
Contents

1 Running Time of Dijkstra 1

2 Bounded Integer Edge Weights 1

3 Single source, Single Target (SPP) 2

3.1 Early Termination: . 2

3.2 Bi-directional Search: . 2

3.3 Potentials . 4

1 Running Time of Dijkstra

General Running Time: Initialization: O(|V |), Main loop: Every vertex requires exactly one

Extract-Max (we can skip the Inserts if we assume we insert all vertices when they have equal

keys of ∞ and therefore can insert them in any order). Each edge can require up to one Decrease-Key
and it is possible to come up with a case in which every edge does require a Decrease-Key. Therefore,
in terms of these operations the running time is O(|V |)TExtract-Min +O(|E|)TDecrease-Key.

We would like Extract-Min andDecrease-Key to all be constant time... but as long as TDecrease-Key =

o(|V |) and TExtract-Min = o(|E|), this is still probably better than Bellman-Ford!

Data Structures:

Structure Extract-Min Decrease-Key Running Time

array O(|V |) O(1) O(|V |2)
binary heap O(log |V |) O(log |V |) O(|E| log |V |)
Fibonnacci heap O(log |V |) amortized O(1) amortized O(|V | log |V |+ |E|)

Fibonnaci Heaps: Are not part of 6.006. Chapter 20 of CLRS talks about them if you are interested.

2 Bounded Integer Edge Weights

Assume edge weights are non-negative integers bounded by C. Use an array of length |V |C + 1 for

priority queue where vertices with paths of length i are stored in bucket i.

Why does this work? Because all paths are less than (|V | − 1)C ⇒ |V |C − C + 1 ≤ |V |C + 1 possible

path values.

When you assign a path length to a previously unassigned node, you put it in its correct bucket. “∞”

lives in |V |C.

Algorithms: Decrease-Key(v, k) just moves vertex v from bucket key[v] to bucket k.

1

Extract-Max

1 global curr-bucket // Initialize to zero at start of whole algorithm
2 while (curr-bucket is empty)

3 curr-bucket← curr-bucket +1

4 return First value in curr-bucket

Correctness of Extract-Max: By induction. Do it yourself.

Running Time of Decrease-Key and Extract-Min: Clearly Decrease-Key is O(1). In ad-

dition, Extract-Max amortizes to O(1): over the course of the whole algorithm we see every bucket

once. So, over the algorithm, the time of all calls to Extract-Max sums to O(|V |C). We extract each

vertex once and only once so we make |V | calls to Extract-Max. Therefore, each call amortizes to

O(|V |C)/O(|V |) = O(1).

Running Time: O(|V |+ |E|) It’s linear!

Circular Queues: You can use an array of only length C rather than length |V |C + 1 where path

length i is stored in bucket i mod C. The correctness of this relies on the fact that the first vertex with

path length kC+ i is not inserted into the queue until we have extracted the last vertex with path length

(k − 1)C + i. Just argue that since every edge weight is less than C, you cannot relax an edge with

weight less than (k − 1)C + i and get an edge with weight kC + i. Do it formally yourself.

3 Single source, Single Target (SPP)

If you have a negative weight and cycles, you can’t do better than Bellman-Ford since you never know

where a negative weight cycle might be lurking... You can’t stop at t when you reach it.

So assume non-negative weights.

3.1 Early Termination:

We could stop Dijkstra when we hit t. In the worst case, this is no better, but it can help.

3.2 Bi-directional Search:

Search from s and t and t to s and hope you meet in the middle!

Alternate foward from s with backwards from t. df is forward distances, db is backwards distance.

Termination: Vertex w has been popped off queue in both forwards and backwards search. BUT

δ(s, t) �= df [w] + db[w]. Rather δ(s, t) = minu∈V (df [u] + db[u]).

Lemma A: δ(s, t) ≤ minu∈V (df [u] + db[u])

2

Proof: Let a shortest path from s to t be (u1, u2), (u2, u2), ..., (un−1, un) where u1 = s and un = t. For

all shortest paths, we must have at least one edge weight wrong. -

min
u∈V

(df [u] + db[u]) ≥ min
u∈V

(δ(s, u) + δ(u, t))

by the upper bound theorem

min
u∈V

(δ(s, u) + δ(u, t) ≥ δ(s, t))

by the triangle inequality.

Lemma B: Let v be the vertex that has been popped off the queue in both the forward and backwards

searches. Let p = �(u1, u2), ..., (un−1, un)� be a shortest path from s to t (u1 = s and un = t). Let uf

be the vertex on this path with the largest df value that has come out of the forward queue and let ub

be the vertex on this path with the largest db value that has come out of the backwards queue. Then

either uf = ub or uf = ub−1.

Proof: By the properties of Dijkstra, we must have that df [uf] = δ(s, uf) and db[ub] = δ(ub, t). Moreover,

since uf is the largest vertex to have come out of the forwards queue and ub is the largest vertex to come

out of the backwards queue and p is a shortest path, the following must hold:

δ(s, uf) ≤ δ(s, v) (1)

δ(s, uf) + w(uf , uf+1) ≥ δ(s, v) (2)

δ(ub, t) ≤ δ(v, t) (3)

w(ub−1, ub) + δ(ub, t) ≥ δ(v, t) (4)

δ(s, uf) + δ(ub, t) +

b−1�

i=f

w(ui, ui+1) ≤ δ(s, v) + δ(v, t) (5)

Combining equations 2 and 4

δ(s, uf) + δ(ub, t) + w(uf , uf+1) + w(ub−1, ub) ≥ δ(s, v) + δ(v, t).

