
6.5. PROBABILITY CALCULATIONS IN HASHING 245

6.5 Probability Calculations in Hashing

We can use our knowledge of probability and expected values to analyze a number of interesting
aspects of hashing including:

1. expected number of items per location,

2. expected time for a search,

3. expected number of collisions,

4. expected number of empty locations,

5. expected time until all locations have at least one item,

6. expected maximum number of items per location.

Expected Number of Items per Location

Exercise 6.5-1 We are going to compute the expected number of items that hash to any
particular location in a hash table. Our model of hashing n items into a table of
size k allows us to think of the process as n independent trials, each with k possible
outcomes (the k locations in the table). On each trial we hash another key into the
table. If we hash n items into a table with k locations, what is the probability that
any one item hashes into location 1? Let Xi be the random variable that counts the
number of items that hash to location 1 in trial i (so that Xi is either 0 or 1). What
is the expected value of Xi? Let X be the random variable X1 + X2 + · · · + Xn.
What is the expected value of X? What is the expected number of items that hash
to location 1? Was the fact that we were talking about location 1 special in any way?
That is, does the same expected value apply to every location?

Exercise 6.5-2 Again we are hashing n items into k locations. Our model of hashing is
that of Exercise 6.5-1. What is the probability that a location is empty? What is
the expected number of empty locations? Suppose we now hash n items into the
same number n of locations. What limit does the expected fraction of empty places
approach as n gets large?

In Exercise 6.5-1, the probability that any one item hashes into location 1 is 1/k, because all
k locations are equally likely. The expected value of Xi is then 1/k. The expected value of X is
then n/k, the sum of n terms each equal to 1/k. Of course the same expected value applies to
any location. Thus we have proved the following theorem.

Theorem 6.13 In hashing n items into a hash table of size k, the expected number of items that
hash to any one location is n/k.

246 CHAPTER 6. PROBABILITY

Expected Number of Empty Locations

In Exercise 6.5-2 the probability that position i will be empty after we hash 1 item into the table
will be 1− 1

k . (Why?) In fact, we can think of our process as an independent trials process with
two outcomes: the key hashes to slot i or it doesn’t. From this point of view, it is clear that the
probability of nothing hashing to slot i in n trials is (1 − 1

k)n. Now consider the original sample
space again and let Xi be 1 if slot i is empty for a given sequence of hashes or 0 if it is not. Then
the number of empty slots for a given sequence of hashes is X1 +X2 + · · ·+Xk evaluated at that
sequence. Therefore, the expected number of empty slots is, by Theorem 6.9, k(1 − 1

k)n. Thus
we have proved another nice theorem about hashing.

Theorem 6.14 In hashing n items into a hash table with k locations, the expected number of
empty locations is k(1 − 1

k)n.

Proof: Given above.

If we have the same number of slots as places, the expected number of empty slots is n(1− 1
n)n,

so the expected fraction of empty slots is (1− 1
n)n. What does this fraction approach as n grows?

You may recall that limn→∞(1 + 1
n)n is e, the base for the natural logarithm. In the problems at

the end of the section, we show you how to derive from this that limn→∞(1− 1
n)n is e−1. Thus for

a reasonably large hash table, if we hash in as many items as we have slots, we expect a fraction
1/e of those slots to remain empty. In other words, we expect n/e empty slots. On the other
hand, we expect n

n items per location, which suggests that we should expect each slot to have an
item and therefore expect to have no empty locations. Is something wrong? No, but we simply
have to accept that our expectations about expectation just don’t always hold true. What went
wrong in that apparent contradiction is that our definition of expected value doesn’t imply that
if we have an expectation of one key per location then every location must have a key, but only
that empty locations have to be balanced out by locations with more than one key. When we
want to make a statement about expected values, we must use either our definitions or theorems
to back it up. This is another example of why we have to back up intuition about probability
with careful analysis.

