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1 Introduction

One of the primary goals of pure mathematics is to identify common patterns that occur in disparate circum-
stances, and to create unifying abstractions which identify commonalities and provide a useful framework for
further theorems. For example the pattern of an associative operation with inverses and an identity occurs
frequently, and gives rise to the notion of an abstract group. On top of the basic axioms of a group, a vast
theoretical framework can be built up, investigating the classification of groups, their internal structure, and
the relationships and operations on groups.

Matroids similarly provide a useful linking abstraction. They were first discovered independently by
Hassler Whitney [10] and B. L. van der Waerden in the mid 1930’s [11]. Whitney had developed a notion
of independence and rank in the context of graph theory, and noted similarities with the concepts of linear
independence and dimension from linear algebra. By identifying the properties of abstract ‘independence’
which made these commonalities occur, he introduced the concept of a matroid, whose definition has proven
immensely fruitful. Similarly, van der Waerden was interested in generalizing the notion of ‘independence’
from the examples of linear independence and algebraic independence. Shortly after the initial work by
Whitney and van der Waerden, Birkhoff [2] noted that matroids were connected with a certain type of
semimodular lattice that he had been studying. Thus, matroids provide a link between graph theory, linear
algebra, transcendence theory, and semimodular lattices.

Several decades later, Jack Edmonds noted the importance of matroids for the field of combinatorial
optimization. This connection is due to two fundamental breakthroughs. First of all, Edmonds and a
number of other researchers discovered a new type of matroid arising from the combinatorial theory of
transversals. Second, Rado and Edmonds noted that matroids were intrinsically connected with the notion
of a greedy algorithm (more historical details are in [11] and [3]). These developments have made matroids
a mainstay of the field of combinatorial optimization.

2 Two types of independence

At its heart, the concept of a matroid is tied to the notion of “independence.” Whitney’s initial definition in
[10] was driven by formal similarities between the notion of linear independence and a sort of graph-theoretic
independence1. Before defining a matroid, it is thus helpful to examine these concepts in the two domains
which prompted Whitney to invent the matroid.

2.1 Linear Algebra

The concept of linear independence is well-known within linear algebra. Formally, a set of vectors I in a
vector space V ⊇ I is said to be linearly dependent if there are some v1, . . . , vm ∈ I, and some scalars
a1, . . . , am 6= 0, such that

a1v1 + · · ·+ amvm = 0.
1Similarly, van der Waerden’s independent invention of the matroid stemmed from an effort to unify the formal properties

of algebraic and linear independence.
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Otherwise, I is linearly independent. For the case of matroids, we will mainly deal with finite I.
Finite independent subsets of a vector space V satisfy the following properties:

(I1) Every subset of an independent set is independent.

(I2) If I1 and I2 are independent sets, with |I1| < |I2|, then I1 ∪ {x} is independent for some x ∈ I2 \ I1.

(I2’) If S ⊆ V is finite (or if V is finite-dimensional), then the maximal independent subsets of S are all
equal in size.

The common size in (I2’) is simply the rank of S, which we’ll denote as ρ(S).
Connected to the notion of rank and independence is the notion of the span of a set. If S ⊆ V , then

we say that x ∈ V is in the span of S, if x is a linear combination of elements of S, i.e., there are some
v1, . . . , vm ∈ S and some scalars a1, . . . , am, such that

x = a1v1 + · · ·+ amvm.

This notion is intimately connected with independence and rank, by the following results:

• If S ⊆ V , then x ∈ V is in the span of S iff ρ(S) = ρ(S ∪ {x}).

• The rank of S is the size of the smallest subset of S whose span contains S.

• A set I ⊆ V is independent iff, for each x ∈ I, x is not in the span of I \ {x}.

• If I ⊆ V is independent, then x is in the span of I iff either x ∈ I or I ∪ {x} is not independent.

In fact, all of these results generalize to matroids.

