PERMUTATION GENERATION
METHODS

Robert Sedgewick
Princeton University

Motivation

PROBLEM Generate all N! permutations of N elements

Q: Why?
© Basic research on a fundamental problem
> Compute exact answers for insights into combinatorial problems
o Structural basis for backtracking algorithms

Numerous published algorithms, dating back to 1650s

CAVEATS
o N is between 10 and 20
> can be the basis for extremely dumb algorithms

> processing a perm often costs much more than generating it

N is between 10 and 20

N number of perms million/sec| billion/sec|trillion/sec
10(3628800

1139916800 seconds insignificant
12479001600 minutes

136227020800 hours seconds
1487178291200 day minute
15(1307674368000 weeks minutes

16 (20922789888000 months hours seconds
17|355687428096000 years days minutes
18 |6402373705728000 months hours
19/121645100408832000 years days
20/2432902008176640000| . mpossible month

Digression: analysis of graph algorithms

Typical graph-processing scenario:
> input graph as a sequence of edges (vertex pairs)
> build adjacency-lists representation

© run graph-processing algorithm

Q: Does the order of the edges in the input matter?

A: Of coursel

Q: How?
A: It depends on the graph

Q: How?

2
There are 2" graphs, so full employment for algorithm analysts

Digression (continued)

Ex: compute a spanning forest (DFS, stop when V vertices hit)
best case cost: V (right edge appears first on all lists)

Complete digraph on V vertices

worst case: V2
average: VInV (Kapidakis, 1990)

Same graph with single outlier

worst case: O(Vz)
average: O(Vz)

Can we estimate the average for a given graph?
Is there a simple way to reorder the edges to speed things up?

What impact does edge order have on other graph algorithms?

Digression: analysis of graph algorithms

Insight needed, so generate perms to study graphs

No shortage of interesting graphs with fewer than 10 edges

o < ¥

Algorithm to compute average
~ generate perms, run graph algorithm
Goal of analysis

> faster algorithm to compute average

Method 1: backtracking

Compute all perms of a global array by exchanging each
element to the end, then recursively permuting the others
exch (int i, int j)
{ int t = p[i]; p[i] = p[]]; p[]] = t; }
generate(int N)
{ int c;
if (N == 1) doit();
for (¢ = 1; ¢ <= N; c++)
{ exch(c, N); generate(N-1); exch(c, N); }
}
Invoke by calling

generate(N);

B C C b B D DCCADA AUBUDIDM AU BW AUDBTCTCATEB
cCc B DCDBCDATCA ADDBADA AUDBUDBATCA-A
D D B B C CA A DDTCCA AN AUBIBUDDA AN AUB B C
A A A A A A B B B B B B COCTCOCTCTCDDDDD

Problem: Too many (2N!) exchanges (!)

OnQwp

Method 2: "Plain changes™

Sweep first element back and forth to insert it into every

position in each perm of the other elements

AIB BsC
B*As+C*B
cC C

CIA
A*C
A A*B B

AIB B BIC C CIA AIC C CID D DIA AID D DIB B Bs A
B*A¢C C*B BrA*C C*AF*D D*C Cr*rA*D D*AF*YB B*"D DFrA*B
C C AID DIA B BID D AIB BIA C CrB B AIC CIA D D
b p Dp*A A*D D D*"B B B*"A A*B B B*"C C Cc*A A*C C CC

Generates all perms with Nl exchanges of adjacent elements
Dates back to 1650s (bell ringing patterns in English churches)

Exercise: recursive implementation with constant time per exch

General single-exch recursive scheme

Eliminate first exch in backtracking

exch (int i, int j)
{ int t = p[i]; p[i] = p[jl; p[i] = t; }
generate(int N)
{ int c;
if (N == 1) doit();
for (¢ = 1; ¢ <= N; c++)
{ generate(N-1); exch(?, N); }

Detail(?): Where is new item for p[N] each time?

Index table computation

Q: how do we find a new element for the end?

A: compute an index table from the (known) perm for N-1

=

A B CA B C A C
B A A c c B soall perms of 3 takes B into B
C C B B A A C A
1 1
A C D A A D D B A
e a2 a s 58 : soadllperms of 4 takes ¢ into
D D C C B B A A D
1 2 3
A B B C D E E A B C
B cC cC E E A A c cC D
c pE aAa Bc »bpp £ andsoforth
D A A B B D D E E B
E E D D C C B B A A
3 1 3 1

Exercise: Write a program to compute this table

PoQW

Method 3: general recursive single-exch

11
Use precomputed index table 123
3131
Generates perms with N! exchanges 34323
. . . 531531
Simple recursive algorithm 527 21 2
7155 33
generate(int N) 7 8165 4
{ int c; 975319
if (N == 1) doit();

for (¢ = 1; ¢ <= N; c++)
{ generate(N-1); exch(B[N][c], N); }
}

No need to insist on particular sequence for last element
- specifies (N - 1)I(N - 2)!...3!2! different algorithms
Table size is N(N-1)/2 but N is less than 20

Do we need the table?