Expected Number of Collisions

We say that we have a collision when we hash an item to a location that already contains an
item. How can we compute the expected number of collisions? The number of collisions will
be the number n of keys hashed minus the number of occupied locations because each occupied
location will contain one key that will not have collided in the process of being hashed. Thus, by
Theorems 6.9 and 6.10,

E(collisions) = n − E(occupied locations) = n − k + E(empty locations) (6.26)

where the last equality follows because the expected number of occupied locations is k minus the
expected number of unoccupied locations. This gives us yet another theorem.

Theorem 6.15 In hashing n items into a hash table with k locations, the expected number of
collisions is n − k + k(1 − 1

k)n.

6.5. PROBABILITY CALCULATIONS IN HASHING 247

Proof: We have already shown in Theorem 2 that the expected number of empty locations is
k(1 − 1

k)n. Substituting this into Equation 6.26 gives our formula.

Exercise 6.5-3 In real applications, it is often the case that the hash table size is not
fixed in advance, since you don’t know, in advance, how many items you will insert.
The most common heuristic for dealing with this is to start k, the hash table size, at
some reasonably small value, and then when n, the number of items gets to be greater
than 2k, you double the hash table size. In this exercise, we propose a different idea.
Suppose you waited until every single slot in the hash table had at least one item in
it, and then you increased the table size. What is the expected number of items that
will be in the table when you increase the size? In other words, how many items do
you expect to insert into a hash table in order to ensure that every slot has at least
one item? (Hint: Let Xi be the number of items added between the time that there
are i − 1 occupied slots for the first time and the first time that there are i occupied
slots.)

For Exercise 6.5-3, the key is to let Xi be the number of items added between the time that
there are i− 1 full slots for the first time and i full slots for the first time. Let’s think about this
random variable. E(X1) = 1, since after one insertion there is one full slot. In fact X1 itself is
equal to 1.

To compute the expected value of X2, we note that X2 can take on any value greater than
1. In fact if we think about it, what we have here (until we actually hash an item to a new slot)
is an independent trials process with two outcomes, with success meaning our item hashes to an
unused slot. X2 counts the number of trials until the first success. The probability of success is
(k − 1)/k. In asking for the expected value of X2, we are asking for expected number of steps
until the first success. Thus we can apply Lemma 6.12 to get that it is k/(k − 1).

Continuing, X3 similarly counts the number of steps in an independent trials process (with
two outcomes) that stops at the first success and has probability of success (k − 2)/k. Thus the
expected number of steps until the first success is k/(k − 2).

In general, we have that Xi counts the number of trials until success in an independent trials
process with probability of success (k− i + 1)/k and thus the expected number of steps until the
first success is k/(k − i + 1), which is the expected value of Xi.

The total time until all slots are full is just X = X1 + · · · + Xk. Taking expectations and
using Lemma 6.12 we get

E(X) =
k∑

j=1

E(Xj)

=
k∑

j=1

k

k − j + 1

= k
k∑

j=1

1
k − j + 1

= k
∑

k − j + 1 = 1k 1
k − j + 1

= k
k∑

i=1

1
i
,

248 CHAPTER 6. PROBABILITY

where the last line follows just by switching the variable of the summation, that is, letting
k − j + 1 = i and summing over i.6 Now the quantity

∑k
i=1

1
i is known as a harmonic number,

and is sometimes denoted by Hk. It is well known (and you can see why in the problems at the
end of the section) that

∑k
i=1

1
i = Θ(log k), and more precisely

1
4

+ ln k ≤ Hk ≤ 1 + ln k, (6.27)

and in fact,
1
2

+ ln k ≤ Hk ≤ 1 + ln k, (6.28)

when k is large enough. As n gets large, Hn − lnn approaches a limit called Euler’s constant;
Euler’s constant is about .58. Equation 6.27 gives us that E(X) = O(k log k).

Theorem 6.16 The expected number of items needed to fill all slots of a hash table of size k is
between k ln k + 1

2k and k ln k + k.

