Efficient Algorithms to Rank and Unrank Permutations
in Lexicographic Order

Blai Bonet
Departamento de Computacion
Universidad Simon Bolivar
Caracas, Venezuela
bonet @ dc. usbh. ve

Abstract

We present uniform and non-uniform algorithms to rank and
unrank permutations in lexicographic order. The uniform
algorithms run inO(nlogn) time and outperform Knuth’s
ranking algorithm in all the experiments, and also the linea
time non-lexicographic algorithm of Myrvold-Ruskey for
permutations up to size 128. The non-uniform algorithms
generalize Korf-Schultze’s linear time algorithm yet rizqu
much less space.

Introduction

In an increasing number of different applications, most of
them related to heuristic search and combinatorial optimiz
tion (Korf & Schultze 2005; Ruskey, Jiang, & Weston 1995;
Critani, Dall’Aglio, & Biase 1997), there is the need to
rank a given permutation over elements into an integer
between0 andn! — 1, and also to unrank such integer
into a permutation. In others cases, one is interested in
a particular subset of elements, and given a permutation
over n_elements, rank/unrank the positions of these ele-
ments (Culberson & Schaeffer 1998; Korf & Felner 2002;
Felner, Korf, & Hanan 2004). A ranking function is called
lexicographic if it maps a permutation and its lexicographi
cally next permutation into consecutive integers.

There are well-known algorithms for these tasks that per-
form O(n) arithmetic operations but not in lexicographic
order (Myrvold & Ruskey 2001). For lexicographic rank-
ing/unranking, there ar®(n logn) algorithms that rely on
modular arithmetic based on inversion tables (Knuth 1973,
Ex. 6, p. 19), and also unrank algorithms based on binary
search. Myrvold and Ruskey (Myrvold & Ruskey 2001)
mention that using a data structure of Dietz (1989), the num-
ber of operations can be reduced¢n log n/ loglogn) but
the algorithm is rather complicated and difficult to imple-
ment. All these algorithms are uniform in the sense that they
work for permutations of any size without the need to pre-
process or store additional information (advice).

Non-uniform linear-time algorithms for ranking and un-
ranking in lexicographic order were presented in (Korf &

The main contribution of this paper is the development
of novel uniform algorithms for ranking and unranking of
permutations in lexicographic order that perfatrtr. log n)
arithmetic operations and utiliz&(n) space. The algo-
rithms are very simple and easy to implement. We also per-
form an empirical comparison against the linear-time algo-
rithm of Myrvold and Ruskey, and the algorithm of Knuth in
order to account for the hidden constant factors. As it will
be seen, the new algorithms dominate Knuth'’s algorithm, are
faster than Myrvold and Ruskey’s for small and fall a bit
short of the latter for, up to size 1,024.

We also present a generalization of Korf-Schultze’s non-
uniform linear-time ranking algorithm that permits to redu
the size of the advice.

The paper is organized as follows. The next two sections
are devoted to the uniform and non-uniform algorithms.
Then, we present some empirical results, and conclude.

Uniform Algorithms

Permutations of sizen are assumed to be over inte-
gers{0,...,n — 1}, and denoted byr = 7p...75_1.
For example,m = 25714603 denotes the permutation
01 2 3 45 6 7
25 71 46 0 3
2, 1is mapped into 5, and so on. The lexicographic ranking
of 7 is defined as

r(m) = do-(n—=D)4+dy-(n—2)!+- - +dp_o-11+d;,—1-0!
)
whered; is the relative position of elemenivith respect to
the elementg < i. Form = 25714603, dy = 2 since0
is goes into position 2¢; = 4 sincel goes into position
4 once(is fixed at position 2, and so on. In generd),
equalsr; minus the number of elements> i that are to the
left of elementi. Eachd; ranges ove{0,...,n — 1 — i}
independently of the others. The vectadh,...,d,—1) is
known as the factorial representation¢fr) as they are the
digits in a factorial-base system and also asitiersion
tablefor = (Knuth 1973).
Another equivalent expression fofr) is

in which 0 is mapped into

Schultze 2005), but these need to pre-calculate and store anr(7) = (- - (do-(n—1)+d1)-(n—2)+- - -+dy—2)-1+dy—1 .

advice of exponential size. Applications that need to per-
form a large number of rank/unrank operations of small size,
e.g.n = 16, can amortize the time to calculate the advice.

