs of balanced parentheses. For example, if n = 3, you'd gener-

ate the strings ((0)), (00), ()0, 0(0), OOO.
There are many possible solutions to this problem. I'll outline two of them here.

Option One: Enumerate all strings of n copies of (and n copies of) and, for each, check whether
or not those strings are balanced strings of parentheses. For each one that is a string of balanced
parentheses, output it. Here is some pseudocode for this:

function allBalancedStrings(n) {
allBalancedStringsRec(n, n, "")

function allBalancedStringsRec(numOpensLeft, numClosesLeft, soFar) {
if numOpensLeft is © and numCloseslLeft is 0:
print soFar if soFar is balanced
else
if numOpensLeft > 0:
allBalancedStringsRec(numOpensLeft - 1, numCloseslLeft, soFar + '(')
if numClosesLeft > 0
allBalancedStringsRec(numOpensLeft, numCloseslLeft - 1, soFar + ')')

}

This approach works, but isn't ideal because it generates a large number of imbalanced strings. It
turns out to generate exactly n + 1 times more strings than it should,” which given that there are
exponentially many possible strings is a lot of overhead!

Option Two: Use the following recursive insight. Any string of n pairs of balanced parentheses
will have an open parenthesis in the first position. This will then get matched against some other
close parenthesis, splitting the string into two pieces, as shown here:

(paren-group-one) paren-group-two

Therefore, one way to generate all strings of n balanced parentheses is the following. For all num-
bers i ranging from O up to n — 1, generate all possible strings of i balanced parentheses and all
possible strings of n — 1 — i parentheses. Then, for each combination of a string of i parentheses
and a string of n — 1 — i parentheses, parenthesize the first string and append the second. This is
shown here:

function allBalancedStrings(n) {
if n 1s 0, return a list containing the empty string.
for 1 from 0 to n - 1, inclusive:
for each string x in allBalancedStrings(i):
for each string y in allBalancedStrings(n - 1 - 1):
append '(' + x + ')' + y to the result list.
return the resulting list.

}

Assuming that you memoize the results to avoid generating the same strings multiple times, this
will generate every string exactly once.

* We're not expecting anyone to be able to come up with this figure off the top of their heads. You pretty

much have to look this up or already know something about how many strings of balanced parentheses
are possible.

2. You are given a pyramid of numbers like the one shown here:
137
42 -15
-4 13 45
21 14 -92 33

Values in the pyramid can be both positive or negative. A path from the top of the pyramid
to the bottom consists of starting at the top of the pyramid and taking steps diagonally left
or diagonally right down to the bottom of the pyramid. The cost of a path is the sum of all
the values in the pyramid. Find the path from the top of the pyramid to the bottom with
the highest total cost.

There are 2" possible paths from the top to the bottom in a pyramid of height »n (do you see why?),
so brute-forcing the answer won't be at all efficient. Fortunately, you don't have to!

The main observation necessary to solve this problem efficiently is that the first step is either to
the left or to the right, and the rest of the path should be an optimal path from your new location
to the destination. Therefore, you can recursively compute the cost of the best possible path from
the left and right children of the starting location, then combine that with information about the
values of those children to get the cost of the optimal paths starting with a step left or a step
right. From there, you can determine the optimal solution by simply taking the better of the two.

Here is some pseudocode to determine the cost of an optimal solution; I'll leave the task of actu-
ally finding the solution as an exercise.

function optimalPath(t) { // Note: Very inefficient; see below for details.
if t is a triangle of height 1, return the only value in the triangle.

return the maximum of t.left.value + optimalPath(t.left) and
t.right.value + optimalPath(t.right)

}

This approach will recompute the the optimal paths for many of the internal nodes (do you see
why?), so it is not at all efficient. In fact, it runs in time O(2"). However, if we modify it by either
memoizing the results or using dynamic programming to compute the values from the bottom of
the tree upward, that overhead is eliminated. In that case, we spend only O(1) time per value in
the triangle, so the runtime is linear in the number of elements in the triangle.

3. A palindromic tree is a tree that is the same when it's mirrored around the root. For exam-
ple, the left tree below is a palindromic tree and the right tree below is not:

Given a tree, determine whether it is a palindromic tree.