Proof: Given above. .

So in order to fill every slot in a hash table of size k, we need to hash roughly k ln k items.
This problem is sometimes called the coupon collectors problem.

Expected maximum number of elements in a slot of a hash table

In a hash table, the time to find an item is related to the number of items in the slot where
you are looking. Thus an interesting quantity is the expected maximum length of the list of
items in a slot in a hash table. This quantity is more complicated than many of the others
we have been computing, and hence we will only try to upper bound it, rather than compute it
exactly. In doing so, we will introduce a few upper bounds and techniques that appear frequently
and are useful in many areas of mathematics and computer science. We will be able to prove
that if we hash n items into a hash table of size n, the expected length of the longest list is
O(log n/ log log n). One can also prove, although we won’t do it here, that with high probability,
there will be some list with Ω(log n/ log log n) items in it, so our bound is, up to constant factors,
the best possible.

Before we start, we give some useful upper bounds. The first allows us to bound terms that
look like (1 + 1

x)x, for any positive x, by e.

Lemma 6.17 For all x > 0, (1 + 1
x)x ≤ e.

Proof: limx→∞(1 + 1
x)x = e, and 1 + (1

x)x has positive first derivative.

Second, we will use an approximation called Stirling’s formula,

x! =
(

x

e

)x √
2πx(1 + Θ(1/n)),

6note that k − j + 1 runs from k to 1 as j runs from 1 to k, so we are describing exactly the same sum.

6.5. PROBABILITY CALCULATIONS IN HASHING 249

which tells us, roughly, that (x/e)x is a good approximation for x!. Moreover the constant in the
Θ(1/n) term is extremely small, so for our purposes we will just say that

x! =
(

x

e

)x √
2πx.

(We use this equality only in our proof of Lemma 6.18. You will see in that Lemma that we make
the statement that

√
2π > 1. In fact,

√
2π > 2, and this is more than enough to make up for any

lack of accuracy in our approximation.) Using Stirling’s formula, we can get a bound on
(n

t

)
,

Lemma 6.18 For n > t > 0, (
n

t

)
≤ nn

tt(n − t)n−t
.

Proof:
(

n

t

)
=

n!
t!(n − t)!

(6.29)

=
(n/e)n

√
2πn

(t/e)t
√

2πt((n − t)/e)n−t
√

2π(n − t)
(6.30)

=
nn√n

tt(n − t)n−t
√

2π
√

t(n − t)
(6.31)

Now if 1 < t < n − 1, we have t(n − t) ≥ n, so that
√

t(n − t) ≥ √
n. Further

√
2π > 1. We can

use these to facts to upper bound the quantity marked 6.31 by

nn

tt(n − t)n−t

When t = 1 or t = n − 1, the inequality in the statement of the lemma is n ≤ nn/(n − 1)n−1

which is true since n − 1 < n.

We are now ready to attack the problem at hand, the expected value of the maximum list
size. Let’s start with a related quantity that we already know how to compute. Let Hit be the
event that t keys hash to slot i. P (Hit) is just the probability of t successes in an independent
trials process with success probability 1/n, so

P (Hit) =

(
n

t

) (
1
n

)t (
1 − 1

n

)n−t

. (6.32)

Now we relate this known quantity to the probability of the event Mt that the maximum list
size is t.

Lemma 6.19 Let Mt be the event that t is the maximum list size in hashing n items into a hash
table of size n. Let H1t be the event that t keys hash to position 1. Then

P (Mt) ≤ nP (H1t)

250 CHAPTER 6. PROBABILITY

Proof: We begin by letting Mit be the event that the maximum list size is t and this list
appears in slot i. Observe that that since Mit is a subset of Hit,

P (Mit) ≤ P (Hit). (6.33)

We know that, by definition,
Mt = M1t ∪ · · · ∪ Mnt,

and so
P (Mt) = P (M1t ∪ · · · ∪ Mnt).