2
Both expressions, (1) and (2), are closely related to the way
tuples over Cartesian products are ranked into unique inte-

©) @

(0 (2) @ (2
@ o o O @ @ @
@@0@@0@ @0@@0@0
01 3 6 7 01 3 4 6

®

(2] ©)
© o @ %

0000 (5

6 0
(f) 75 = 6,d5 =2 (@) m =0,dg =0 (h)ymr =3,d7 =0

(C)7T2:7,d2:5 (d)ﬂ'gzl,dgzl

Figure 1: the ranking algorithm applied to permutation= 25714603. Panels (a)—(h) show the paths transversed, the final
configuration of the tree after transversing each path, laedalculated value for each.

gers. The paifz,y) € X x Y is ranked intaz|Y| + y as Input: permutationr and arrayT” of size2' &1 — 1
for eachx there arelY'| possibilities fory. For the triplet Output: rank of
(z,y,2) € X xY x Z, we can either think of it as the pair begin
(z, (y, z)) and rank itintaz|Y'|| Z| 4+ (y| Z| + z), or think of k := [logn]
it as the pair((«,y), z) and rank it into(z|Y| + y)| Z| + z. rank :=0
Both expression are equivalent. As each factorial digit fori=1to 2"*F —1doT[i] =0
ranges oven — i possible values, the vector of factorial dig- for i = 1ton do
its is ranked into (1) (or equivalently (2)). Once the vector ctr = ”[Z]k ,
of factorial digits is known, the rank of the permutation is %‘;dje :—:121:0—};2;—([:]
obtained in |In.e§ll’ time. Therefore, the difficult task is to if node is oddthen ctr = ctr—T[(node > 1) < 1]
compute the digits efficiently. L Tlnode] := Tlnode] + 1
. node := node > 1
Ranking T'[node] := T'[node] + 1
The naive approach to compute the factorial digits is to scan | rank:=rank-(n+1—1i) +ctr
the permutation from left to right counting the number of return rank

elements to the left afthat are less thai) and then setting

d; to ; minus such count. This method requires linear time)))))

per digit which results in a®(n?) algorithm. Figure 2:0(nlogn) uniform lexicographic ranking.
However, if at the time of computing;, =; > [n/2] and

the number of elements less thaim positions0 to [n/2]

end

is stored in a counter, then only positions betwéef2| -+ value stored at the left child of the parent, and 2) increase
1 andm; — 1 must be scanned. If we apply this principle the value stored at the current node. At the end of the jour-
recursively, dividing by half successively the interialn — ney, the value of the counter is the valuedpf
1], the time to computé; is reduced t@ (log n). This is the For example, forr = 25714603, the path transversed for
underlying principle in the algorithm that is explained hex dj starts at the leaf associated with = 2 (the third leaf

Let us assume for the moment that= 2 is a power of 2. from the left). Since all initial stored values equal zererth

In order to store the required counts, we make use of a com- dy = 2. The resulting tree and the path transversedifor
plete binary tree of height whose nodes store the counts, are shown in Fig. 1(a). Faf,, the counter is initialized to
and where the) leaves are associated with the elements of 7; = 5 and the path starts at the leaf associatedl. tdhis

the permutation. Initially, all stored values equal zero. leaf is a right child but its left sibling has a stored value of
To calculated;, the algorithm transverses the tree in a 0 so the counter does not change. The next node is a left

bottom-upmanner. Starting at the leaf associated with child and so the counter is not decremented. Finally, just

and by using a counter initialized to the valug the algo- before moving to the root, the node is a right child and the

rithm moves up along the path that leads to the root perform- left sibling has a stored value of 1. This value is decrentnte
ing two operations at each node: 1) if the current node is the from the counter that becomes 4 which is the final value of
right child of its parent then subtract from the counter the d;. Panels (a)—(h) in Fig. 1 show all paths transversed by the

(€)ds =2,my = () ds =2,m5=6

(9)ds =0,m6 =0 (h)dr; =0,m7 =3

Figure 3: the unranking algorithm applied to the factorigitd 24512200. Panels (a)-(h) show the paths tranversed, the final
configuration of the tree after transversing each path, la@dalculated value for eaeh.

algorithm and the calculated values.