2.2 Graph Theory

These same results can be carried over to the world of graph theory, with an appropriate definition of
“independence.” For this setting, suppose we have a finite undirected graph G, not necessarily simple, with
edge-set E and vertex-set V . We will focus on the edges in E, which will be analogous to the vectors in
the previous example. The appropriate definition of “independence” is as follows: a set S of edges in E is
independent if it contains no cycles, and dependent otherwise. In other words, a set of edges is independent
if the induced graph is acyclic. Somewhat surprisingly, properties (I1), (I2), and (I2’) carry over equally well
to this setting:

(I1) Every subset of an acyclic set of edges is acyclic.

(I2) If I1 and I2 are two sets of edges, both acyclic, and |I2| > |I1|, then some edge x ∈ I2 \ I1 can be added
to produce an acyclic set, i.e., I1 ∪ {x} is acyclic.

(I2’) If S is a subset of edges, then the maximal acyclic subsets of S are all equal in size.

The third property suggests that there should be some concept of the “rank” of a set of edges S ⊆ E. If
we define ρ(S) to be the size of a maximal acyclic subset of S, then it turns out that ρ(S) simply counts the
number of vertices minus the number of connected components in the subgraph G′ ⊆ G induced by S. This
is due to the fact that a maximal acyclic subgraph of G′ is just a spanning tree in each connected component
of G′, and the number of adges in a spanning tree is one less than the number of vertices.

There is also an analogous definition of “span” in the context of graph theory, as hinted at by the
terminology “spanning tree.” We say that an edge e ∈ E is spanned by a set of edges S if there is some
path in S which connects the two endpoints of e. Note that since G may not be a simple graph, e could be
a self-loop, in which case the empty path connects the endpoints of e. Therefore, e is spanned by any set of
edges. This is analogous to the case of the zero vector, which is a linear combination of any set, even the
empty one.

As in the case of linear algebra, the notions of rank, span, and independence are intimately connected.
Indeed, the same results carry over:
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• If S ⊆ E, then x ∈ E is in the span of S iff ρ(S) = ρ(S ∪ {x}).

• The rank of S is the size of the smallest subset of S whose span contains S.

• A set I ⊆ E is independent iff, for each x ∈ I, x is not in the span of I \ {x}.

• If I ⊆ E is independent, then x is in the span of I iff either x ∈ I or I ∪ {x} is independent.

It is an interesting exercise to run through these properties with the given definitions of rank, span, and
independence, to verify that each holds.

3 Matroid Definitions

The similarities between the notions of independence, rank, and span in these two domains suggest a common
definition. We first present the rather ad-hoc definition of a matroid in terms of independent sets, which
draws upon properties (I1-2) above. However, a number of other equivalent definitions are possible, which
will be introduced at the end of this section. All of the key definitions and results of this section are
summarized in the appendix.

3.1 Independent Sets

Definition 1. A matroid is a finite2 set E with a non-empty collection I of subsets of E, called independent
sets, such that

(I1) Every subset of an independent set is independent.

(I2) If I1 and I2 are independent sets, and |I2| > |I1|, then for some x ∈ I2 \ I1, the set I1 ∪ {x} is
independent.

Note that modulo (I1), the requirement that I is nonempty is equivalent to the requirment that the
empty set is independent.

Alternatively, we could have replaced axiom (I2) with (I2’) from above. That is, we could have required
the independent sets to satisfy the following:

(I1) Every subset of an independent set is independent.

(I2’) If S ⊆ E, then the maximal independent subsets of S are all equal in size.

The equivalence of these axioms is easy to see. The direction (I2) ⇒ (I2’) follows by taking two maximal
subsets of S, and applying (I2) if they differ in size. The direction (I2) ⇐ (I2’) follows by applying (I2’)
with S = I1 ∪ I2. Since |I1| < |I2|, |I1| cannot be a maximal independent subset of S, so some element of
S I1 = I2 \ I1 can be added to I1 to produce another independent set.