Therefore, since the sum of the probabilities of the individual events must be at least as large as
the probability of the union,

P (Mt) ≤ P (M1t) + P (M2t) + · · · + P (Mnt). (6.34)

(Recall that we introduced the Principle of Inclusion and Exclusion because the right hand side
overestimated the probability of the union. Note that the inequality in Equation 6.34 holds for
any union, not just this one: it is sometimes called Boole’s inequality.)

In this case, for any i and j, P (Mit) = P (Mjt), since there is no reason for slot i to be more
likely than slot j to be the maximum. We can therefore write that

P (Mt) = nP (M1t) ≤ nP (H1t).

Now we can use Equation 6.32 for P (H1t) and then apply Lemma 6.18 to get that

P (H1t) =

(
n

t

) (
1
n

)t (
1 − 1

n

)n−t

≤ nn

tt(n − t)n−t

(
1
n

)t (
1 − 1

n

)n−t

.

We continue, using algebra, the fact that (1 − 1
n)n−t ≤ 1 and Lemma 6.17 to get

≤ nn

tt(n − t)n−tnt

=
nn−t

tt(n − t)n−t

=
(

n

n − t

)n−t 1
tt

=
(

1 +
t

n − t

)n−t 1
tt

=

((
1 +

t

n − t

)n−t
t

)t
1
tt

≤ et

tt
.

We have shown the following:

6.5. PROBABILITY CALCULATIONS IN HASHING 251

Lemma 6.20 P (Mt), the probability that the maximum list length is t, is at most net/tt.

Proof: Our sequence of equations and inequalities above showed that P (H1t) ≤ et

tt . Multiply-
ing by n and applying Lemma 6.19 gives our result.

Now that we have a bound on P (Mt) we can compute a bound on the expected length of the
longest list, namely

n∑

t=0

P (Mt)t.

However, if we think carefully about the bound in Lemma 6.20, we see that we have a problem.
For example when t = 1, the lemma tells us that P (M1) ≤ ne. This is vacuous, as we know that
any probability is at most 1, We could make a stronger statement that P (Mt) ≤ max{net/tt, 1},
but even this wouldn’t be sufficient, since it would tell us things like P (M1) + P (M2) ≤ 2, which
is also vacuous. All is not lost however. Our lemma causes this problem only when t is small.
We will split the sum defining the expected value into two parts and bound the expectation for
each part separately. The intuition is that when we restrict t to be small, then

∑
P (Mt)t is small

because t is small (and over all t,
∑

P (Mt) ≤ 1). When t gets larger, Lemma 6.20 tells us that
P (Mt) is very small and so the sum doesn’t get big in that case either. We will choose a way
to split the sum so that this second part of the sum is bounded by a constant. In particular we
split the sum up by

n∑

t=0

P (Mt)t ≤
�5 log n/ log log n�∑

t=0

P (Mt)t +
n∑

t=�5 log n/ log log n�
P (Mt)t (6.35)

For the sum over the smaller values of t, we just observe that in each term t ≤ 5 log n/ log log n
so that

5 log n/ log log n∑

t=0

P (Mt)t ≤
5 log n/ log log n∑

t=0

P (Mt)5 log n/ log log n (6.36)

= 5 log n/ log log n

5 log n/ log log n∑

t=0

P (Mt) (6.37)

≤ 5 log n/ log log n (6.38)

(Note that we are not using Lemma 6.20 here; only the fact that the probabilities of disjoint
events cannot add to more than 1.) For the rightmost sum in Equation 6.35, we want to first
compute an upper bound on P (Mt) for t = (5 log n/ log log n). Using Lemma 6.20, and doing a
bit of calculation we get that in this case P (Mt) ≤ 1/n2. Since the bound on P (Mt) from Lemma
6.20 decreases as t grows, and t ≤ n, we can bound the right sum by

n∑

t=5 log n/ log log n

P (Mt)t ≤
n∑

t=5 log n/ log log n

1
n2

n ≤
n∑

t=5 log n/ log log n

1
n
≤ 1. (6.39)

Combining Equations 6.38 and 6.39 with 6.35 we get the desired result.