One simple approach is to compute the mirror of the original tree, then determine whether the
mirror of the original tree is equal to the original tree. Here's some pseudocode for this:

function mirrorTree(t) {
if t is null, return null.
let result be a new node with value t.value
for each child c of t, in reverse order:
append mirrorTree(c) to result's child list
return result
}
function treesEqual(t:, t2) {
if both ti1 and tz are null, return true.
if either t: or tz are null, return false.
if ti.value is not tz.value, return false.
if t: and t: have different numbers of children, return false.
for each pair of children (ci, c2) in (ti.children, tz.children):
if treeskEqual(c:, c2) is false, return false.
return true
}
function isPalindromicTree(t) {
return treeskqual(t, mirrorTree(t))
}

The mirrorTree and treeskqual functions each do O(1 + num children) work per node in the tree.
Summing up across all nodes in the tree, this works out to work linear in the number of nodes in
the trees, and therefore this approach runs in linear time. However, this approach requires O(n)
space because it makes a copy of the tree. Another approach would be to check whether the tree is
a mirror of itself in-place, which is conveniently left as an exercise to the reader. ©

4. The Fibonacci strings are a series of recursively-defined strings. Fo is the string a, F1 is
the string be, and Fn+2 is the concatenation of F'n and Fn+1. For example, F2 is abe, F5s is
becabe, Fa is abebceabe, ete. Given a number n and an index k&, return the £th character of
the string Fh.

This is a problem where the naive solution won't work for large n and k. For example, if n = 100,
then F10o has about 3 x 10?! characters, which certainly won't fit into memory. However, since all
you need to do is produce characters at specific positions in the string, you don't need to store all
the Fibonacci strings in memory.

Notice that the nth Fibonacci string has length fn+3, where fn+3 is the (n+3)rd Fibonacci number.
You can check this by looking at the first few Fibonacci strings and, if you'd like, writing a quick
proof by induction to confirm it. By the definition of the Fibonacci numbers, we know that fn+s is
equal to fr+1 + fa+2. This means that (if n = 2) that the first fn+1 characters of Fn come from Fn-2
and the next fn+2 characters come from Fn-1. This gives a recursive algorithm that works by re-
cursively descending into the first or second portion of the Fibonacci strings:
function kthChar(n, k) {

if n is zero and k is zero, return 'a

if n is one and k is zero, return 'b'

if n is one and k is one, return 'c'

if k < fn+1, return kthChar(n - 2, k)
return kthChar(n - 1, k - fn+1)

}

This approach runs in time O(n) plus the additional work to compute the appropriate Fibonacci
numbers. If you precompute all Fibonacci numbers up to and including n, which can be done in
time O(n), then you can look up individual Fibonacci numbers in time O(1) and the total runtime
will be O(n).

As an interesting exercise — since the Fibonacci numbers grow exponentially quickly, if n and %
are given as 32-bit or 64-bit integers, you can optimize this code by relying on the fact that & will
eventually always be in the first portion of the string. Try thinking about how you might take this
into account and see if you get the solution to run in time O(1)!

Recursion Problem Solutions: Group B

1. Given a number n, generate all distinct ways to write n as the sum of positive integers.
For example, with n = 4, the optionsare 4,3 +1,2+2,2+1+1,and 1+ 1+ 1+ 1.

The main challenge in solving this problem is figuring out how to avoid getting duplicate solu-
tions like 3 + 1 and 1 + 3. The approach I've outlined in this solution works by always generating
the numbers in nonincreasing order, so we will never generate solutions like 1 + 3.

Here's a solution that works by strengthening the recursion. We will actually answer the harder
question “list all distinct ways to write n as the sum of positive integers, where all the integers in
the sum are less than or equal to £.” Given this, we can make the following insight:

e There is just one way to write 0 as the sum of integers up to and including %: namely, it's
the empty sum of no numbers.

* Otherwise, the sum must have at least one integer in it. For each possible first integer i
(which must be in the range of 1 to the minimum of n and k), try writing the number as
the sum of i, plus all possible ways of summing to n — i using numbers no greater than i.

This gives the following recursive solution:

function allPartitionsOf(n) {
return restrictedAllPartitions(n, n);
}

function restrictedAllPartitions(n, k) {
if n is zero, the only solution is the empty sum.
for 1 from 1 to the minimum of n and k, inclusive:
record all solutions of the form 1 + restrictedAllPartitions(n - 1, 1)
return those solutions

}
This solution will recompute many subproblems, so you could consider using memoization or DP
to try to avoid the recomputations. This unfortunately increases the memory usage, so it's up to
you to decide whether it's a good idea or not.