Input : factorial digitsd, arrayr, and arrayl” of size2! Tlee "1 _ 1

The tree used to compute the rank can be stored layer-by- Output: permutationr

layer in an array of siz€n — 1 indexed from 1 t@n — 1,

as done with heaps (Cormen, Leiserson, & Rivest 1990).
In this array, the left and right children of nodeare the
nodes2i and2i + 1 respectively, the parent of nodés the
node; =2, and all leaves appear ordered from left to right in
positionsn through2n — 1. A nodes is a left or right child
whetheri is even or odd. The pseudo-code of the ranking
algorithm is depicted in Fig. 2.

Unranking

Unranking is the inverse process: given a rargbtain the
permutationr such that-(7) = r. In this case, the factorial
digits are obtained in linear time from using successive
integer divisions and mod operations. The valljggives
the relative position of elementin the permutation once the
elementg < i had been placed. In the example, the position
of 0 is 2, the relative position df is 4 and given that position

2 is occupied then goes into position 5, and so on.

A naive algorithm scans the permutation being con-
structed at each stage in order to place elenayiven its
relative positiond; which results in aD(n?) algorithm. As
before, the time can be reduced @in logn) by using a
complete binary tree of heiglitog n]. This time, the stored
values for nodes at depitare initialized ta2*—?.

Once thel;’s are calculated, the algorithm transverses the
tree in atop-downmanner for eacld;. Starting at the root,
the algorithm chooses the next node as the left or right child
whetherd; is less than the stored value at the left child. If the
next node is the right child, then the value of the left chéld i

'For general values of, the tree is of heighflogn] which
occupiesO(n) space.

2n < 1 refers to a left shift of 1 position and similar for
‘n > 1"and ‘n = m’ to the integer division ok by m.

begin
k := [logn]
for : = 0to k do
| forj=1t02'doT[2° +j—1]:=1< (k—1)
for i = 1ton do
digit := d[i
node := 1
forj=1tokdo
T'[node] := Tnode] — 1
node := node K 1
if digit > T'[node] then
digit := digit — T'[node]
node := node + 1

T'[node] := 0
| 7[i] < node — 2*

end
Figure 4:0(n log n) uniform lexicographic unranking.

subtracted fronal;. With each movement, the stored counts
along the nodes in the transversed path are decremented. Fi-
nally, upon reaching a leaf, the valugis set to the position
associated to the leaf. Panels (a)—(h) in Fig. 3 show thespath
transversed for the example, and Fig. 4 the pseudo-code for
the unranking algorithm.

The reader should note that the final configuration for the
unranking algorithm equals the initial configuration foe th
ranking algorithm and vice versa, and thus efficient imple-
mentations can exploit this fact too.

Non-Uniform Algorithms

Non-uniform algorithms solves tasks efficiently for fixed
values of parameters utilizing pre-computed information

(also called advice). Typically, the computation and/aesi © | m=logn | m=n° | m=n/logn
of the advice may be large, but such investment cab be ef- T(n) | n?/logn n?=¢ nlogn
fectively amortized if a large number of computations are A(n) | nloglogn | 2" logn | 2"/ 18" logn

performed.
In the case of ranking and unranking permutations, a non- Table 1: Asymtotic growth rate€)) for time and space for

uniform algorithm only works for permutations of fixed size. the three choices of in the non-uniform ranking algorithm.

If the size of the permutation changes, another advice must

be generated before running the algorithm again.

The idea behind Korf-Schultze’s algorithm is to use a ta- In general, we have the relation

ble T.. to store for each integer of bits, the number of bits

equal to 1 in its binary representation. The table is used as [r/m]

follows. T,IN] = Y T7[(N>>mk)&mask],
Recall that to rank a permutation we need to compute k=0

thed;’s, and thatl; equalsr; minus the number of elements
to the left ofr; that are less than it. If, as we compute each £ the case ofi — 25 andm — 5. above expression re-

d;’'s, we set to 1 ther;-th bit in an integetV of n bits, then quires 5 access (per digit) to the tableT™* whose size is
it is not hard to see that 25log 5] = 96 bits.

d; = Fi—TT[N > (n—z)]

wheremask is the m-bit integers with all bits equal to 1.