With this definition, we can define two sorts of matroids, one from linear algebra and one from graph
theory. If V is a vector space over some field k, and E is a finite subset of V , then we can define a matroid M
on E whose independent sets are those sets which are linearly-independent within V . This sort of matroid is
called a “matric” [3], “vector” [7], or “representable” [11] matroid, and we speak of it as being “representable
over k.” The term “matric” generally refers to the case in which the vectors in E are the columns of a matrix,
but any representable matroid can be converted easily enough to that form.

Similarly, if G is a graph with edges E and vertices V , then we define the “cycle” [7] or “circuit” [11]
matroid of G, with base set E and independent sets exactly those S ⊆ E for which S is acyclic. It can be
shown that this also produces a matroid. Such matroids are also called “graphic” matroids, because they
arise from graphs in the same way that matric matroids arise from matrices.

2The theory of matroids can be generalized to the infinite case, but some of the interesting and useful concepts, such as
duality, seem to break down. In this paper, only finite matroids will be considered.
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We can also define one more example of a very simple type of matroid, a uniform matroid. The uniform
matroid of rank k ≥ 0 on a set of size n ≥ k, denoted Uk,n, is a matroid on a set E of size n, for which the
independent sets are exactly those subsets S ⊆ E which have |S| ≤ k. The axioms given above are easy to
verify in this case, and uniform matroids will provide a useful foil for the complexity of matric and graphic
matroids.

At this point, it is not at all obvious that the given definition of a matroid is ‘correct’ or useful, or that
it should provide meaningful definitions of “rank” and “span.” However, it does. . .

3.2 Bases, Circuits, Rank, and other sundries

Assume we have a matroid M on a set E. We begin by defining some important types of sets of elements:

Definition 2. In a matroid M on a set E,

• A set S ⊆ E is dependent if and only if it is not independent.

• A set B ⊆ E is a basis iff it is a maximal independent set.

• A set C ⊆ E is a circuit iff it is a minimal dependent set.

For the case of a representable matroid, a basis is a collection of vectors which is linearly independent
and spans all the other vectors in the matroid. In other words, if our matroid came from a set of vectors E in
a vector space V , then a basis in E is just a basis for the span of E. In the lucky case that E spanned all of
V , then a basis is simply a set of vectors which is an actual basis of V , in the usual sense from linear algebra.
The notion of a circuit is more obtuse in this setting, but it is can be seen that a set C = {v1, . . . , vm} is a
circuit iff there are non-zero constants a1, . . . , am 6= 0, such that

a1v1 + · · ·+ amvm = 0,

and the ai are determined up to a multiplicative factor. This is a stronger condition than requiring that
each element of C be spanned by the remainder, since this would still hold in the union of two circuits, and
circuits cannot be subsets of other circuits.

For the case of graphic matroids, a set is dependent iff it contains a cycle, and so we see that a circuit
is nothing but a simple cycle. This explains the term “circuit.” However, the notion of a basis is more
complex. If the underlying graph G is connected, then a maximal independent set is just a spanning tree.
Otherwise, we must speak of a spanning forest, which consists of a spanning tree in each component of G.
It is well-known in the field of graph theory3 that the size of a spanning tree is one less than the number of
vertices. Therefore, the size of a spanning forest of G will be the number of vertices in G minus the number
of connected components. This establishes that all bases have the same size. For S ⊂ E, we can apply the
same argument to the subgraph of G obtained by deleting the edges outside of S, and this establishes axiom
(I2’) above. So therefore graphic matroids actually are matroids.

For a uniform matroid Uk,n, a set will be dependent exactly when its size is greater than k. Consequently,
a set is a basis if its size is exactly k, and a circuit if its size is exactly k + 1. Note that in the case k = n,
there are no sets of size k + 1, and so there are no circuits in the matroid. This example demonstrates
that circuits and dependent sets need not exist. On the other hand, independent sets always exist, by the
definition of a matroid, and thus bases always exist in any matroid too.

With the given definitions of bases and circuits, we can already state a few interesting results:

(B1) No basis is contained in any other basis.

