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Abstract

The problem of finding a negative cycle in a
weighted, directed graph is discussed here. First the
algorithm for printing out a negative cycle reachable
from the sources, with the running time no worse
than the Bellman-Ford algorithm for the single-source
shortest-path problem, is presented. Then an ap-
proach with the same time complexity, which could be
used for outputting a negative cycle that may not be
reachable froms, is reported.
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1 Negative-weight Cycle Problem

The problem of finding a cycle of negative-weight
in a weighted, directed graph is a classic problem in
algorithm design and analysis. This problem “comes
up both directly, for example in currency arbitrage, and
as a sub-problem in algorithms for other graph (or, net-
work) problems, for example the minimum-cost flow
problem [2].”

Given a weighted, directed graphG = (V,E),
the single-source shortest-path problem is to find the
shortest paths from a specific source vertexs to ev-
ery other vertex of the graphG. Dijkstra’s algorithm
solves this problem if all edge weights are nonnegative
values. The Bellman-Ford algorithm solves the single-
source shortest-path problem in general case where
edge weights could be negative values.

As is stated in [3], if a graphG = (V,E) contains
no negative-weight cycles reachable from the source

vertexs, then for each vertexv ∈ V , the weight of
the shortest-path froms to v is well defined, even if
the weight of the shortest path might have a negative
value. If there is a negative-weight cycle reachable
from s, then the weights of the shortest-paths froms
to other vertices are not well-defined.

In this paper, the algorithms for finding negative-
weight cycles are derived from the Bellman-Ford al-
gorithm for the single-source shortest-path problem.
(This is an exercise problem in [3].) Our goal here
is to output a negative-weight cycle if such a cycle ex-
ists in the given weighted, directed graph, such that the
running time is no worse than that of the Bellman-Ford
algorithm. The main ideas of the approaches discussed
in this report are based on the analysis in [1]-[3].

2 Basic Definitions and Algorithmic Prepara-
tions

Readers are referred to [3] for the following defini-
tions. LetG = (V,E) be a weighted, directed graph,
with weight functionW such that for each edge(u, v),
the edge weightW (u, v) is a real number. The length
l(p) of a pathp =< v0, v1, ..., vk > is the sum of the
weights of its constituent edges. The weight of the
shortest path from vertexu to v, (u, v), is the mini-
muml(p), wherep is a path fromu to v. If there is no
path fromu to v, l(p) is defined as infinity.

Given a weighted, directed graphG = (V,E) and a
source vertexs ∈ V . A shortest-path tree rooted at the
source vertexs is a directed subgraphG′ = (V ′, E′),
whereV ′ andE′ are subsets ofV andE respectively,
such that

1. V ′ is the set of vertices reachable froms



in G;

2. G′ forms a rooted tree with roots, and

3. For allv ∈ V ′, the unique path froms to
v in G′ is the shortest path froms to v in G.

The process of relaxing an edge(u, v) consists of
testing whether we can improve the shortest path to
vertex v found so far by going through vertexu. If
so, we updated(v) andπ(v), whered(v) initialized as
infinity maintains an upper bound on the length of a
shortest path from the source vertexs to v, π(v) main-
tains the predecessor of the vertexv, which may be
another vertex or null. Please refer to the following
pseudo code from [3]:

INITIALIZE-SINGLE-SOURCE(G, s)

Step 1. for each vertexv ∈ V of G, do

Step 2. d(v) = ∞;

Step 3. π(v) = null;

Step 4.d(s) = 0;

RELAX (u, v, W )

Step 1. ifd(v) > d(u) + W (u, v)

Step 2. thend(v) = d(u) + W (u, v);

Step 3. π(v) = u;

To prove the correctness of the shortest paths algo-
rithms, there are several properties of shortest paths
and relaxations as follows ( see [3]).

