
Efficient Algorithms to Rank and Unrank Permutations
in Lexicographic Order

Blai Bonet
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

bonet@ldc.usb.ve

Abstract

We present uniform and non-uniform algorithms to rank and
unrank permutations in lexicographic order. The uniform
algorithms run inO(n log n) time and outperform Knuth’s
ranking algorithm in all the experiments, and also the linear-
time non-lexicographic algorithm of Myrvold-Ruskey for
permutations up to size 128. The non-uniform algorithms
generalize Korf-Schultze’s linear time algorithm yet require
much less space.

Introduction
In an increasing number of different applications, most of
them related to heuristic search and combinatorial optimiza-
tion (Korf & Schultze 2005; Ruskey, Jiang, & Weston 1995;
Critani, Dall’Aglio, & Biase 1997), there is the need to
rank a given permutation overn elements into an integer
between0 and n! − 1, and also to unrank such integer
into a permutation. In others cases, one is interested in
a particular subset of elements, and given a permutation
over n elements, rank/unrank the positions of these ele-
ments (Culberson & Schaeffer 1998; Korf & Felner 2002;
Felner, Korf, & Hanan 2004). A ranking function is called
lexicographic if it maps a permutation and its lexicographi-
cally next permutation into consecutive integers.

There are well-known algorithms for these tasks that per-
form O(n) arithmetic operations but not in lexicographic
order (Myrvold & Ruskey 2001). For lexicographic rank-
ing/unranking, there areO(n log n) algorithms that rely on
modular arithmetic based on inversion tables (Knuth 1973,
Ex. 6, p. 19), and also unrank algorithms based on binary
search. Myrvold and Ruskey (Myrvold & Ruskey 2001)
mention that using a data structure of Dietz (1989), the num-
ber of operations can be reduce toO(n log n/ log log n) but
the algorithm is rather complicated and difficult to imple-
ment. All these algorithms are uniform in the sense that they
work for permutations of any size without the need to pre-
process or store additional information (advice).

Non-uniform linear-time algorithms for ranking and un-
ranking in lexicographic order were presented in (Korf &
Schultze 2005), but these need to pre-calculate and store an
advice of exponential size. Applications that need to per-
form a large number of rank/unrank operations of small size,
e.g.n = 16, can amortize the time to calculate the advice.

The main contribution of this paper is the development
of novel uniform algorithms for ranking and unranking of
permutations in lexicographic order that performO(n log n)
arithmetic operations and utilizeO(n) space. The algo-
rithms are very simple and easy to implement. We also per-
form an empirical comparison against the linear-time algo-
rithm of Myrvold and Ruskey, and the algorithm of Knuth in
order to account for the hidden constant factors. As it will
be seen, the new algorithms dominate Knuth’s algorithm, are
faster than Myrvold and Ruskey’s for smalln, and fall a bit
short of the latter forn up to size 1,024.

We also present a generalization of Korf-Schultze’s non-
uniform linear-time ranking algorithm that permits to reduce
the size of the advice.

The paper is organized as follows. The next two sections
are devoted to the uniform and non-uniform algorithms.
Then, we present some empirical results, and conclude.

Uniform Algorithms
Permutations of sizen are assumed to be over inte-
gers {0, . . . , n − 1}, and denoted byπ = π0 . . . πn−1.
For example,π = 25714603 denotes the permutation(

0 1 2 3 4 5 6 7
2 5 7 1 4 6 0 3

)
in which 0 is mapped into

2, 1 is mapped into 5, and so on. The lexicographic ranking
of π is defined as

r(π) = d0 ·(n−1)!+d1 ·(n−2)!+· · ·+dn−2 ·1!+dn−1 ·0!
(1)

wheredi is the relative position of elementi with respect to
the elementsj < i. For π = 25714603, d0 = 2 since0
is goes into position 2,d1 = 4 since1 goes into position
4 once0 is fixed at position 2, and so on. In general,di

equalsπi minus the number of elementsj > i that are to the
left of elementi. Eachdi ranges over{0, . . . , n − 1 − i}
independently of the others. The vector(d0, . . . , dn−1) is
known as the factorial representation ofr(π) as they are the
digits in a factorial-base system and also as theinversion
tablefor π (Knuth 1973).

