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Motivation

PROBLEM Generate all N! permutations of N elements

Q: Why?

 Basic research on a fundamental problem

 Compute exact answers for insights into combinatorial problems

 Structural basis for backtracking algorithms

Numerous published algorithms, dating back to 1650s

CAVEATS

 N is between 10 and 20

 can be the basis for extremely dumb algorithms

 processing a perm often costs much more than generating it



N is between 10 and 20

month
days

243290200817664000020
years12164510040883200019

hoursmonths640237370572800018
minutesdaysyears35568742809600017
secondshoursmonths2092278988800016

minutesweeks130767436800015
minuteday8717829120014
secondshours622702080013

minutes47900160012
seconds3991680011

362880010

trillion/secbillion/secmillion/secnumber of permsN

insignificant

impossible



Digression: analysis of graph algorithms

Typical graph-processing scenario:

 input graph as a sequence of edges (vertex pairs)

 build adjacency-lists representation

 run graph-processing algorithm

Q: Does the order of the edges in the input matter?

A: Of course!

Q: How?

A: It depends on the graph

Q: How?

There are   

€ 

2V2
 graphs, so full employment for algorithm analysts



Digression (continued)

Ex: compute a spanning forest (DFS, stop when V vertices hit)

best case cost: V (right edge appears first on all lists)

Complete digraph on V vertices

worst case:   

€ 

V2

average:   

€ 

V lnV (Kapidakis, 1990)

Same graph with single outlier

worst case:   

€ 

O(V2)

average:   

€ 

O(V2)

Can we estimate the average for a given graph?

Is there a simple way to reorder the edges to speed things up?

What impact does edge order have on other graph algorithms?



Digression: analysis of graph algorithms

Insight needed, so generate perms to study graphs

No shortage of interesting graphs with fewer than 10 edges

Algorithm to compute average

 generate perms, run graph algorithm

Goal of analysis

 faster algorithm to compute average



Compute all perms of a global array by exchanging each 
element to the end, then recursively permuting the others
  exch (int i, int j)
    { int t = p[i]; p[i] = p[j]; p[j] = t; }
  generate(int N)
    { int c;
      if (N == 1) doit();
      for (c = 1; c <= N; c++)
        { exch(c, N); generate(N-1); exch(c, N); }
    }
Invoke by calling
  generate(N);

B  C  C  D  B  D  D  C  C  A  D  A  B  D  D  A  B  A  B  C  C  A  B  A
C  B  D  C  D  B  C  D  A  C  A  D  D  B  A  D  A  B  D  B  A  C  A  B
D  D  B  B  C  C  A  A  D  D  C  C  A  A  B  B  D  D  A  A  B  B  C  C
A  A  A  A  A  A  B  B  B  B  B  B  C  C  C  C  C  C  D  D  D  D  D  D

Problem: Too many (2N!) exchanges (!)

Method 1: backtracking



Method 2: “Plain changes” 

Sweep first element back and forth to insert it into every 

position in each perm of the other elements

A  B  B  B  C  C  C  A  A  C  C  C  D  D  D  A  A  D  D  D  B  B  B  A
B  A  C  C  B  B  A  C  C  A  D  D  C  C  A  D  D  A  B  B  D  D  A  B
C  C  A  D  D  A  B  B  D  D  A  B  B  A  C  C  B  B  A  C  C  A  D  D
D  D  D  A  A  D  D  D  B  B  B  A  A  B  B  B  C  C  C  A  A  C  C  C

A  B  B  C  C  A  
B  A  C  B  A  C  
C  C  A  A  B  B 

Generates all perms with N! exchanges of adjacent elements

Dates back to 1650s (bell ringing patterns in English churches)

Exercise: recursive implementation with constant time per exch



Eliminate first exch in backtracking

  exch (int i, int j)
    { int t = p[i]; p[i] = p[j]; p[j] = t; }
  generate(int N)
    { int c;
      if (N == 1) doit();
      for (c = 1; c <= N; c++)
        { generate(N-1); exch(?, N); }
    }

 

Detail(?): Where is new item for p[N] each time?

General single-exch recursive scheme



A    C  D    A  A    D  D    B                              A       B
B    B  B    B  C    C  C    C                              B       C
C    A  A    D  D    A  B    D                              C       D 
D    D  C    C  B    B  A    A                              D       A 
     1       2       3

Q: how do we find a new element for the end?

A: compute an index table from the (known) perm for N-1

A  B  C  A  B  C                             A        C
B  A  A  C  C  B                             B        B
C  C  B  B  A  A                             C        A
   1     1

Index table computation

A    B  B    C  D    E  E    A  B    C
B    C  C    E  E    A  A    C  C    D
C    D  E    A  A    B  C    D  D    E
D    A  A    B  B    D  D    E  E    B
E    E  D    D  C    C  B    B  A    A
     3       1       3       1

so all perms of 3 takes    into    

so all perms of 4 takes    into    

and so forth    

Exercise: Write a program to compute this table



Method 3: general recursive single-exch 

Use precomputed index table

Generates perms with N! exchanges

Simple recursive algorithm

1 1
1 2 3
3 1 3 1
3 4 3 2 3
5 3 1 5 3 1
5 2 7 2 1 2 3
7 1 5 5 3 3 7 1
7 8 1 6 5 4 9 2 3
9 7 5 3 1 9 7 5 3 1

  generate(int N)
    { int c;
      if (N == 1) doit();
      for (c = 1; c <= N; c++)
        { generate(N-1); exch(B[N][c], N); }
    }

No need to insist on particular sequence for last element

specifies   

€ 

(N − 1)! (N − 2)!...3! 2! different algorithms

Table size is N(N-1)/2 but N is less than 20

Do we need the table?