Subpaths of the shortest paths are shortest
pathes

Given a weighted, directed graph
G = (V,E) with weight function
W : E → R, let p =< v1, v2, ..., vk >
is a shortest path fromv1 to vk and, for
any i andj such that1 ≤ i ≤ j ≤ k, let
pij =< vi, vi+1, ..., vj > be the subpath of
p from vertexvi to vertexvj . Then,pij is a
shortest path fromvi to vj .

Triangle inequality

For any edge(u, v) ∈ E, we have
δ(s, v) ≤ δ(s, u) + W (u, v).

Upper-bound property

We always haved(v) ≥ δ(s, v) for all
verticesv ∈ V , and onced(v) achieves the
valueδ(s, v), it never changes.

No-path property

if there is no path froms to v, then we
always haved(v) = δ(s, v) = ∞.

Convergence property

If s to u → v is a shortest path inG for
someu, v ∈ V , and it d(u) = δ(s, u) at
ant time prior to relaxing edge(u, v), then
d(v) = δ(s, v) at all times afterward.

Path-relaxation property

If p =< v0, v1, ..., vk > is a short-
est path froms = v0 to vk, and the
edges of p are relaxed in the order
(v0, v1), (v1, v2), ..., (vk−1, vk), then
d(vk) = δ(s, vk). This property holds
regardless of any other relaxation steps
that occur, even if they are intermixed with
relaxations of the edges ofp.

Predecessor-subgraph property

Onced(v) = δ(s, v) for all v ∈ V , the
predecessor subgraph is a shortest-paths
tree rooted ats.

As stated in [3], “Some shortest-paths algorithms,
such as Dijkstra’s algorithm, assume that all edges
weights in the input graph are nonnegative, ... Others,
such as the Bellman-Ford algorithm, allow negative-
weight edges in the input graph and produce a cor-
rect answer as long as no negative-weight cycles are
reachable from the source. Typically, if there is such
a negative-weight cycle, the algorithm can detect and
report its existence”.



The Bellman-Ford algorithm initializes the distance
from one vertexv ∈ V to the source vertexs, d(v),
to be 0 and to all other vertices to infinity. It then
does(|V | − 1) passes of relaxation over all edges. It
progressively decreasesd(v), which could be consid-
ered as the estimate on the weight of the shortest path
from the source vertexs to the vertexv. After that it
checks each edge again to detect negative-weight cy-
cles. It returns FALSE if there is a negative-weight
cycle reachable from the source vertexs. Otherwise,
after the(|V | − 1) passes of relaxation,d(v) is equal
to the weight of the shortest-path froms to v, δ(u, v).
Refer to the following pseudo code from [3].

BELLMAN-FORD (G, W, s)

Step 1. INITIALIZE-SINGLE-SOURCE
(G, s)

Step 2. fori = 1 to |V | − 1

Step 3. do for each edge(u, v) ∈ E

Step 4. do RELAX(u, v, W )

Step 5. for each edge(u, v) ∈ E

Step 6. do ifd(v) > d(u) + W (u, v)

Step 7. return FALSE

Step 8. return TRUE

The time complexity of the Bellman-Ford algorithm
is O(|V ||E|), where|V | is the number of vertices and
|E| is the number of edges of the graph. This time
complexity is the best time bound for the single source
shortest path problem [2].

for proving the correctness of the Bellman-Ford al-
gorithm, the following lemma was showed in [3].

Lemma 2.1 Let G = (V,E) be a weighted, directed
graph with sources and weight functionW : E → R,
and assume thatG contains no negative-weight cycles
that are reachable froms. Then, after the|V | − 1 iter-
ations of the for loop of step 2-4 of the Bellman-Ford
algorithm, we haved(v) = δ(s, v) for all vertices that
are reachable froms.

PROOF. The lemma is proved by appealing to the
path-relaxation property. Consider any vertexv that

is reachable froms, and letp =< v0, v1, ..., vk >,
wherev0 = s andvk = v, be any acyclic shortest path
from s to v. Pathp has at most|V | − 1 edges, and
sok ≤ |V | − 1. Each of the|V | − 1 iterations of the
for loop of step 2-4 relaxes all|E| edges. Among the
edges relaxed in theith iteration, fori = 1, 2, ..., k, is
(vi−1, vi). By the path-relaxation property, therefore
d(v) = d(vk) = δ(s, vk) = δ(s, v).