Another equivalent expression forr(π) is

r(π) = (· · · (d0·(n−1)+d1)·(n−2)+· · ·+dn−2)·1+dn−1 .
(2)

Both expressions, (1) and (2), are closely related to the way
tuples over Cartesian products are ranked into unique inte-



1

1 0

0 1 0 0

0 0 1 0 0 0 0 0

0 1 2 3 4 5 6 7

2

1 1

0 1 1 0

0 0 1 0 0 1 0 0

0 1 3 4 5 6 7

3

1 2

0 1 1 1

0 0 1 0 0 1 0 1

0 1 3 4 6 7

4

2 2

1 1 1 1

0 1 1 0 0 1 0 1

0 1 3 4 6

(a)π0 = 2, d0 = 2 (b) π1 = 5, d1 = 4 (c) π2 = 7, d2 = 5 (d) π3 = 1, d3 = 1

5

2 3

1 1 2 1

0 1 1 0 1 1 0 1

0 3 4 6

6

2 4

1 1 2 2

0 1 1 0 1 1 1 1

0 3 6

7

3 4

2 1 2 2

1 1 1 0 1 1 1 1

0 3

8

4 4

2 2 2 2

1 1 1 1 1 1 1 1

3

(e)π4 = 4, d4 = 2 (f) π5 = 6, d5 = 2 (g) π6 = 0, d6 = 0 (h) π7 = 3, d7 = 0

Figure 1: the ranking algorithm applied to permutationπ = 25714603. Panels (a)–(h) show the paths transversed, the final
configuration of the tree after transversing each path, and the calculated value for eachdi.

gers. The pair(x, y) ∈ X × Y is ranked intox|Y | + y as
for eachx there are|Y | possibilities fory. For the triplet
(x, y, z) ∈ X × Y × Z, we can either think of it as the pair
(x, (y, z)) and rank it intox|Y ||Z|+ (y|Z|+ z), or think of
it as the pair((x, y), z) and rank it into(x|Y | + y)|Z| + z.
Both expression are equivalent. As each factorial digitdi

ranges overn− i possible values, the vector of factorial dig-
its is ranked into (1) (or equivalently (2)). Once the vector
of factorial digits is known, the rank of the permutation is
obtained in linear time. Therefore, the difficult task is to
compute the digits efficiently.

Ranking
The naive approach to compute the factorial digits is to scan
the permutation from left to right counting the number of
elements to the left ofi that are less thani, and then setting
di to πi minus such count. This method requires linear time
per digit which results in anO(n2) algorithm.

However, if at the time of computingdi, πi > ⌈n/2⌉ and
the number of elements less thani in positions0 to ⌈n/2⌉
is stored in a counter, then only positions between⌈n/2⌉ +
1 andπi − 1 must be scanned. If we apply this principle
recursively, dividing by half successively the interval[0, n−
1], the time to computedi is reduced toO(log n). This is the
underlying principle in the algorithm that is explained next.

Let us assume for the moment thatn = 2k is a power of 2.
In order to store the required counts, we make use of a com-
plete binary tree of heightk whose nodes store the counts,
and where then leaves are associated with the elements of
the permutation. Initially, all stored values equal zero.

To calculatedi, the algorithm transverses the tree in a
bottom-upmanner. Starting at the leaf associated withπi

and by using a counter initialized to the valueπi, the algo-
rithm moves up along the path that leads to the root perform-
ing two operations at each node: 1) if the current node is the
right child of its parent then subtract from the counter the

Input : permutationπ and arrayT of size21+⌈log n⌉ − 1

Output : rank ofπ
begin

k := ⌈log n⌉
rank := 0
for i = 1 to 21+k − 1 do T [i] := 0
for i = 1 to n do

ctr := π[i]
node := 2k + π[i]
for j = 1 to k do

if node is oddthenctr := ctr−T [(node≫ 1)≪ 1]
T [node] := T [node] + 1
node := node≫ 1

T [node] := T [node] + 1
rank := rank · (n + 1− i) + ctr

return rank

end

Figure 2:O(n log n) uniform lexicographic ranking.

value stored at the left child of the parent, and 2) increase
the value stored at the current node. At the end of the jour-
ney, the value of the counter is the value ofdi.