Tradeoffs
Indeed, in our example, we have The parametemn has influence on both the running time and
i | m; | N before | T, | d; N after the stored size. A large:, implies more size but less com-
0| 2 | 00000000 2 | 00000100 putation time, while a small, implies less size but more
1| 5 | 00000100{ 1 | 4 | 00100100 computation time. The extremes valuesmofare easy to
2| 7 | 00100100{ 2 | 5 | 10100100 calculate yet deserve attention. Fpr= n, we obtain Korf-
3| 1 |10100100{ O | 1 | 10100110 Schultze’s algorithm with an advice of sizdn) = 2" log n
4| 4 | 10100110{ 2 | 2 | 10110110 and linear running time. Fon = 1, we obtain the naive al-
5| 6 | 10110110{ 4 | 2 | 11110110 gorithm with constant space and quadratic running time.
6| 0| 11110110 0 | 11110111 If m is constant, the quadratic running time is reduced by
7| 3 | 11110111 3 | 0 | 11111111 a constant factor but only need to store a constant amount

where the third column refers to integsrbefore the update ~ Of Space©(2™logm). If m = n/c, for constant:, we

atiteration, and the last column refers f after the update. 96t @ linear time algorithm reducing the amount of space
The tableT,,, which is precomputed and stored in mem- 10 A(n) = ©(2"/*logn) by an exponential factor; this case

ory, allows us to compute any number of rankings in linear 1S @good choice when is small. _

time. The size off}. is clearly2” logn bits. Forn = 16, For largen, we consider the parameter as a function

we need to storé5, 536 entries each requiring at most 4 bits ~ 0f n. Of special interest are the three cases:= logn,

for a total of 256K bytes, and for = 25 the table contains ™ = n, fore > 0, andm = n/logn. Table 1 shows the

33,554, 432 entries each requiring at most 5 bits for a total Obtained exact asymptotic growth rates for the runningsime

size of 20M bytes which is a considerable amount of mem- and advice sizes for each choicerof

ory. In the second cased(n) is dominated by" for every
¢ > 1,ie. A(n)/c" — 0, and thus the algorithm uses
Ranking sub-exponential space. For instancepif = /n, then

The idea is very simple, instead of the big tafije storea T(n) = @_(”3/2) and A(n) = Q(Qﬁlog”)_' In the last
smaller tableT™* of size2™ log m bits thatindexes aninteger ~ €@S€,A(n) is also sub-exponential but domina@s log n.

N of m bits into the number of bits equal 1 iN. Given Finally, observe that none of these three cases is superior t
such table, the ranking algorithm needs to access the table the uniform algorithm that runs in tim@(n log n) and uses
multiple timesdepending onn. Thus,m should be treated O(n) space.

as a parameter that tradeoffs the size of the advice versus th .

running time. Before explaining how to exploit this tradé of ~ Unranking

in practice, let us explain the ranking algorithm. To unrank in linear time, consider a taife that maps rel-
In our example, consider the cage= 4. We have a table ative positions) < p < n and integers of. bits into po-

T7 that maps integers dfbits into the number of bits equal sjtions. The entryT, [p, N] indicates the position of the
to 1 in each such integer. Since the number of bits equal to ,th 0-bit in . Then, 77,4, n, = i WhereNy = 0 and

1 in 8 bits, equals the sum of the number of bits equalsto 1 5. . = Ni|(1 < 7). The size of tableT, is clearly
in each 4-bit half, we have @1(;271)_ ! ! “

T,[N] = T:[N&mask] + T [(N > 4)&mask] , As before, we can reduce the space r]eed.ed by uging a
smaller tableT’ of size®(m2™). The running time is this

wheremask is the 4-bit integers with all bits equal to 1. case become®(n) = ©(n?/m) and the spacel(n) =

O(m2™). The tableT s maps a positiod < p < m andm-
bit integer NV into the position of thepth zero inN if there
is such zero or ton otherwise.