Corollary 2.2 Let G = (V,E) be a weighted, di-
rected graph with sources and weight functionW :
E → R. Then for each vertexv ∈ V , there is a path
from s to v if and only if the Bellman-Ford algorithm
terminates withd(v) < ∞ when it runs onG.

Theorem 2.3 (Correctness of the Bellman-Ford algo-
rithm, [3]) Let Bellman-Ford algorithm be run on a
weighted, directed graphG = (V,E) with sources
and weight functionW : E → R. If G contains no
negative-weight cycles that are reachable froms, then
the algorithm returns TRUE, we haved(v) = δ(s, v)
for all verticesv ∈ V , and the predecessor graphGπ

is a shortest-paths tree rooted ats. If G does contain
a negative-weight cycle reachable froms, then the al-
gorithm returns FALSE.

A sketch of the proof of this result is provided in the
next section.

3 Negative-weight Cycle Reachable From the
Source Vertex

In this section, we first give the algorithm that will
find a negative-weight cycle reachable from the source
vertex s in the given weighted, directed graphG =
(V,E), if such a negative-weight cycle exists inG. A
similar algorithm is presented in [4]. Then we analy-
sis the time complexity of the algorithm and prove its
correctness.

As is pointed out in [2] that “all known algo-
rithms for the negative-weight cycle problem combine
a shortest path algorithm and a cycle detection strat-
egy”. The cycle detection strategy we use here is based
on the fact that if the distance label of a vertexv, d(v),
is smaller than the length of a shortest simple path
from s to v, then the input graph has a negative-weight
cycle.



Algorithm A - Finding A Negative-Weight
Cycle.

Input: A weighted, directed graph
G = (V,E) with edge weightW (u, v)
being a real number for each edge(u, v),
and a source vertexs.

Output: a negative-weight cycle reachable
from the source vertexs if such a cycle
exists in graphG; Otherwise, output the
information that no negative-weight cycles
reachable from the source vertexs.

Step 1. Initialize and execute(|V | − 1)
passes of relaxation as in the Bellman-Ford
algorithm.

Step 2. Check if there is an edge(u, v) such
thatd(u) + W (u, v) < d(v). If not, return
“no negative-weight cycles reachable from
the source vertexs”.

Step 3. Otherwise, go backward fromv
along the predecessor chain, until a cycle is
found, i.e., until eitherv is reached, or some
vertex was reached twice. Output the cycle.

We analysis the time complexity of the Algorithm
A: Step 1 takes timeO(|V ||E|) as the Bellman-Ford
algorithm; Step 2 checks each edge of the graph,
taking timeO(|E|); Step 3 needs time bounded by
O(|E|). Therefore, the overall time of the algorithm
is bounded byO(|V ||E|), which is the same as that
of the Bellman-Ford algorithm. In the following we
prove:

Theorem 3.1 Algorithm A for finding a negative-
weight cycle reachable from a source vertex in a given
graph is correct.

First we show that the Bellman-Ford algorithm is
correct and that an edge(u, v) will be found in Step 2
if and only if G has a negative-weight cycle.

Lemma 3.2 ([3]). Let G = (V,E) be a weighted, di-
rected graph with the source vertexs. If graphG con-
tains no negative-weight cycles that are researchable
from s, then after(|V | − 1) passes of the relaxations
of the Bellman-Ford algorithm, we have that for each
vertexv, d(v) is equal to the length of a shortest simple
path from the source vertexs to the vertexv, δ(s, v),
for all v that are researchable from the source vertex
s. If there is a negative-weight cycle in graphG, then
the Bellman-Ford algorithm returns FALSE.

PROOF. The following proof is adapted from those
in [3], [5].

Case 1: GraphG = (V,E) doesn’t contain any
negative-weight cycles reachable from the source ver-
texs.