For example, forπ = 25714603, the path transversed for
d0 starts at the leaf associated withπ0 = 2 (the third leaf
from the left). Since all initial stored values equal zero then
d0 = 2. The resulting tree and the path transversed ford0

are shown in Fig. 1(a). Ford1, the counter is initialized to
π1 = 5 and the path starts at the leaf associated to5. This
leaf is a right child but its left sibling has a stored value of
0 so the counter does not change. The next node is a left
child and so the counter is not decremented. Finally, just
before moving to the root, the node is a right child and the
left sibling has a stored value of 1. This value is decremented
from the counter that becomes 4 which is the final value of
d1. Panels (a)–(h) in Fig. 1 show all paths transversed by the



7

3 4

2 1 2 2

1 1 0 1 1 1 1 1

0 1 2 3 4 5 6 7

6

3 3

2 1 1 2

1 1 0 1 1 0 1 1

0 1 3 4 5 6 7

5

3 2

2 1 1 1

1 1 0 1 1 0 1 0

0 1 3 4 6 7

4

2 2

1 1 1 1

1 0 0 1 1 0 1 0

0 1 3 4 6

(a)d0 = 2, π0 = 2 (b) d1 = 4, π1 = 5 (c) d2 = 5, π2 = 7 (d) d3 = 1, π3 = 1

3

2 1

1 1 0 1

1 0 0 1 0 0 1 0

0 3 4 6

2

2 0

1 1 0 0

1 0 0 1 0 0 0 0

0 3 6

1

1 0

0 1 0 0

0 0 0 1 0 0 0 0

0 3

0

0 0

0 0 0 0

0 0 0 0 0 0 0 0

3

(e)d4 = 2, π4 = 4 (f) d5 = 2, π5 = 6 (g) d6 = 0, π6 = 0 (h) d7 = 0, π7 = 3

Figure 3: the unranking algorithm applied to the factorial digits 24512200. Panels (a)–(h) show the paths tranversed, the final
configuration of the tree after transversing each path, and the calculated value for eachπi.

algorithm and the calculated values.
The tree used to compute the rank can be stored layer-by-

layer in an array of size2n − 1 indexed from 1 to2n − 1,
as done with heaps (Cormen, Leiserson, & Rivest 1990).1

In this array, the left and right children of nodei are the
nodes2i and2i + 1 respectively, the parent of nodei is the
nodei÷2, and all leaves appear ordered from left to right in
positionsn through2n − 1. A nodei is a left or right child
whetheri is even or odd. The pseudo-code of the ranking
algorithm is depicted in Fig. 2.2

Unranking
Unranking is the inverse process: given a rankr obtain the
permutationπ such thatr(π) = r. In this case, the factorial
digits are obtained in linear time fromr using successive
integer divisions and mod operations. The valuedi gives
the relative position of elementi in the permutation once the
elementsj < i had been placed. In the example, the position
of 0 is 2, the relative position of1 is 4 and given that position
2 is occupied then1 goes into position 5, and so on.

A naive algorithm scans the permutation being con-
structed at each stage in order to place elementi given its
relative positiondi which results in aO(n2) algorithm. As
before, the time can be reduced toO(n log n) by using a
complete binary tree of height⌈log n⌉. This time, the stored
values for nodes at depthi are initialized to2k−i.

Once thedi’s are calculated, the algorithm transverses the
tree in atop-downmanner for eachdi. Starting at the root,
the algorithm chooses the next node as the left or right child
whetherdi is less than the stored value at the left child. If the
next node is the right child, then the value of the left child is

1For general values ofn, the tree is of height⌈log n⌉ which
occupiesO(n) space.