A  B  C  A  B  C
B  A  A  C  C  B
C  C  B  B  A  A

Method 4: Heap’s* algorithm 

Index table is not needed

 Q: where can we find the next element to put at the end?

 A: at 1 if N is odd; i if N is even 

A  B  C  A  B  C  D  B  A  D  B  A  A  C  D  A  C  D  D  C  B  D  C  B
B  A  A  C  C  B  B  D  D  A  A  B  C  A  A  D  D  C  C  D  D  B  B  C
C  C  B  B  A  A  A  A  B  B  D  D  D  D  C  C  A  A  B  B  C  C  D  D
D  D  D  D  D  D  C  C  C  C  C  C  B  B  B  B  B  B  A  A  A  A  A  A

Exercise: Prove that it works!

*Note: no relationship between Heap and heap data structure



Simple recursive function

  generate(int N)
    { int c;
      if (N == 1) { doit(); return; }
      for (c = 1; c <= N; c++)
        {
          generate(N-1);
          exch(N % 2 ? 1 : c, N)
        }
    }

N! exchanges
Starting point for code optimization techniques

Implementation of Heap’s method (recursive)



Simple recursive function easily adapts to backtracking

  generate(int N)
    { int c;
      if (test(N)) return; 
      for (c = 1; c <= N; c++)
        {
          generate(N-1);
          exch(N % 2 ? 1 : c, N)
        }
    }

N! exchanges saved when test succeeds

Implementation of Heap’s method (recursive)



Factorial counting

Count using a mixed-radix number system

  for (n = 1; n <= N; n++) 
    c[n] = 1;
  for (n = 1; n <= N; )
    if (c[n] < n) { c[n]++; n = 1; }
    else c[n++] = 1;

Values of digit i range from 1 to i

(Can derive code by systematic recursion removal)

1-1 correspondence with permutations

commonly used to generate random perms
   for (i = 1; i <=N i++) exch(i, random(i));

Use as control structure to generate perms

1111
1211
1121
1221
1131
1231
1112
1212
1122
1222
1132
1232
1113
1213
1123
1223
1133
1233
1114
1214
1124
1224
1134
1234

ABCD
BACD
BACD
BDCA



generate(int N)
  { int n, t, M;
    for (n = 1; n <= N; n++) 
      { p[n] = n; c[n] = 1; }
    doit();
    for (n = 1; n <= N; )
      {
        if (c[n] < n)
          {
            exch(N % 2 ? 1 : c, N)
            c[n]++; n = 1;
            doit();
          }
        else c[n++] = 1;
      }
  }

“Plain changes” and most other algs also fit this schema

Implementation of Heap’s method (nonrecursive)



Most statements are executed N! times (by design) except

B(N): the number of tests for N equal to 1 (loop iterations)

A(N): the extra cost for N odd

Recurrence for B

  

€ 

B(N) = NB(N−1) +1  for   

€ 

N > 1 with   

€ 

B(1) = 1

Solve by dividing by N! and telescoping

  

€ 

B(N)
N!

=
B(N − 1)
(N − 1)!

+
1
N!

= 1 + 1
2!
+

1
3!
+ ... + 1

N!

Therefore 
  

€ 

B(N) = N! (e − 1)  and similarly 
  

€ 

A(N) = N! /e 
Typical running time:   

€ 

19N! +A(N) + 10B(N) ≈ 36.55N!

Analysis of Heap’s method

worthwhile to lower constant      huge quantity



  generate(int N)
    { int c;
      if (N == 3)
        { doit();
          p1 = p[1]; p2 = p[2]; p3 = p[3];
          p[2] = p1; p[1] = p2; doit();
          p[1] = p3; p[3] = p2; doit();
          p[1] = p1; p[2] = p3; doit();
          p[1] = p2; p[3] = p1; doit();
          p[1] = p3; p[2] = p2; doit(); return;
        }
      for (c = 1; c <= N; c++)
        {
          generate(N-1);
          exch(N % 2 ? 1 : c, N)
        }
    }

N! exchanges
Starting point for code optimization techniques

Improved version of Heap’s method (recursive)



Bottom line

    442.8 secsJava!!

    415.2 secs
       54.1 secs

        3.2 secs
       51.7 secs

       92.4 secs
       84.0 secs

cc -O4!!
inline N = 3!!

inline N = 2!!
Heap (nonrecursive)!!

cc -O4!!
Heap (recursive)!!

Quick empirical study on this machine (N = 12)

about (1/6) billion perms/second

Lower Bound: about 2N! register transfers
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Digression: analysis of graph algorithms
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Initial results (Dagstuhl, 2002)