(B2) If B1 and B2 are distinct bases, then for every x ∈ B1 \ B2, there is some y ∈ B2 \ B1 such that
(B1 \ {x}) ∪ {y} is a basis.

3Or at least in the field of Computer Science. The fact that the number of edges in a tree is one less than the number of
vertices is easy to prove by induction on the number of edges in the tree.
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(B3) All bases have the same size.

(C1) No circuit is contained in any other circuit.

(C2) If C1 and C2 are two distinct circuits, and x ∈ C1 ∩ C2, then (C1 ∪ C2) \ {x} contains some other
circuit.

Properties (B1) and (C1) are obvious from the definitions. Property (B2), a so-called basis exchange principle,
follows by applying (I2) to the sets B1 \ {x} and X2, to show that (B1 \ {x}) ∪ {y} is independent for some
appropriate y, and using (B3) to show that it is a basis. (B3) itself follows from (I2’) applied to the entire
matroid. Property (C2)4 is much less obvious, but will follow from the properties of the next definition.

Definition 3. If M is a matroid on a set E, then the rank of a set of elements S ⊆ E, denoted ρ(S), is
defined to be the size of a maximal independent subset of S. The rank of the matroid M is defined to be the
rank of all of E.

Note that rank is well-defined by virtue of (I2’). Also, the maximal independent subsets of E are just
the bases, so the rank of M is just the size of any basis. Finally, note that S is independent iff ρ(S) = |S|.

The notion of rank is relatively straightforward to understand in our three examples of matroids. For
the case of a representable matroid, the rank of a set of elements is just the dimension of the subspace
spanned by the corresponding set of vectors. If the vectors were the columns of a matrix, then the rank of
a set of columns is just the rank of the corresponding submatrix, justifying the terminology. For the case
of a graphic matroid, the rank of a set of edges S is equal to the number of vertices minus the number of
connected components in the graph induced by S, as hinted at above. For the case of a uniform matroid
Uk,n, the rank of a set S is either the size of S, or k, whichever is smaller. Note that the rank of the entire
matroid is just k, hence the name, “uniform matroid of rank k. . . ”

As in the case of circuits and bases, there are certain essential properties of rank worth noting:

(R1) For any set S, 0 ≤ ρ(S) ≤ |S|.

(R2) If S ⊆ T , then ρ(S) ≤ ρ(T ).

(R3) If S, T ⊆ E, then the following semimodular inequality holds:

ρ(S) + ρ(T ) ≥ ρ(S ∪ T ) + ρ(S ∩ T ).

The first property is obvious from the definition, and the second follows by noting that a maximal independent
subset of S can be extended to a maximal independent subset of T . To prove (R3), let I be a maximal
independent subset of S ∩ T , and let I ′ ⊇ I be a maximal independent subset of S ∪ T , containing I. Then

I ′ ∩ (S ∩ T ) = I,

as the left hand side is independent, and I was a maximal subset of S ∩ T . We also have

|I| = ρ(S ∩ T ),

|I ′| = ρ(S ∪ T ),

|I ′ ∩ S| ≤ ρ(S),

and
|I ′ ∩ T | ≤ ρ(T ).

4This is called the (weak) circuit elimination axiom, and is a weaker form of the original circuit elimination axiom used by
Whitney, which is listed as (C2’) in the appendix (see [7] p. 9). The reason for the designation “axiom” will become clearer
when the alternative definitions of a matroid are given. While (C2) can be proven directly in terms of independent sets, as in
Oxley’s exposition, the derivation belows shows the sort of manipulations which can be made with rank and nullity.
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The last inequality follows from the fact that I ′ ∩ T is an independent subset of T , but not necessarily a
maximal one, since some element of I ′ \T might be preventing any more elements of T from being added to
I ′. So it suffices to show that

|I ′ ∩ S|+ |I ′ ∩ T | = |I ′ ∩ S ∩ T |+ |I ′|,

which is just a form of the inclusion-exclusion principle for two sets.
An important concept related to rank is nullity.