2‘n ≪ 1’ refers to a left shift of 1 position and similar for
‘n≫ 1’ and ‘n÷m’ to the integer division ofn by m.

Input : factorial digitsd, arrayπ, and arrayT of size21+⌈log n⌉−1

Output : permutationπ
begin

k := ⌈log n⌉
for i = 0 to k do

for j = 1 to 2i do T [2i + j − 1] := 1≪ (k − i)

for i = 1 to n do
digit := d[i]
node := 1
for j = 1 to k do

T [node] := T [node]− 1
node := node≪ 1
if digit ≥ T [node] then

digit := digit− T [node]
node := node + 1

T [node] := 0

π[i]← node− 2k

end

Figure 4:O(n log n) uniform lexicographic unranking.

subtracted fromdi. With each movement, the stored counts
along the nodes in the transversed path are decremented. Fi-
nally, upon reaching a leaf, the valueπi is set to the position
associated to the leaf. Panels (a)–(h) in Fig. 3 show the paths
transversed for the example, and Fig. 4 the pseudo-code for
the unranking algorithm.

The reader should note that the final configuration for the
unranking algorithm equals the initial configuration for the
ranking algorithm and vice versa, and thus efficient imple-
mentations can exploit this fact too.

Non-Uniform Algorithms
Non-uniform algorithms solves tasks efficiently for fixed
values of parameters utilizing pre-computed information



(also called advice). Typically, the computation and/or size
of the advice may be large, but such investment cab be ef-
fectively amortized if a large number of computations are
performed.

In the case of ranking and unranking permutations, a non-
uniform algorithm only works for permutations of fixed size.
If the size of the permutation changes, another advice must
be generated before running the algorithm again.

The idea behind Korf-Schultze’s algorithm is to use a ta-
ble Tr to store for each integer ofn bits, the number of bits
equal to 1 in its binary representation. The table is used as
follows.

Recall that to rank a permutationπ, we need to compute
thedi’s, and thatdi equalsπi minus the number of elements
to the left ofπi that are less than it. If, as we compute each
di’s, we set to 1 theπi-th bit in an integerN of n bits, then
it is not hard to see that

di = πi − Tr[N ≫ (n − i)] .

Indeed, in our example, we have

i πi N before Tr di N after
0 2 0000 0000 0 2 0000 0100
1 5 0000 0100 1 4 0010 0100
2 7 0010 0100 2 5 1010 0100
3 1 1010 0100 0 1 1010 0110
4 4 1010 0110 2 2 1011 0110
5 6 1011 0110 4 2 1111 0110
6 0 1111 0110 0 0 1111 0111
7 3 1111 0111 3 0 1111 1111

where the third column refers to integerN before the update
at iterationi, and the last column refers toN after the update.

The tableTr, which is precomputed and stored in mem-
ory, allows us to compute any number of rankings in linear
time. The size ofTr is clearly2n log n bits. Forn = 16,
we need to store65, 536 entries each requiring at most 4 bits
for a total of 256K bytes, and forn = 25 the table contains
33, 554, 432 entries each requiring at most 5 bits for a total
size of 20M bytes which is a considerable amount of mem-
ory.

Ranking
The idea is very simple, instead of the big tableTr, storea
smaller tableT ∗

r of size2m log m bits that indexes an integer
N of m bits into the number of bits equal 1 inN . Given
such table, the ranking algorithm needs to access the table
multiple timesdepending onm. Thus,m should be treated
as a parameter that tradeoffs the size of the advice versus the
running time. Before explaining how to exploit this trade off
in practice, let us explain the ranking algorithm.

In our example, consider the casem = 4. We have a table
T ∗

r that maps integers of4 bits into the number of bits equal
to 1 in each such integer. Since the number of bits equal to
1 in 8 bits, equals the sum of the number of bits equals to 1
in each 4-bit half, we have

Tr[N ] = T ∗
r [N&mask] + T ∗

r [(N ≫4)&mask] ,

wheremask is the 4-bit integers with all bits equal to 1.