Theorem 6.21 If we hash n items into a hash table of size n, the expected maximum list length
is O(log n/ log log n).

252 CHAPTER 6. PROBABILITY

The choice to break the sum into two pieces here—and especially the breakpoint we chose—
may have seemed like magic. What is so special about log n/ log log n? Consider the bound on
P (Mt). If you asked what is the value of t for which the bound equals a certain value, say 1/n2,
you get the equation net/tt = n−2. If we try to solve the equation net/tt = n−2 for t, we quickly
see that we get a form that we do not know how to solve. (Try typing this into Mathematica or
Maple, to see that it can’t solve this equation either.) The equation we need to solve is somewhat
similar to the simpler equation tt = n. While this equation does not have a closed form solution,
one can show that the t that satisfies this equation is roughly c log n/ log log n, for some constant
c. This is why some multiple of log n/ log log n made sense to try as the the magic value. For
values much less than log n/ log log n the bound provided on P (Mt) is fairly large. Once we get
past log n/ log log n, however, the bound on P (Mt) starts to get significantly smaller. The factor
of 5 was chosen by experimentation to make the second sum come out to be less than 1. We
could have chosen any number between 4 and 5 to get the same result; or we could have chosen
4 and the second sum would have grown no faster than the first.

Important Concepts, Formulas, and Theorems

1. Expected Number of Keys per Slot in Hash Table. In hashing n items into a hash table of
size k, the expected number of items that hash to any one location is n/k.

2. Expected Number of Empty Slots in Hash Table. In hashing n items into a hash table with
k locations, the expected number of empty locations is k(1 − 1

k)n.

3. Collision in Hashing. We say that we have a collision when we hash an item to a location
that already contains an item.

4. The Expected Number of Collisions in Hashing. In hashing n items into a hash table with
k locations, the expected number of collisions is n − k + k(1 − 1

k)n.

5. Harmonic Number. The quantity
∑k

i=1
1
i is known as a harmonic number, and is sometimes

denoted by Hk. It is a fact that that
∑k

i=1
1
i = Θ(log k), and more precisely

1
2

+ ln k ≤ Hk ≤ 1 + ln k.

6. Euler’s Constant. As n gets large, Hn − lnn approaches a limit called Euler’s constant;
Euler’s constant is about .58.

7. Expected Number of Hashes until all Slots of a Hash Table Are Occupied. The expected
number of items needed to fill all slots of a hash table of size k is between k ln k + 1

2k and
k ln k + k.

8. Expected Maximum Number of Keys per Slot. If we hash n items into a hash table of size
n, the expected maximum list length is O(log n/ log log n).

6.5. PROBABILITY CALCULATIONS IN HASHING 253

Problems

1. A candy machine in a school has d different kinds of candy. Assume (for simplicity) that all
these kinds of candy are equally popular and there is a large supply of each. Suppose that c
children come to the machine and each purchases one package of candy. One of the kinds of
candy is a Snackers bar. What is the probability that any given child purchases a Snackers
bar? Let Yi be the number of Snackers bars that child i purchases, so that Yi is either 0
or 1. What is the expected value of Yi? Let Y be the random variable Y1 + Y2 + · · · + Yc.
What is the expected value of Y ? What is the expected number of Snackers bars that is
purchased? Does the same result apply to any of the varieties of candy?

2. Again as in the previous exercise, we have c children choosing from among ample supplies
of d different kinds of candy, one package for each child, and all choices equally likely. What
is the probability that a given variety of candy is chosen by no child? What is the expected
number of kinds of candy chosen by no child? Suppose now that c = d. What happens to
the expected number of kinds of candy chosen by no child?

3. How many children do we expect to have to observe buying candy until someone has bought
a Snackers bar?

4. How many children to we expect to have to observe buying candy until each type of candy
has been selected at least once?