In order that equation 5 hold, therefore

b−1�

i=f

w(ui, ui+1) ≤ w(uf , uf+1) + w(ub−1, ub)

and we must have either uf = ub or uf = ub−1.

Correctness: When a vertex has been popped off the queue of both the forwards and the backwards

search, δ(s, t) = minu∈V (df [u] + db[u]).

Proof: We show that there is some vertex q such that δ(s, t) = df [q]+db[q]. The correctness then follows

from Lemma A.

Let p = �(u1, u2), ..., (un−1, un)� be a shortest path from s to t. Let uf be the vertex on this path with the

largest df that has been popped off the forward queue and let ub be vertex on this path with the largest

db that has been popped off the queue. Then, by the proof of Dijkstra’s algorithm, we have relaxed

(u1, u2), ..., (uf−1, uf), (uf , uf+1) in order (we did the last relaxation when we pushed uf onto the queue).

Similarly, we have relaxed (un, un−1), ..., (ub, ub−1) in order (in the backwards search). By Lemma B,

3

uf = ub or uf = ub−1. In the first case, consider vertex uf . We have by the path relaxation property

that df [uf] = δ(s, uf) and db[uf] = δ(uf , t). Since p is a shortest path, δ(s, t) = δ(s, uf) + δ(uf , t) =

df [uf]+db[uf]. Similarly, in the second case, consider the vertex uf+1. By the path relaxation property,

df [uf+1] = δ(s, uf+1), db[uf+1] = δ(ub, t) and δ(s, t) = δ(s, uf+1) + δ(ub, t) = df [uf+1] + db[ub].

3.3 Potentials

Potential function is function of target t and vertex v, denoted λt(v).

We modify weights using this potential:

w
∗
(u, v) ← w(u, v)− λt(u) + λt(v)

Feasibility: ∀u, v ∈ V, w(u, v)− λt(u) + λt(v) ≥ 0. So we can still use Dijkstra!

Landmarks: Choose a landmark l. For each u ∈ V , pre-compute δ(u, l). Then

λ
(l)
t (u) = δ(u, l)− δ(t, l) (6)

is a feasible potential. This is basically just saying, a good estimate is that the route from u to l probably

gets near t.

Proof of Feasibility: Show that

w
∗
(u, v) = w(u, v)− λ

(l)
t (u) + λ

(l)
t (v) ≥ 0

You’ll do this on problem set 5.

You can also do this with a whole set of potentials L. For each l ∈ L and u ∈ V , compute λ
(l)
t (u). Then

you can use the potential function

λt(u) = max
l∈L

λ
(l)
t (u)

or once you know the target, you can pick a landmark close to the target. Again, you’ll prove the

feasibility of this in problem set 5.

Euclidean distance: Assume we are working with a graph set on a Euclidean plane and the weight of

an edge, w(u, v), is somehow related to the Euclidean distance between the vertices, l(u, v). This is the

case, for example, when u and v lie on a map and the weight is the driving distance between them. The

absolute shortest possible distance from u to v is l(u, v) (“as the crow flies”) but being constrained to

stay on a road may make the distance longer. However, it is unlikely that the driving distance between

two points two miles apart will be greater than the driving distance between two points 50 miles apart

so the weights are related to the Euclidean distance.

In this case, a feasible potential is

λt(u) =
l(u, t)

vmax

where

vmax = max
u,v

�
l(u, v)

w(u, v)

�
.

4

Proof of Feasibility:

w
∗
(u, v) = w(u, v)− λt(u) + λt(v)

= w(u, v)− l(u, t)− l(v, t)

vmax

≥ w(u, v)− l(u, v)

vmax

= w(u, v)− l(u, v) min
q,r∈V

�
w(q, r)

l(q, r)

�

≥ w(u, v)− l(u, v)

�
w(u, v)

l(u, v)

�

= 0

Note that the triangle inequality gives l(t, v) ≥ l(t, u)+l(u, v). Rearranging shows l(u, t)−l(v, t) ≤ l(u, v),

which we have used.

Connection to A* Search: In A* search, heap is ordered according to function

f(u) = g(u) + h(u)

g(u) = d[u], the current distance from the starting vertex s to n. h(u) is a heuristic function giving

an estimate of the distance from u to t (note that h(u) = 0 gives Dijkstra’s algorithm). A heuristic is

admissible if h(u) ≤ δ(u, t). A search with an admissible heuristic is guaranteed to find the shortest

path.

Given a potential function λt(u), doing Dijkstra’s algorithm with the weights w∗
is equivalent to doing

an A* search using the heuristic function h(u) = λt(u)−λt(s). Assume our current d∗[u] (distance using
starred weights) in Dijkstra’s algorithm was found using path (v1, v2), ..., (vn−1, vn):

d
∗
[u] =

n−1�

i=1

w
∗
(ui, ui+1)

=

n−1�

i=1

w(ui, ui+1)−
n−1�

i=1

λt(ui) +

n�

j=2

λt(uj)

= d[u]− λt(s) + λt(u)

= g(u) + h(u) (7)

A very similar calculation shows that if λt is a feasible potential then the corresponding heuristic function

is admissible if λt(t) ≥ 0.

5