Θ m = log n m = nǫ m = n/ logn
T (n) n2/ logn n2−ǫ n log n
A(n) n log log n 2nǫ

log n 2n/ log n log n

Table 1: Asymtotic growth rates (Θ) for time and space for
the three choices ofm in the non-uniform ranking algorithm.

In general, we have the relation

Tr[N ] =

⌈n/m⌉∑

k=0

T ∗
r [(N ≫mk)&mask] ,

wheremask is them-bit integers with all bits equal to 1.
For the case ofn = 25 andm = 5, above expression re-
quires 5 access (per digitdi) to the tableT ∗

r whose size is
25⌈log 5⌉ = 96 bits.

Tradeoffs
The parameterm has influence on both the running time and
the stored size. A largem, implies more size but less com-
putation time, while a smallm implies less size but more
computation time. The extremes values ofm are easy to
calculate yet deserve attention. Form = n, we obtain Korf-
Schultze’s algorithm with an advice of sizeA(n) = 2n log n
and linear running time. Form = 1, we obtain the naive al-
gorithm with constant space and quadratic running time.

If m is constant, the quadratic running time is reduced by
a constant factor but only need to store a constant amount
of spaceΘ(2m log m). If m = n/c, for constantc, we
get a linear time algorithm reducing the amount of space
to A(n) = Θ(2n/c log n) by an exponential factor; this case
is a good choice whenn is small.

For largen, we consider the parameterm as a function
of n. Of special interest are the three cases:m = log n,
m = nǫ, for ǫ > 0, andm = n/ logn. Table 1 shows the
obtained exact asymptotic growth rates for the running times
and advice sizes for each choice ofm.

In the second case,A(n) is dominated bycn for every
c > 1, i.e. A(n)/cn → 0, and thus the algorithm uses
sub-exponential space. For instance, ifm =

√
n, then

T (n) = Θ(n3/2) andA(n) = Θ(2
√

n log n). In the last
case,A(n) is also sub-exponential but dominates2nǫ

log n.
Finally, observe that none of these three cases is superior to
the uniform algorithm that runs in timeO(n log n) and uses
O(n) space.

Unranking
To unrank in linear time, consider a tableTu that maps rel-
ative positions0 ≤ p < n and integers ofn bits into po-
sitions. The entryTu[p, N ] indicates the position of the
pth 0-bit in N . Then,πTu[di,Ni] = i whereN0

.
= 0 and

Ni+1
.
= Ni|(1 ≪ πi). The size of tableTu is clearly

Θ(n2n).
As before, we can reduce the space needed by using a

smaller tableT ∗
u of sizeΘ(m2m). The running time is this

case becomesT (n) = Θ(n2/m) and the spaceA(n) =



Θ(m2m). The tableT ∗
u maps a position0 ≤ p < m andm-

bit integerN into the position of thepth zero inN if there
is such zero or tom otherwise.

In our example, form = 4, T ∗
u maps positions0 ≤ p < 4

and 4-bit integers:

T ∗
u 0000 0001 0010 0011 . . . 1110 1111
0 0 1 0 2 . . . 0 4
1 1 2 2 3 . . . 4 4
2 2 3 3 4 . . . 4 4
3 3 4 4 4 . . . 4 4

Let us define the function̂Tu(p, N) as

T̂u(p, N)
.
=

{
0 if p < 0,
T ∗

u [p, N ] if p ≥ 0.

