Negative-Weight Cycle Algorithms

Xiuzhen Huang
Department of Computer Science,
Arkansas State University,
State University, Arkansas 72467 USA.
xzhuang@csm.astate.edu

Abstract vertex s, then for each vertex € V, the weight of
the shortest-path from to v is well defined, even if
The problem of finding a negative cycle in a the weight of the shortest path might have a negative
weighted, directed graph is discussed here. First thevalue. If there is a negative-weight cycle reachable
algorithm for printing out a negative cycle reachable from s, then the weights of the shortest-paths frem
from the sources, with the running time no worse to other vertices are not well-defined.
than the Bellman-Ford algorithm for the single-source |n this paper, the algorithms for finding negative-
shortest-path problem, is presented. Then an ap-weight cycles are derived from the Bellman-Ford al-
proach with the same time complexity, which could be gorithm for the single-source shortest-path problem.
used for outputting a negative cycle that may not be (This is an exercise problem in [3].) Our goal here
reachable from, is reported. is to output a negative-weight cycle if such a cycle ex-
ists in the given weighted, directed graph, such that the
Keywords: algorithm, Bellman-Ford algorithm, running time is no worse than that of the Bellman-Ford
graph, negative-weight cycle algorithm. The main ideas of the approaches discussed
in this report are based on the analysis in [1]-[3].

1 Negative-weight Cycle Problem 2 Basic Definitions and Algorithmic Prepara-

tions
The problem of finding a cycle of negative-weight

in a weighted, directed graph is a classic problem in
algorithm design and analysis. This problem “comes

up both directly, for example in currency arbitrage, and with weight functioni¥ such that for each edde, v),

as a sub-problem in algorithms for other graph (or, net-y, edge weightV’(u, v) is a real number. The length
work) problems, for example the minimum-cost flow I(p) of a pathp =< vg, v1, ..., v > is the sum of the

prob_lem 21" , , weights of its constituent edges. The weight of the
Glyen a weighted, directed grapti . v, E)’ shortest path from vertex to v, (u,v), is the mini-

the single-source shortest-path problem is to find themuml(p), wherep is a path from to v. If there is no

shortest paths from a specific source verteto ev- path fromu to v, I(p) is defined as infinity.

ery other vertex of the grapfy. Dijkstra’s algorithm Given a weighted, directed gragh— (V, E) and a

solves this problem if all edge weights are nonnegativeSource vertex € V. A shortest-path tree rooted at the
values. The Bellman-Ford algorithm solves the single- source vertex is a directed subgrapt’ = (V/, E'),
source shortest-path problem in general case Wher%vherevl and E’ are subsets of and E respectively,
edge weights could be negative values.

As is stated in [3], if a grapli = (V, E) contains
no negative-weight cycles reachable from the source 1. V' is the set of vertices reachable from

Readers are referred to [3] for the following defini-
tions. LetG = (V, E) be a weighted, directed graph,

such that

inG;
2. G’ forms a rooted tree with roat and

3. For allv € V’, the unique path from to
vin G’ is the shortest path fromto v in G.

The process of relaxing an edge, v) consists of
testing whether we can improve the shortest path to
vertexv found so far by going through vertex If
S0, we updatd(v) andw(v), whered(v) initialized as
infinity maintains an upper bound on the length of a
shortest path from the source verteto v, 7(v) main-
tains the predecessor of the vertexwhich may be
another vertex or null. Please refer to the following
pseudo code from [3]:

INITIALIZE-SINGLE-SOURCE (G, s)

Step 1. for each vertex € V of GG, do
Step2. d(v) = oc;

Step3. 7(v) =null;

Step 4.d(s) = 0;

RELAX (u,v, W)

Step 1. ifd(v) > d(u) + W(u,v)
Step2. thenl(v) = d(u) + W(u,v);
Step 3. m(v) = u;
To prove the correctness of the shortest paths algo-

rithms, there are several properties of shortest paths
and relaxations as follows (see [3]).