Definition 4. (Whitney) The nullity of a set S ⊆ E is defined to be n(S) = |S| − ρ(S).

Then we have the following properties analogous to rank:

(N1) For any set S, 0 ≤ n(S) ≤ |S|.

(N2) If S ⊆ T , then n(S) ≤ n(T ).

(N3) For any S, T , we have
n(S) + n(T ) ≤ n(S ∪ T ) + n(S ∩ T ).

The first property is obvious, and the third is obtained by subtracting the semimodular inequality from the
identity

|S|+ |T | = |S ∪ T |+ |S ∩ T |.

To prove the second, note that by the semimodular inequality,

ρ(T ) = ρ((T \ S) ∪ S) ≤ ρ(T \ S) + ρ(S)− ρ(∅) ≤ |T \ S|+ ρ(S) + 0 = |T | − |S|+ ρ(S).

After rearranging, this gives the desired inequality

|T | − ρ(T ) ≥ |S| − ρ(S).

Using these theorems on rank and nullity, we can prove property (C2) above.

Lemma 1. The nullity of any circuit C is 1.

Proof. Since the empty set is independent in any matroid, every circuit has at least one element. So there
is some x ∈ C. Since C is not independent, ρ(C) < |C|, but since C \ {x} is independent, ρ(C \ {x}) =
|C \ {x}| = |C| − 1. So by (R2), we have

|C| − 1 = ρ(C \ {x}) ≤ ρ(C) < |C|.

Therefore, ρ(C) = |C| − 1, so n(C) = 1.

Theorem 1. Property (C2) holds. That is, if C1 and C2 are two distinct circuits both containing an element
x, then D = (C1 ∪ C2) \ {x} contains a circuit.

Proof. Since C1 and C2 are distinct, neither contains the other, so C1∩C2 is a proper subset of both circuits,
and is therefore independent. Therefore,

n(C1 ∪ C2) ≥ n(C1) + n(C2)− n(C1 ∩ C2) = 1 + 1− 0 = 2.

Then since C1 ∪ C2 = D ∪ {x}, we have

n(D ∪ {x}) = n(C1 ∪ C2) ≥ 2,

and also
n(D ∪ {x}) = |D ∪ {x}| − ρ(D ∪ {x}) ≤ |D|+ 1− ρ(D) = n(D) + 1.

It follows that n(D) + 1 ≥ 2, and so n(D) 6= 0, implying that D is not independent, and therefore contains
a cycle.
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To round off the definitions, we can define the notion of “span” in any matroid, though this is more
frequently ([11],[7]) referred to as “closure.” Formally,

Definition 5. if S is a set in a matroid, then the closure or span of S, is the set

cl(S) = {x : ρ(S ∪ {x}) = ρ(S)}.

If x is in the closure of a set S, we also say that S spans x, or that x depends on S.

Note that every element of S is in the closure of S, S ⊆ cl(S).
For the case of a matric matroid, x is in the closure of S if x in in the usual span of S, that is, if x is a

linear combination of elements of S. This follows from the fact that if x is a linear combination of S, then
the space spanned by S ∪{x} is the same as the space spanned by S, and so ρ(S) = ρ(S ∪{x}). Conversely,
if ρ(S) = ρ(S ∪ {x}), then the subspace spanned by S has the same dimension as the larger space spanned
by S ∪ {x}, and so the two subspaces are equal, implying that x is itself in the space spanned by S.

For the case of a graphic matroid, an edge e is in the span of another set of edges S unless the graph
with edges S ∪ {x} has fewer connected components than the graph with edges S (assuming we keep all the
vertices form the underlying graph around). So clearly, e is spanned by S exactly when the two endpoints
of e are already connected by edges in S. Noticed that we could equivalently say that e /∈ S is in the closure
of S exactly when e ∪ S′ is a circuit, for some S′ ⊆ S. This principle holds in any matroid, as we will see
shortly.