The relation between the tableTu and the function̂Tu is

Tu[p, N ] = T̂u(p0, N&mask) + T̂u(p1, (N ≫4)&mask)

wherep0
.
= p andp1

.
= p0 − m + Tr(N&mask). For

example,

Tu[2, 0000 0000] = T̂u(2, 0000) + T̂u(−2, 0000)

= 2 + 0 = 2 =⇒ π0 = 2

Tu[4, 0000 0100] = T̂u(4, 0100) + T̂u(1, 0000)

= 4 + 1 = 5 =⇒ π1 = 5

Tu[5, 0010 0100] = T̂u(5, 0100) + T̂u(2, 0010)

= 4 + 3 = 7 =⇒ π2 = 7

Tu[1, 1010 0100] = T̂u(1, 0100) + T̂u(−2, 1010)

= 1 + 0 = 1 =⇒ π3 = 1

Tu[2, 1010 0110] = T̂u(2, 0110) + T̂u(0, 1010)

= 4 + 0 = 4 =⇒ π4 = 4

Tu[2, 1011 0110] = T̂u(2, 0110) + T̂u(0, 1011)

= 4 + 2 = 6 =⇒ π5 = 6

Tu[0, 1111 0110] = T̂u(0, 0110) + T̂u(−1, 1111)

= 0 + 0 = 0 =⇒ π6 = 0

Tu[0, 1111 0111] = T̂u(0, 0111) + T̂u(−1, 1111)

= 3 + 0 = 3 =⇒ π7 = 3

In general, we have

Tu[p, N ] =

⌈n/m⌉∑

k=0

T̂u(pk, (N ≫mk)&mask)

wherep0
.
= p andpi+1

.
= pi − m + Tr[(N ≫ ik)&mask].

The total required size isΘ(2mm log m) bits and the over-
all running time for unranking becomesΘ(n2/m) since to
compute each permutation element we need to performn/m
table lookups. The tradeoffs are similar to the ranking case.

Empirical Results
A fair comparison should be made between algorithms in
the same class, i.e. either uniform or non-uniform.We

chose to make an empirical comparison between uniform
algorithms over permutations of different sizes. Although,
the algorithm of Myrvold-Ruskey runs in linear time and is
non-lexicographic, we decided to compare our algorithms to
it and to Knuth’s ranking algorithm; Knuth does not say how
to unrank permutations, though.

We implemented the ranking algorithm proposed here,
an iterative version of Myrvold-Ruskey’s algorithm, and
Knuth’s algorithm. These algorithms were run on permu-
tations of sizes 4 to 1,024, and to avoid multiple-precision
arithmetic (which is the same for all algorithms once the
factorial digits are computed), we modified the algorithms
in order to just compute the factorial digits and not the rank.

In a first experiment, we compared our algorithms against
Myrvold-Ruskey’s and Knuth’s over ‘small’ random permu-
tations of sizes 4, 8, 12, . . . , 24. For each size, 10 million
ranking operations were performed on random permutations
of the given size. The time reported is the cumulative time
of the 10 million rankings.

Results are depicted in Fig. 5(a). The first observation is
that Knuth’s algorithm is clearly outperformed by the two
others. As noted in (Myrvold & Ruskey 2001), this is due
to the excessive use of modular arithmetic. The second ob-
servation is that our algorithm is the fastest for these sizes
even though Myrvold-Ruskey’s is a linear-time algorithm.
This suggests that the constant factors hidden in the asymp-
totics is much bigger for Myrvold-Ruskey’s than for our al-
gorithm. Indeed, the ratio of running times (our/MR’s) are
0.83, 0.81, 0.94, 0.83, 0.93, 0.92 (a ratio< 1 means that our
algorithm runs faster than Myrvold-Ruskey’s). As it can be
seen, the ratios tend to increase with the sizes as expected.

A second experiment compared the algorithms over ‘big’
permutations of sizes 32, 34, 36, . . . , 64, 128, . . . , 1,024. As
in the first experiment, Knuth’s algorithm is clearly dom-
inated by the other two. As shown, our algorithm runs
faster than Myrvold-Ruskey’s til permutations of size 128,
the point in which the two curves cross each other, and then
Myrvold-Ruskey’s dominates. This is not surprising given
that our algorithm runs inO(n log n) time and the other in
linear time, yet recall that ours is lexicographic. However,
even for the size 1,024, the ratio of running times of our al-
gorithm over Myrvold-Ruskey’s is only1.10.