NOdW

U=

ww

Method 4: Heap's™ algorithm

Index table is not needed

Q: where can we find the next element to put at the end?

A: at 1 if Nis odd; i if N is even

AmB Cm}\ Bmc
B/ * A [A C[C*'B
C C*B B*A A

A B C A B C D B A D B A A C D A COD
B A A C C B B D D A A B C A A DD C
cCc C B B A A A A B B D DD D CTC A A2
D D D D D D C C €C € c c B B B B B B
Exercise: Prove that it works!

*Note: no relationship between Heap and heap data structure

P WO

P WoAN

P QA0 W

P QWO

P OWAO

PoQw

Implementation of Heap's method (recursive)

Simple recursive function

generate(int N)

{ int c;
if (N == 1) { doit(); return; }
for (¢ = 1; ¢ <= N; c++)
{

generate(N-1);
exch(N % 2 ?2 1 : ¢, N)

}

NI exchanges
Starting point for code optimization techniques

Implementation of Heap's method (recursive)

Simple recursive function easily adapts to backtracking

generate(int N)
{ int c;
if (test(N)) return;
for (¢ = 1; ¢ <= N; c++)
{
generate(N-1);
exch(N % 2 ?2 1 : ¢, N)

}

NI exchanges saved when test succeeds

Factorial counting

Count using a mixed-radix number system

n++)

we

for (n = 1; n <= N
c[n] = 1;

for (n = 1; n <= N;)
if (¢c[n] < n) { c[n]++; n = 1; }
else c[n++] = 1;

Values of digit i range from 1 to i

-

, , , ABCD
(Can derive code by systematic recursion removal) pacp
BACD
1-1 correspondence with permutations BDCA
© commonly used to generate random perms
for (1 = 1; i <=N i++) exch(i, random(i));

Use as control structure to generate perms

1111
1211
1121
1221
1131
1231
1112
1212
1122
1222
1132
1232
1113
1213
1123
1223
1133
1233
1114
1214
1124
1224
1134
1234

Implementation of Heap's method (nonrecursive)

generate(int N)
{ int n, t, M;
for (n = 1; n <= N; n++)
{ p[n] = n; c[n] = 1; }
doit();
for (n = 1; n <= N;)
{
if (c[n] < n)
{
exch(N % 2 ?2 1 : ¢, N)
c[n]++; n = 1;
doit();
}
else c[n++] = 1;
}
}

"Plain changes” and most other algs also fit this schema

Analysis of Heap's method

Most statements are executed N! times (by design) except
B(N): the number of tests for N equal to 1 (loop iterations)
A(N): the extra cost for N odd

Recurrence for B
B(N)=NB(N-1)+1 for N> 1 with B(1) =1

Solve by dividing by N! and telescoping
B(N)=B(N—1)+1 1 1 1

=1+ =+ —+...

+ —
NI (N-1) NI 2l 3l NI

Therefore B(N) - {N! (e - 1)J and similarly A(N) - {N! /eJ

Typical running time: 19N!+A(N) + 10B(N) 36.55N!\

worthwhile to lower constant huge quantity

Improved version of Heap's method (recursive)

generate(int N)

{ int c;
if (N == 3)
{ doit();

pl = p[l]; p2 = p[2]; p3 = p[3];
pl[2] = pl; p[l] = p2; doit();
pl[l] = p3; p[3] = p2; doit();
pl[l] = pl; p[2] = p3; doit();
pll] = p2; p[3] = pl; doit();

p[1l] = p3; p[2] = p2; doit(); return;
}
for (¢ = 1; ¢ <= N; c++)
{

generate(N-1);
exch(N % 2 ?2 1 : ¢, N)

Bottom line

Quick empirical study on this machine (N = 12)

Heap (recursive)lll 415.2 secs
cc -O4[54.1 secs

Javalllll 442.8 secs

Heap (nonrecursive)lll 84.0 secs
inline N = 2[T 92.4 secs

inline N = 300 51.7 secs

cc -O4[l] 3.2 secs

about (1/6) billion perms/second

Lower Bound: about 2Nl! register transfers

References

Heap, "Permutations by interchanges,”
Computer Journal, 1963

Knuth, The Art of Computer Programming, vol. 4 sec. 7.2.1.1
/ /vww-cs-faculty.stanford.edu/~knuth/taocp.html

Ord-Smith, “Generation of permutation sequences,”
Computer Journal, 1970-71

Sedgewick, Permutation Generation Methods,
Computing Surveys, 1977

Trotter, “"Perm (Algorithm 115),”
CACM, 1962

Wells, Elements of combinatorial computing, 1961

[see surveys for many more]

Digression: analysis of graph algorithms

Initial results (Dagstuhl, 2002)