This case can be proved by induction: if there is a
shortest simple pathp from s to v containingk edges,
then afterk passes of relaxationsd(v) = l(p), where
l(p) is the length of the pathp.

Consider a shortest pathp =< v0, v1, ..., vk >,
wherev0 = s andvk = v, be any acyclic shortest path
from the source vertexs to the vertexv. Pathp has at
most(|V |−1) edges, therefore we havek ≤ (|V |−1).

Proof by induction:

d(s) = 0 after initialization;

Assumed(vi−1) is a shortest path after iter-
ation(i− 1);

Since edge(vi−1, vi) is updated on the ith
pass,d(vi) must then reflect the shortest path
to vi;

Since we perform(|V | − 1) iterations,d(vi)
for all reachable verticesvi must now repre-
sent shortest paths, that isd(vi) = (s, vi).

If graphG contains no negative-weight cycles that
are researchable froms, the algorithm will return
TRUE because on the|V |th iteration, no distances will
change.

Case 2: GraphG = (V,E) contains a negative-
weight cyclec =< v0, v1, ..., vk >, wherev0 = vk,
reachable from the source vertexs.

Proof by contradiction: The cyclec =<
v0, v1, ..., vk > is a negative-cycle reachable froms,
then we have



k∑
i=1

W (vi−1, vi) < 0. (1)

Assume the Bellman-Ford algorithm returns TRUE.
Thus,

d(vi−1) + W (vi−1, vi) ≥ d(vi), (2)

for i = 1, ..., k.
Summing the inequalities around the cyclec =<

v0, v1, ..., vk > gives us:

k∑
i=1

d(vi−1) +
k∑

i=1

W (vi−1, vi) ≥
k∑

i=1

d(vi) (3)

Sincev0 = vk, each vertex in the cyclec appears
exactly once in each of the summations

∑k
i=1 d(vi−1)

and
∑k

i=1 d(vi), so

k∑
i=1

d(vi−1) =
k∑

i=1

d(vi) (4)

Moreover,d(vi) is finite for i = 1, ..., k. Therefore,

k∑
i=1

W (vi−1, vi) ≥ 0. (5)

This leads to a contradiction. We conclude that the
Bellman-Ford algorithm returns TRUE if the graphG
contains no negative-weight cycle reachable from the
source vertexs, and FALSE otherwise.

To prove the theorem of the correctness of Algo-
rithmA, we need the following lemmas and corollaries
from [2].

Define the predecessor graphGπ of the Bellman-
Ford algorithm is the subgraph induced by the edge
(π(v), v) for all v whereπ(v) 6= null.

Corollary 3.3 If the predecessor graphGπ is acyclic,
then it is a tree rooted ats. (It is called the shortest-
paths tree.)

Note that this corollary can be proved by showing
the following statement that “letG = (V,E) be a
weighted, directed graph with weight functionW , let
s be the source vertex, and assume thatG contains no
negative-weight cycles that are reachable froms. Then

after the graph is initialized by INITIALIZE-SINGLE-
SCOUCE(G, s), the predecessor subgraphGπ forms
a rooted tree with roots, and any sequence of relax-
ation steps on edges ofG maintains this property as an
invariant [3]”.

Corollary 3.4 Any cycle in the predecessor graphGπ

is a negative-weight cycle.

Corollary 3.5 If d(s) < 0, then the predecessor
graphGπ has a negative-weight cycle.

Lemma 3.6 Suppose for some vertex v, d(v) is less
than the length of a shortest simple path from s to v,
then the predecessor graph G contains a cycle c and
w(c) < 0. (Since d(v) is non-increase,Gπ has a cycle
at any later point of the execution.)

PROOF. ([2]) Note that the parent of a vertex has
a finite distance and all vertices with finite distances
except s has parents. The source vertex s has a parent
if and only isd(s) < 0.