2. In a binary tree, a common value subtree is a complete subtree where every node has the
same value. (A complete subtree is a subtree consisting of a node and all its children). De-
termine the largest common value subtree in a nonempty binary tree.

For notational simplicity, let's call a common value subtree a CVS. The key observation necessary
here is the following:

* A tree with just one node is a CVS whose value is the value in the root.

e A tree with root r and subtrees t1, t2, ..., tn is a CVS if each of t1, ¢2, ..., tn is a CVS and has
the same value as the root's value.

This means that we can do a bottom-up pass over the tree and find all of the CVS's as we go. We
can then determine which CVS found this way is the largest. The pseudocode below splits this
into several passes over the tree just for simplicity, and can be significantly space-optimized by
combining everything together into one pass.

function findLargestCVS(t) {
annotateTreeSizes(t)
annotateTreeCVS(t)
return largestCVSIn(t)
}
function annotateTreeSizes(t) {
if t i{s a leaf, set t.size = 1
else:
call annotateTreeSizes(c) for each child c of t.
set t.size = 1 + sum(c.size) for each child c of t
}
function annotateCVS(t) {
if t is a leaf, set t.isCVS to true.
else:
call annotateCVS(c) for each child c of t.
set t.i1sCVS to whether c.value = t.value and c.isCVS for each child c of t.

function largestCVSIn(t) {
if t.1sCVS return t.size
else
let dk = largestCVSIn(ck) for each child ck of t.
return argmax{ dk.size } for all d«.

}
This code runs in time O(n), where n is the number of nodes in the trees. To see this, note that ev-
ery function call takes time O(1 + num children), so summing up across all nodes in the tree we
can charge O(1) total work to each node in the tree. Summing up across all n nodes gives a run-
time of O(n).

3. Suppose you have a multiway tree where each node has an associated integer value. Find
a set of nodes with the maximum possible sum, subject to the constraint that you cannot
choose a node and any of its children at the same time.

The insight necessary to solve this problem is to split the problem into two cases — first, solving
this problem when the root node is included in the solution, and second when the root node is not
included in the solution. If we include the root node, then all of its children must not be included,
and we'd like optimal solutions for each of its subtrees subject to the restriction that their root
nodes aren't included. If we exclude the root node, then for each child, we should take the best so-
lution possible, whether or not we choose to include the root node.

If we code this up using a naive recursion, we get this solution:

function maxSum(t) {
return maxSumUnrestricted(t)
}

// Gives the largest possible sum that can be made with the tree rooted at t when
// there are no restrictions on whether t must be included.
function maxSumUnrestricted(t) {

return the max of maxSumRestricted(t, true) and maxSumRestricted(t, false);
}

// Gives the largest possible sum that can be made with the tree rooted at t
// subject to the restriction that the root of t either must be or must not be
// included

function maxSumRestricted(t, include) {
if t is null, return 0.

if mustInclude is true:
return t.value + sum of maxSumRestricted(c, false) for all children c of t.

if mustInclude is false:
return the sum of maxSumUnrestricted(c) for all children c of t
}

This recursion is correct but highly inefficient — we'll end up recomputing the same subproblems
on many subtrees, leading to a very slow runtime. However, there are only 2n possible unique
calls in a tree of n nodes — for each node, we can either include it or exclude it — and so we can
memoize the results or use dynamic programming to compute the results bottom-up. If we do this,
the net runtime is only O(n) because we do O(1) work per node O(n) total times, though it now re-
quires O(n) storage space.

4. Suppose that you have a group of people that you need to assign into different houses. For

each house, you know the number of people that the house can hold. Additionally, you
know that some people insist that they not be put into the same house as some other peo-
ple. Given the list of pairs of people that can't be put into houses and the house capacities,
determine how to distribute the people into the houses, or report that it's impossible.

This problem is actually equivalent to the graph coloring problem — you can imagine that you
have a node for each person, an edge between two people if they insist on not being in the same
house, and one color for each house. Since this problem is, in general, NP-hard, it's probably best
to approach this through some kind of backtracking approach. One natural one is the following:

If all people are assigned, you're done. Report success.
Otherwise, choose a person.

Determine what possible houses they can be in by checking where their neighbors have
been assigned.

If there are no options, backtrack.

Otherwise, for each choice, try that choice. If any of them work, report success; otherwise
report failure.

	Recursion Problems: Group A