Subpaths of the shortest paths are shortest
pathes

Given a weighted, directed graph
G = (V,E) with weight function

For any edge(u,v) € E, we have
5(s,v) < d(s,u) + W(u,v).

Upper-bound property

We always haved(v) > d(s,v) for all
verticesv € V, and oncel(v) achieves the
valued(s,v), it never changes.

No-path property

if there is no path froms to v, then we
always havel(v) = (s, v) = .

Convergence property

If stou — v is a shortest path id7 for
someu,v € V, and itd(u) = 6(s,u) at
ant time prior to relaxing edgéu, v), then
d(v) = d(s,v) at all times afterward.

Path-relaxation property

If p =< wg,v1,...,v, > IS a short-
est path froms = wg to v, and the
edges of p are relaxed in the order
(Uo,Ul),(Ul,vg),...,(’uk_l,vk), then
d(vy) = 0(s,vx). This property holds
regardless of any other relaxation steps
that occur, even if they are intermixed with
relaxations of the edges pf

Predecessor-subgraph property

Onced(v) = d(s,v) for all v € V, the
predecessor subgraph is a shortest-paths
tree rooted at.

W : FE — R, letp =< vy,v9,...,vp >
is a shortest path from; to v, and, for
anyi andj such thatl < i < j < k, let
Dij =< V4, Vit1,...,v; > be the subpath of
p from vertexwv; to vertexv;. Then,p;; is a
shortest path from; to v;.

Triangle inequality

As stated in [3], “Some shortest-paths algorithms,
such as Dijkstra’s algorithm, assume that all edges
weights in the input graph are nonnegative, ... Others,
such as the Bellman-Ford algorithm, allow negative-
weight edges in the input graph and produce a cor-
rect answer as long as no negative-weight cycles are
reachable from the source. Typically, if there is such
a negative-weight cycle, the algorithm can detect and
report its existence”.

The Bellman-Ford algorithm initializes the distance is reachable frons, and letp =< wvg, vy, ...,vx >,
from one vertexo € V' to the source vertex, d(v), wherevy = s andv, = v, be any acyclic shortest path
to be 0 and to all other vertices to infinity. It then from s to v. Pathp has at mostV’| — 1 edges, and
does(|V| — 1) passes of relaxation over all edges. It sok < |V| — 1. Each of theV| — 1 iterations of the
progressively decreasésév), which could be consid- for loop of step 2-4 relaxes glF| edges. Among the
ered as the estimate on the weight of the shortest patledges relaxed in thih iteration, fori = 1,2, ..., k, is
from the source vertex to the vertexv. After that it (vi—1,v;). By the path-relaxation property, therefore
checks each edge again to detect negative-weight cyd(v) = d(vg) = d(s,vr) = 0(s,v).
cles. It returns FALSE if there is a negative-weight L
cycle reachable from the source vertexOtherwise, _ .
after the(|V| — 1) passes of relaxation(v) is equal ~ Corollary 2.2 Let G = (V, E) be a weighted, di-
to the weight of the shortest-path frosto v, 5(u, v). rected graph with source and weight functioriV" :

Refer to the following pseudo code from [3]. E — R. Then for each vertex € V, there is a path
from s to v if and only if the Bellman-Ford algorithm
BELLMAN-FORD (G, W, s) terminates withi(v) < oo when it runs orG.
Theorem 2.3 (Correctness of the Bellman-Ford algo-
Step 1. INITIALIZE-SINGLE-SOURCE rithm, [3]) Let Bellman-Ford algorithm be run on a
(G, 5) weighted, directed graply = (V, E') with sources
Step2.fori=1to|V| -1 and weight functiodV : £ — R. If G contains no

negative-weight cycles that are reachable frenthen

Step 3. do for each edde,v) € £)
P ga.v) the algorithm returns TRUE, we hawv) = d(s,v)

Step 4. do RELAX(u, v, W) for all verticesv € V, and the predecessor gragh,

Step 5. for each edder, v) € E is a shortest-paths tree rooted at If G does contain

Step 6. do itd(v) > d(u) + W (u,v) a n(_agatlve—welght cycle reachable framthen the al-
gorithm returns FALSE.