Suppose we start atv and follow the parent pointers.
If we find a cycle of parent pointers in this process, we
are done. The only way we can stop without finding a
cycle is if we reachs andd(s) = 0. In this case there
is a simple s-to-v pathp in G. From the fact that there
is no negative-weight cycle andd(s) = 0, we have
d(v) ≥ l(p). This is a contradiction.

Lemma 3.7 If G contains a negative-weight cycle re-
searchable from the source vertex s, then after the re-
laxation operation of pass|V |, Gπ always contains a
negative-weight cycle.

PROOF. ([2]) From Lemma 1, we know that after
(|V | − 1) iterations of the relaxation, we have that for
each vertexv, d(v) is at least as small as the length of
a shortest simple path from the source vertexs to the
vertexv, δ(s, v), for all v that are researchable from
the source vertexs. The first relaxation after that re-
duces a distanced(v) below the shortest simple path
length δ(s, v). Therefore, from Lemma 2, we know
that the predecessor graphGπ contains a negative-
weight cycle. This completes the proof of the lemma.



4 Negative-weight Cycle that May Not Be
Reachable From the Source Vertex

Given a weighted, directed graphG = (V,E),
with weight functionW such that every edge weight
W (u, v) is a real number, for each edge(u, v), and a
source vertexs, the AlgorithmA discussed in the last
section finds a negative-weight cycle that is reachable
from the source vertexs.

We present the following approach proposed in [1],
which could find a negative-weight cycle in the given
weighted, directed graphG that may not be reachable
from the source vertexs, if such a cycle exists in the
graphG. We give the AlgorithmB here.

Algorithm B:

Input: a weighted, directed graph
G = (V,E) with edge weight function
W , and a vertexs as the source vertex.

Output: a negative-weight cycle in the graph
G that may not be reachable from the source
vertexs, if such a cycle exists in the graph
G.

Step 1. From the graphG = (V,E),
constructs a new graphG′ = (V ′, E′) as
follows.

Step 1.1. LetV ′ = V ∪ s′, t′, where
s′ and t′ are two new vertices added to the
graphG = (V,E).

Step 1.2. For eachv ∈ V , add one
new directed edge(s′, v) to the graph
G = (V,E) and let the edge weight
W (s′, v) = 1.

Step 1.3. For eachv ∈ V , add one
new directed edge(v, t′) to the graph
G = (V,E) and let the edge weight
W (v, t′) = 1.

Step 2. Call the AlgorithmA on the new
graphG′ = (V ′, E′) with s′ as the source

vertex. Return any negative cycle if found.

Theorem 4.1 The above AlgorithmB is correct. That
is, AlgorithmB could find a negative-weight cycle in
the given weighted, directed graphG that may not be
reachable from the source vertexs, if such a cycle ex-
ists in the graphG.

PROOF. A sketch of the proof is provided here.
Since the newly added vertexs′ has a directed edge to
each vertex of the graphG = (V,E), the Algorithm
B can find one negative-weight cycle that may not be
reachable from the source vertexs in the original graph
G, if such a cycle exists in the graphG.

Now we analysis the time complexity of Algorithm
B. For the new graphG′ = (V ′, E′), we can see
|V ′| = |V |+2 = O(|V |), and|E′| = |E|+2|V |. The
time complexity of the AlgorithmB is the time for the
call of Algorithm A on the new graphG′ = (V ′, E′),
which is bounded byO(|V ′||E′|) = O(|V ||E| +
|V ||V |).

The time complexity of the AlgorithmB is still
O(|V ||E|), suppose the graphG = (V,E) is a con-
nected graph.

Therefore, we have

Theorem 4.2 Given a weighted, directed graphG =
(V,E), the AlgorithmB, in timeO(|V ||E|), could find
a negative-weight cycle in the given weighted, directed
graph G that may not be reachable from the source
vertexs, if such a cycle exists in the graphG.

5 Summary

This report presents the algorithms for finding a
negative-weight cycle in a weighted directed graph.
The approaches are based on the Bellman-Ford algo-
rithm for the single-source shortest-path problem. The
time complexity of the approaches is not worse than
that of the Bellman-Ford algorithm.
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