For the case of a uniform matroid Uk,n, of rank k on a set of size n, we see that the closure of a set
S is just S, when |S| < k, and the whole matroid otherwise. This is relatively straightforward from the
definitions.

The term “closure” has certain connotations in mathematics, so it behooves us to prove the following
three properties, which are generally taken to be the defining attributes of a closure operation:

(S1) If S is a set, then S ⊆ cl(S).

(S2) If S is a set, then cl(cl(S)) = cl(S).

(S3) If S ⊂ T , then cl(S) ⊆ cl(T ).

But first,we need the following intermediate result:

Lemma 2. For any S, ρ(cl(S)) = ρ(S).

Proof. Consider the following family of sets, for fixed S:

F = {T ⊆ E : T ⊇ S, ρ(T ) = ρ(S)}.

If T1, T2 ∈ F , then
ρ(S) ≤ ρ(T1 ∩ T2) ≤ ρ(T1) = ρ(S),

and
ρ(S) ≤ ρ(T1 ∪ T2) ≤ ρ(T1) + ρ(T2)− ρ(T1 ∩ T2) = ρ(S) + ρ(S)− ρ(S) = ρ(S),

so that T1 ∪ T2 ∈ F . Also, we know that if x ∈ cl(S), then ρ(S ∪ {x}) = ρ(S), so that

S ∪ {x} ∈ F

for every x ∈ cl(S). Since F is closed under unions, we see that

cl(S) = S ∪ cl(S) =
⋃

x∈cl(S)

S ∪ {x} ∈ F .

So therefore ρ(cl(S)) = ρ(S).
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Theorem 2. Properties (S1-3) are true in any matroid.

Proof. The first condition, (S1), is rather obvious since if x ∈ S, then ρ(S ∪ {x}) = ρ(S). For (S2), note
that if x ∈ cl(cl(S)), then

ρ(cl(S) ∪ {x}) = ρ(cl(S)) = ρ(S),

by the lemma, implying
ρ(S) ≤ ρ(S ∪ {x}) ≤ ρ(cl(S) ∪ {x}) = ρ(S),

so that x ∈ cl(S).
For (S3), suppose that x ∈ cl(S). Then ρ(S ∪ {x}) = ρ(S), so that

ρ(T ∪ {x}) = ρ(T ∪ (S ∪ {x})) ≤ ρ(T ) + ρ(S ∪ {x})− ρ(T ∩ (S ∪ {x})) ≤ ρ(T ) + ρ(S ∪ {x})− ρ(S) = ρ(T ),

so that x ∈ cl(T ).

Properties (S1-3) establish that closure is in fact a proper closure operator. We can define a set to be
closed if it equals its closure, or equivalently by (S2), if it is the closure of some set. The intersection of
two closed sets is closed, and the closure of any set is just the intersection of the closed sets containing it.
If the union of any two closed sets was closed, we would have a topological space. This would actually be
equivalent to the identity

cl(S ∪ T ) = cl(S) ∪ cl(T ),

for any S and T . However, this is rarely the case for matroids5. Instead, we have an odd property, the
MacLane-Steinitz exchange property :

(S4) If x /∈ cl(S), but x ∈ cl(S ∪ {y}), then y ∈ cl(S ∪ {x}).

To prove this, it helps to first prove the following alternative characterization of closure, which is some-
times taken to be the definition of closure:

Theorem 3. For some set S of elements of a matroid, an element x is in cl(S) if and only if at least one
of the following is true:

(a) x ∈ S

(b) {x} ∪ T is a circuit, for some T ⊆ S.

Proof. First, suppose that (a) is true. Then obviously x ∈ cl(S), by (S1) above. Next, suppose that (b) is
true. Then for some T ⊆ S, {x} ∪ T is a circuit, which implies that T is independent. So we have n(T ) = 0
and n(T ∪ x) = 1. Then by inequality (N3),

n(S ∪ {x}) = n(S ∪ T ∪ {x}) ≥ n(S) + n(T ∪ {x})− n(T ) = n(S) + 1.

so therefore

ρ(S) ≤ ρ(S ∪ {x}) = |S ∪ {x}| − n(S ∪ {x}) ≤ |S|+ 1− (n(S) + 1) = |S| − n(S) = ρ(S).