In our example, forn = 4, T.* maps positiond < p < 4
and 4-bit integers:

T, | 0000| 0001| 0010| 0011] ... | 1110| 1111
0 0 1 0 2 0
1 1 2 2 3 4 4
2 2 3 3 4 4 4
3 3 4 4 4 4 4
Let us define the functioffi, (p, N) as
~ N 0 if p<O,
Tulp,N) = { T*[p,N] if p>0.

The relation between the taldlg and the functiorﬁ is
Tulp, N] = Tulpo, N&mask) + Tu(p1, (N >4)&mask)
wherepy = p andp; = pg — m + T,.(N&mask).
example,
T..[2,00000000] = 7,,(2,0000) + T, (—2,0000)
=240=2 = =2
T.[4,00000100] = T,,(4,0100) + T}, (1,0000)
=441 =5= m=5
T.[5,00100100] = T, (5,0100) + T, (2,0010)
=443 =7 = m="7
T,[1,10100100] = T,(1,0100) + T,,(—2,1010)
=140=1= m=1
T,[2,10100110] = 7,,(2,0110) + T, (0, 1010)
=440=4 — my, =4
T,[2,10110110] = 7T,(2,0110) + T, (0,1011)
=442 =6 — 7w5=06
T,[0,11110110] = T,(0,0110) + T,,(—1,1111)
=04+0=0= mm=0
T,[0,11110111] = T,(0,0111) + T,,(—1,1111)

For

=340=3 = m =3
In general, we have
[n/m]
Tulp, N] = Z Ty (p, (N >mk)&mask)
k=0

wherepy = p andp;+1 = p; — m + T,.[(N > ik)&mask].
The total required size i®(2"m logm) bits and the over-
all running time for unranking becomé&(n?/m) since to
compute each permutation element we need to perfoim
table lookups. The tradeoffs are similar to the ranking case

Empirical Results

A fair comparison should be made between algorithms in
the same class, i.e. either uniform or non-uniforie

chose to make an empirical comparison between uniform
algorithms over permutations of different sizeslthough,

the algorithm of Myrvold-Ruskey runs in linear time and is
non-lexicographic, we decided to compare our algorithms to
it and to Knuth'’s ranking algorithm; Knuth does not say how
to unrank permutations, though.

We implemented the ranking algorithm proposed here,
an iterative version of Myrvold-Ruskey’s algorithm, and
Knuth's algorithm. These algorithms were run on permu-
tations of sizes 4 to 1,024, and to avoid multiple-precision
arithmetic (which is the same for all algorithms once the
factorial digits are computed), we modified the algorithms
in order to just compute the factorial digits and not the rank

In a first experiment, we compared our algorithms against
Myrvold-Ruskey’s and Knuth's over ‘small’ random permu-
tations of sizes 4, 8, 12, ..., 24. For each size, 10 million
ranking operations were performed on random permutations
of the given size. The time reported is the cumulative time
of the 10 million rankings.

Results are depicted in Fig. 5(a). The first observation is
that Knuth’s algorithm is clearly outperformed by the two
others. As noted in (Myrvold & Ruskey 2001), this is due
to the excessive use of modular arithmetic. The second ob-
servation is that our algorithm is the fastest for thesessize
even though Myrvold-Ruskey’s is a linear-time algorithm.
This suggests that the constant factors hidden in the asymp-
totics is much bigger for Myrvold-Ruskey’s than for our al-
gorithm. Indeed, the ratio of running times (our/MR’s) are
0.83,0.81,0.94,0.83,0.93,0.92 (aratio< 1 means that our
algorithm runs faster than Myrvold-Ruskey’s). As it can be
seen, the ratios tend to increase with the sizes as expected.

A second experiment compared the algorithms over ‘big’
permutations of sizes 32, 34, 36, ..., 64, 128, ..., 1,024. As
in the first experiment, Knuth’s algorithm is clearly dom-
inated by the other two. As shown, our algorithm runs
faster than Myrvold-Ruskey'’s til permutations of size 128,
the point in which the two curves cross each other, and then
Myrvold-Ruskey’s dominates. This is not surprising given
that our algorithm runs i©(n logn) time and the other in
linear time, yet recall that ours is lexicographic. However
even for the size 1,024, the ratio of running times of our al-
gorithm over Myrvold-Ruskey’s is only.10.