Step 7. return FALSE

Step 8. return TRUE A sketch of the proof of this result is provided in the

next section.

The time complexity of the Bellman-Ford algorithm . .
is O(|V||E|), where|V| is the number of vertices and 3 Negative-weight Cycle Reachable From the
|E| is the number of edges of the graph. This time Source Vertex
complexity is the best time bound for the single source

shortest path problem [2]. In this section, we first give the algorithm that will
for proving the correctness of the Bellman-Ford al- find & negative-weight cycle reachable from the source
gorithm, the following lemma was showed in [3]. vertex s in the given weighted, directed graph=

(V, E), if such a negative-weight cycle exists@ A
Lemma 2.1 LetG = (V, E) be a weighted, directed similar algorithm is presented in [4]. Then we analy-

graph with sources and weight functiolV : £ — R, sis the time complexity of the algorithm and prove its
and assume tha¥ contains no negative-weight cycles correctness.
that are reachable from. Then, after theV’| — 1 iter- As is pointed out in [2] that “all known algo-

ations of the for loop of step 2-4 of the Bellman-Ford rithms for the negative-weight cycle problem combine
algorithm, we havel(v) = §(s,v) for all vertices that @ shortest path algorithm and a cycle detection strat-
are reachable frons. egy”. The cycle detection strategy we use here is based
on the fact that if the distance label of a vertexi(v),
is smaller than the length of a shortest simple path
PROOF The lemma is proved by appealing to the from s to v, then the input graph has a negative-weight
path-relaxation property. Consider any vertexhat cycle.

Algorithm A - Finding A Negative-Weight
Cycle.

Input: A weighted, directed graph
G = (V,E) with edge weightW (u,v)
being a real number for each edge, v),
and a source vertex

Output: a negative-weight cycle reachable
from the source vertex if such a cycle
exists in graphG; Otherwise, output the
information that no negative-weight cycles
reachable from the source vertex

Step 1. Initialize and executgV| — 1)
passes of relaxation as in the Bellman-Ford
algorithm.

Step 2. Check if there is an edge v) such
thatd(u) + W(u,v) < d(v). If not, return
“no negative-weight cycles reachable from
the source vertex’.

Step 3. Otherwise, go backward from
along the predecessor chain, until a cycle is
found, i.e., until eithewp is reached, or some
vertex was reached twice. Output the cycle.

Lemma 3.2 ([3]). Let G = (V, E) be a weighted, di-
rected graph with the source vertexIf graph G con-
tains no negative-weight cycles that are researchable
from s, then after(]V| — 1) passes of the relaxations
of the Bellman-Ford algorithm, we have that for each
vertexv, d(v) is equal to the length of a shortest simple
path from the source vertexto the vertex, (s, v),

for all v that are researchable from the source vertex
s. If there is a negative-weight cycle in gragh then

the Bellman-Ford algorithm returns FALSE.

PROOF
in [3], [5].
Case 1: GraptG = (V,E) doesn’t contain any
negative-weight cycles reachable from the source ver-

texs.

This case can be proved by induction: if there is a
shortest simple path from s to v containingk edges,
then afterk passes of relaxationfv) = I(p), where
l(p) is the length of the path.

Consider a shortest path =< wvg, v1,..., v >,
wherevg = s andvg, = v, be any acyclic shortest path
from the source vertex to the vertexv. Pathp has at
most(|V|—1) edges, therefore we hake< (|V|—1).

Proof by induction:

The following proof is adapted from those

d(s) = 0 after initialization;

Assumed(v;_1) is a shortest path after iter-
ation(i — 1);

Since edg€gv;_1,v;) is updated on the ith

We analysis the time complexity of the Algorithm pass(v;) must then reflect the shortest path
A: Step 1 takes timé&(|V||E|) as the Bellman-Ford to v;;
algorithm; Step 2 checks each edge of the graph,
taking time O(|E|); Step 3 needs time bounded by
O(|E]). Therefore, the overall time of the algorithm
is bounded byO(|V||E]), which is the same as that
of the Bellman-Ford algorithm. In the following we
prove:

Since we perforng|V| — 1) iterations d(v;)
for all reachable vertices; must now repre-
sent shortest paths, thatd&;) = (s, v;).