5. If we have 20 kinds of candy, how many children have to buy candy in order for the
probability to be at least one half that (at least) two children buy the same kind of candy?

6. What is the expected number of duplications among all the candy the children have se-
lected?

7. Compute the values on the left-hand and right-hand side of the inequality in Lemma 6.18
for n = 2, t = 0, 1, 2 and for n = 3, t = 0, 1, 2, 3.

8. When we hash n items into k locations, what is the probability that all n items hash to
different locations? What is the probability that the ith item is the first collision? What
is the expected number of items we must hash until the first collision? Use a computer
program or spreadsheet to compute the expected number of items hashed into a hash table
until the first collision with k = 20 and with k = 100.

9. We have seen a number of occasions when our intuition about expected values or probability
in general fails us. When we wrote down Equation 6.26 we said that the expected number
of occupied locations is k minus the expected number of unoccupied locations. While this
seems obvious, there is a short proof. Give the proof.

10. Write a computer program that prints out a table of values of the expected number of
collisions with n keys hashed into a table with k locations for interesting values of n and
k. Does this value vary much as n and k change?

11. Suppose you hash n items into a hash table of size k. It is natural to ask about the time
it takes to find an item in the hash table. We can divide this into two cases, one when the
item is not in the hash table (an unsuccessful search), and one when the item is in the hash
table (a successful search). Consider first the unsuccessful search. Assume the keys hashing

254 CHAPTER 6. PROBABILITY

to the same location are stored in a list with the most recent arrival at the beginning of the
list. Use our expected list length to bound the expected time for an unsuccessful search.
Next consider the successful search. Recall that when we insert items into a hash table, we
typically insert them at the beginning of a list, and so the time for a successful search for
item i should depend on how many entries were inserted after item i. Carefully compute
the expected running time for a successful search. Assume that the item you are searching
for is randomly chosen from among the items already in the table. (Hint: The unsuccessful
search should take roughly twice as long as the successful one. Be sure to explain why this
is the case.)

12. Suppose I hash n log n items into n buckets. What is the expected maximum number of
items in a bucket?

13. The fact that limn→∞(1 + 1
n)n = e (where n varies over integers) is a consequence of the

fact that limh→0(1 + h)
1
h = e (where h varies over real numbers). Thus if h varies over

negative real numbers, but approaches 0, the limit still exists and equals e. What does this
tell you about limn→−∞(1+ 1

n)n? Using this and rewriting (1− 1
n)n as (1+ 1

−n)n show that

14. What is the expected number of empty slots when we hash 2k items into a hash table with
k slots? What is the expected fraction of empty slots close to when k is reasonably large?

15. Using whatever methods you like (hand calculations or computer), give upper and/or lower
bounds on the value of the x satisfying xx = n.

16. Professor Max Weinberger decides that the method proposed for computing the maximum
list size is much too complicated. He proposes the following solution. Let Xi be the size of
list i. Then what we want to compute is E(maxi(Xi)). Well

E(max
i

(Xi)) = max
i

(E(Xi)) = max
i

(1) = 1.

What is the flaw in his solution?

17. Prove as tight upper and lower bounds as you can on
∑k

i=1
1
i . For this purpose it is useful

to remember the definition of the natural logarithm as an integral involving 1/x and to
draw rectangles and other geometric figures above and below the curve.

18. Notice that lnn! =
∑n

i=1 ln i. Sketch a careful graph of y = lnx, and by drawing in
geometric figures above and below the graph, show that

n∑

i=1

ln i − 1
2

lnn ≤
∫ n

1
lnx dx ≤

n∑

i=1

ln i.

Based on your drawing, which inequality do you think is tighter? Use integration by parts
to evaluate the integral. What bounds on n! can you get from these inequalities? Which
one do you think is tighter? How does it compare to Stirling’s approximation? What big
Oh bound can you get on n!?