Finally, we did one experiment to compare the new rank-
ing algorithm with Korf and Schultze’s algorithms for per-
mutations of size 16. As before, we only measure the time
to compute the factorial digits for 10 million random per-
mutations. Our algorithm took 9.80 seconds while Korf-
Schultze’s 9.70 seconds demonstrating that the latter is a bit
better than the former (yet this small advantage decreases
even more if the time to calculate the rank from the factorial
digits is accounted for).

Summary
We have presented novel and simpleO(n log n) uniform al-
gorithms to rank and unrank permutations in lexicographic
order. The algorithms can be easily modified to rank/unrank
subset of elements in permutations, and to compute the in-
version table for a given permutation. The new algorithms



 0

 5

 10

 15

 20

 25

 30

 4  6  8  10  12  14  16  18  20  22  24

tim
e 

in
 s

ec
on

ds

permutation size

Ranking of 10,000,000 Small Random Permutations

Lexicographic
Myrvold-Ruskey

Knuth
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 32  64  128  256  512  1024

tim
e 

in
 s

ec
on

ds

permutation size

Ranking of 10,000,000 Big Random Permutations

Lexicographic
Myrvold-Ruskey

Knuth

(a) (b)

Figure 5: Experimental results for ranking random permutations of different size. Each point is the accumulated time that result
of ranking 10 million random permutation of the given size.

are competitive against the linear-time algorithms in (Myr-
vold & Ruskey 2001) and faster than theO(n log n) algo-
rithm in (Knuth 1973) at least for size up to 1,024.

We also presented novel non-uniform algorithms to rank
and unrank permutations in lexicographic order that gener-
alize the Korf-Schultze’s algorithm (Korf & Schultze 2005).
These algorithms are parametrized inm. For constantm =
n, the algorithms reduce to the linear-time algorithms of
Korf-Schultze yet they require an advice of exponential size
Θ(n2n). For m = n/c, the algorithms are still linear-time
yet the size of the advice reduces toΘ(n2n/c, that is still
exponential but can be a good choice when the size of the
permutation is small and a great number of rank/unrank op-
erations need to be performed. The resulting asymptotic be-
haviors in time and space are analyzed for other interesting
values of the parameterm.

In the future, we would like to develop incremental ver-
sion of the new algorithms as some applications in heuristic
search will benefit from such.

Acknowledgements. We thank the anonymous reviewers
for useful comments. Thanks also to Richard Korf for pro-
viding an extended description of his algorithms and for
valuable feedback.

References
Cormen, T.; Leiserson, C.; and Rivest, R. 1990.Introduc-
tion to Algorithms. MIT Press.

Critani, F.; Dall’Aglio, M.; and Biase, G. D. 1997. Ranking
and unranking permutations with applications.Innovation
in Mathematics15(3):99–106.

Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence14(3):318–334.

ietz, P. F. 1989. Optimal algorithms for list indexing and
subset ranking. InProc. of Workshop on Algorithms and
Data Structures, 39–46. Springer LNCS 382.

Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-

tern database heuristics.Journal of Artificial Intelligence
Research22:279–318.
Knuth, D. E. 1973.The Art of Computer Programming,
Vol. III: Sorting and Searching. Addison-Wesley.
Korf, R., and Felner, A. 2002. Disjoint pattern database
heuristics.Artificial Intelligence134:9–22.
Korf, R., and Schultze, P. 2005. Large-scale, parallel
breadth-first search. In Veloso, M., and Kambhampati, S.,
eds.,Proc. 20th National Conf. on Artificial Intelligence,
1380–1385. Pittsburgh, PA: AAAI Press / MIT Press.
Myrvold, W. J., and Ruskey, F. 2001. Ranking and unrank-
ing permutations in linear time.Information Processing
Letters79(6):281–284.
Ruskey, F.; Jiang, M.; and Weston, A. 1995. The Hamil-
tonicity of directedσ-τ Cayley graphs (or: A tale of back-
tracking).Discrete Appl. Math.57(1):75–83.