If graph G contains no negative-weight cycles that
are researchable from, the algorithm will return
TRUE because on th& |th iteration, no distances will
change.

Case 2: GraplG = (V, E) contains a negative-
weight cyclec =< vg,v1, ..., v >, Wherevg = vy,
reachable from the source vertex

Proof by contradiction: The cyclee =<
Vg, V1, .-, Uk > IS @ negative-cycle reachable fram
then we have

Theorem 3.1 Algorithm A for finding a negative-
weight cycle reachable from a source vertex in a given
graph is correct.

First we show that the Bellman-Ford algorithm is
correct and that an edde, v) will be found in Step 2
if and only if G has a negative-weight cycle.

k

> W (vim1,v:) <0. 1)
i=1

Assume the Bellman-Ford algorithm returns TRUE.
Thus,

d(vi—1) + W(vi—1,v3) > d(v;),

fori=1,...,k.
Summing the inequalities around the cyele=<
V0, U1, ..., U > QiVES US:

(2)

k k k

S d(visn) + Y Wvimn,v) > S d(w)

=1 =1 =1

®3)

Sincevy = vy, each vertex in the cycle appears
exactly once in each of the summation$_; d(v;_1)
and>"%_ d(v;), so

k

> d(wi)

=1

k
> d(vi) =

1=

(4)

Moreover,d(v;) is finite fori = 1, ..., k. Therefore,

W(vi,l,vi) Z 0. (5)

i=1

after the graph s initialized by INITIALIZE-SINGLE-
SCOUCE(G, s), the predecessor subgragh forms

a rooted tree with roo¢, and any sequence of relax-
ation steps on edges 6f maintains this property as an
invariant [3]".

Corollary 3.4 Any cycle in the predecessor gragh
is a negative-weight cycle.

Corollary 3.5 If d(s) < 0, then the predecessor
graph G, has a negative-weight cycle.

Lemma 3.6 Suppose for some vertex v, d(v) is less
than the length of a shortest simple path from s to v,
then the predecessor graph G contains a cycle ¢ and
w(c) < 0. (Since d(v) is non-increasé;,: has a cycle

at any later point of the execution.)

PrROOF ([2]) Note that the parent of a vertex has
a finite distance and all vertices with finite distances
except s has parents. The source vertex s has a parent
if and only isd(s) < 0.

Suppose we start atand follow the parent pointers.
If we find a cycle of parent pointers in this process, we
are done. The only way we can stop without finding a
cycle is if we reachs andd(s) = 0. In this case there
is a simple s-to-v patp in G. From the fact that there

This leads to a contradiction. We conclude that the is no negative-weight cycle ané(s) = 0, we have

Bellman-Ford algorithm returns TRUE if the graph

contains no negative-weight cycle reachable from the

source vertex, and FALSE otherwise. 1

To prove the theorem of the correctness of Algo-

rithm A, we need the following lemmas and corollaries
from [2].
Define the predecessor graph, of the Bellman-

Ford algorithm is the subgraph induced by the edge

(m(v),v) for all v wherer(v) # null.

Corollary 3.3 If the predecessor grapi; is acyclic,
then it is a tree rooted at. (It is called the shortest-
paths tree.)

Note that this corollary can be proved by showing
the following statement that “le = (V,E) be a
weighted, directed graph with weight functido, let
s be the source vertex, and assume tHatontains no
negative-weight cycles that are reachable fromhen

d(v) > I(p). This is a contradiction. |
Lemma 3.7 If G contains a negative-weight cycle re-
searchable from the source vertex s, then after the re-
laxation operation of pas§/|, G, always contains a
negative-weight cycle.