Finally, we did one experiment to compare the new rank-
ing algorithm with Korf and Schultze’s algorithms for per-
mutations of size 16. As before, we only measure the time
to compute the factorial digits for 10 million random per-
mutations. Our algorithm took 9.80 seconds while Korf-
Schultze’s 9.70 seconds demonstrating that the latteriis a b
better than the former (yet this small advantage decreases
even more if the time to calculate the rank from the factorial
digits is accounted for).

Summary

We have presented novel and simplé: log n) uniform al-
gorithms to rank and unrank permutations in lexicographic
order. The algorithms can be easily modified to rank/unrank
subset of elements in permutations, and to compute the in-
version table for a given permutation. The new algorithms

Ranking of 10,000,000 Small Random Permutations

30
A
25]
%) L
2 20t -]
8 -
% XK
2 15 - 4
= 10 ////V*///’ i
5r e Lexicographic —+— -
——— Myrvold-Ruskey
o | Knuth -
4 6 8 10 12 14 16 18 20 22 24

permutation size

(@)

Ranking of 10,000,000 Big Random Permutations

1800 T —

Lexicographic —+—

1600+ Myrvold-Ruskey E
Knuth % g

1400 .

1200 f P

1000 |]

800 | 1

600 -

400
200 | e]
e ‘
32 64 128 256

permutation size

(b)

time in seconds

512 1024

Figure 5: Experimental results for ranking random perniotatof different size. Each point is the accumulated tina tAsult

of ranking 10 million random permutation of the given size.

are competitive against the linear-time algorithms in (Myr
vold & Ruskey 2001) and faster than tliEn log n) algo-
rithm in (Knuth 1973) at least for size up to 1,024.

We also presented novel non-uniform algorithms to rank
and unrank permutations in lexicographic order that gener-
alize the Korf-Schultze’s algorithm (Korf & Schultze 2005)
These algorithms are parametrizedhin For constantn =
n, the algorithms reduce to the linear-time algorithms of
Korf-Schultze yet they require an advice of exponentia siz
O(n2™). Form = n/e, the algorithms are still linear-time
yet the size of the advice reduces@gn2m/¢, that is still
exponential but can be a good choice when the size of the
permutation is small and a great number of rank/unrank op-
erations need to be performed. The resulting asymptotic be-
haviors in time and space are analyzed for other interesting
values of the parametet.

In the future, we would like to develop incremental ver-
sion of the new algorithms as some applications in heuristic
search will benefit from such.

Acknowledgements. We thank the anonymous reviewers
for useful comments. Thanks also to Richard Korf for pro-
viding an extended description of his algorithms and for
valuable feedback.

References

Cormen, T.; Leiserson, C.; and Rivest, R. 19¢8@troduc-
tion to Algorithms MIT Press.

Critani, F.; Dall'Aglio, M.; and Biase, G. D. 1997. Ranking
and unranking permutations with applicatiomsnovation
in Mathematicsl5(3):99-106.

Culberson, J., and Schaeffer, J. 1998. Pattern databases.

Computational Intelligencé4(3):318-334.

ietz, P. F. 1989. Optimal algorithms for list indexing and
subset ranking. IfProc. of Workshop on Algorithms and
Data Structures39—46. Springer LNCS 382.

Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-

tern database heuristicSournal of Artificial Intelligence
Researcl22:279-318.

Knuth, D. E. 1973.The Art of Computer Programming,
Vol. lll: Sorting and SearchingAddison-Wesley.

Korf, R., and Felner, A. 2002. Disjoint pattern database
heuristics.Artificial Intelligencel34:9-22.

Korf, R., and Schultze, P. 2005. Large-scale, parallel
breadth-first search. In Veloso, M., and Kambhampati, S.,
eds.,Proc. 20th National Conf. on Artificial Intelligence
1380-1385. Pittsburgh, PA: AAAI Press / MIT Press.

Myrvold, W. J., and Ruskey, F. 2001. Ranking and unrank-
ing permutations in linear timelnformation Processing
Letters79(6):281-284.

Ruskey, F.; Jiang, M.; and Weston, A. 1995. The Hamil-
tonicity of directeds-7 Cayley graphs (or: A tale of back-
tracking). Discrete Appl. Math57(1):75-83.