ProOOF ([2]) From Lemma 1, we know that after
(V] — 1) iterations of the relaxation, we have that for
each vertew, d(v) is at least as small as the length of
a shortest simple path from the source verdn the
vertexw, (s, v), for all v that are researchable from
the source vertex. The first relaxation after that re-
duces a distancé(v) below the shortest simple path
lengthd(s,v). Therefore, from Lemma 2, we know
that the predecessor gragh, contains a negative-
weight cycle. This completes the proof of the lemma.
i

4 Negative-weight Cycle that May Not Be
Reachable From the Source Vertex

vertex. Return any negative cycle if found.

Given a weighted, directed grapi = (V, E),
with weight function'¥ such that every edge weight
W (u,v) is a real number, for each edge, v), and a the given weighted, directed graghthat may not be
source vertex, the Algorithm A discussed in the last reachable from the source vertexif such a cycle ex-
section finds a negative-weight cycle that is reachableists in the grapiG.
from the source vertex

We present the following approach proposed in [1], PRoOF A sketch of the proof is provided here.
which could find a negative-weight cycle in the given Since the newly added vertekhas a directed edge to
weighted, directed grapi that may not be reachable each vertex of the grapfi = (V, E), the Algorithm
from the source vertey, if such a cycle exists inthe B can find one negative-weight cycle that may not be
graphG. We give the AlgorithmB here. reachable from the source vertein the original graph

Theorem 4.1 The above Algorithn® is correct. That
is, Algorithm B could find a negative-weight cycle in

Algorithm B: G, if such a cycle exists in the gragh |

_) Now we analysis the time complexity of Algorithm
Input: a ngghted, dlr.ected graph B. For the new graplG’ = (V', E'), we can see
G = (V,FE) with edge weight function V| = V| +2 = O(|V]), and|E'| = |E| +2|V]. The

W, and a vertex as the source vertex. time complexity of the Algorithni3 is the time for the

call of Algorithm A on the new graple’ = (V', E’),

Output: a negative-weight cycle in the graph
G that may not be reachable from the source
vertexs, if such a cycle exists in the graph
G.

Step 1. From the grapli: = (V,E),
constructs a new grap&’ = (V' E') as
follows.

Step 1.1. Letl’ = V U ¢, t/, where
s’ andt’ are two new vertices added to the
graphG = (V, E).

For eaclh € V, add one
new directed edge(s’,v) to the graph
G = (V,E) and let the edge weight
W(s',v) =1.

Step 1.2.

Step 1.3. For each € V, add one
new directed edge(v,t’) to the graph
G = (V,E) and let the edge weight
W(v,t') = 1.

Step 2. Call the AlgorithmA on the new
graphG’ = (V', E’) with s’ as the source

which is bounded byO(|V'||E’|) = O(|V||E| +
VIIVD).

The time complexity of the AlgorithmB is still
O(|V||E|), suppose the grapd = (V, E) is a con-
nected graph.

Therefore, we have

Theorem 4.2 Given a weighted, directed graphl =

(V, E), the AlgorithmB, in timeO(|V'||E|), could find

a negative-weight cycle in the given weighted, directed
graph G that may not be reachable from the source
vertexs, if such a cycle exists in the grajgh

5 Summary

This report presents the algorithms for finding a
negative-weight cycle in a weighted directed graph.
The approaches are based on the Bellman-Ford algo-
rithm for the single-source shortest-path problem. The
time complexity of the approaches is not worse than
that of the Bellman-Ford algorithm.

References

[1] Chen, J.Analysis of Algorithms Class Lectyrdexas
A&M University, 2003.

[2] Cherkassky B. V., Goldberg, A. V., Negative-
Cycle Detection Algorithms Mathematical Pro-
gramming Springer-Verlag, vol. 85, pp. 277311,
1999.

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L.,
Stein, C. ntroduction to AlgorithmsSecond edition,
MIT Press/McGraw-Hill, 2001.

[4] Design of algorithm class,
www.cs.bgu.ac.il/ algo012/HW/4.ps, 2001.

[5] www.andrew.cmu.edu/user/adityaa/211
/LectureGraphdll.ppt