So x ∈ cl(S).
Finally, it remains to show that if x ∈ cl(S), and x /∈ S, then (b) holds for some T . Let I be a maximal

independent subset of S. Then |I| = ρ(S) = ρ(S∪{x}), so I is also a maximal independent subset of S∪{x}.
Therefore I ∪ {x} is not independent, and contains some circuit C. If x /∈ C, then C ⊆ I, contradicting the
choice of I. Therefore x ∈ C, and we are done.

With this result, (S4) is easy to prove:

Theorem 4. (S4) above holds.
5In fact, it only occurs for uniform matroids of the form Un,n,.
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Proof. Intuitively, if x is in the closure of S ∪ {y}, then this is caused by a circuit in S ∪ {y}, which must
“use” y, since S by itself does not generate x. Then since some circuit has both x and y, we can reverse this
argument to see that y is in the closure of S and x.

Or more rigorously, since x ∈ cl(S ∪ {y}), then either x = y, or there is some circuit C ⊆ S ∪ {x} ∪ {y}
containing x. In the first case, we obviously have y = x ∈ cl(S ∪ {x}). In the other case, if y /∈ C, then C
shows that x ∈ cl(S). Therefore, y ∈ C, so y ∈ cl(S ∪ {x}).

The notion of closure turns out to have many of the properties that we would like it to have. In particular:

• A minimal set whose closure is the entire matroid is the same thing as a basis.

• For any S, a minimal subset of S whose closure contains S is the same as a maximal independent
subset of S.

• The closure of S is the biggest set containing S and having the same rank as S.

• A set I is independent iff no element of I is in the closure of the other elements of I.

3.3 A Plethora of Definitions

Amazingly enough, many of the properties of bases, circuits, rank, and closure can be used as alternative
definitions of a matroid.

Specifically, we can define a matroid to be a set E, and a non-empty collection of subsets B, called bases,
such that

(B1) No basis is contained in another basis.

(B2) if B1 and B2 are bases, then for every x ∈ B1 \B2, there is some y ∈ B2 \B1, such that (B1 \{x})∪{y}
is a basis.

One would be tempted to add (B3), the claim that all bases have the same size from the previous section, but
it can be proven from (B1) and (B2) [6]. Roughly speaking, if we had two bases of different size, B1, B2 ∈ B,
with |B1| < |B2|, then by repeatedly swapping elements of B1 \ B2 for elements of B2 \ B1, one would
eventually end up with a basis which was a subset of B2, but of the original size of B1, contradicting axiom
(B1).

With this definition, we define an independent set to be any set contained in a basis. Then axiom (I1) is
obvious, and axiom (I2) can be established using a similar series of exchanges as is used to prove (B3). So
this definition of matroid is equivalent to our original one [7].

Using circuits, we can define a matroid to be a set E, and a collection of non-empty subsets C, called
circuits, such that

(C1) No circuit is contained in another circuit.

(C2) If C1, C2 ∈ C, and x ∈ C1 ∩ C2, then C1 ∪ C2 \ {x} contains a circuit.

Axiom (C2) could also be replaced with the stronger axiom in which “contains a circuit” is replaced with
“is a union of circuits” (as was essentially done in [10]). With either definition of matroid, a dependent set
is defined to be any set containing a circuit, and any other set is an independent set. It can be proven that
these definitions are equivalent to the one using independent sets.

Using rank, we define a matroid to be a set E, and a map ρ from the subsets of E to the integers,
satsifying

(R1) For any set S, 0 ≤ ρ(S) ≤ |S|.

(R2) If S ⊂ T , then ρ(S) ≤ ρ(T ).
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(R3) If S, T ⊆ E, then the following semimodular inequality holds:

ρ(S) + ρ(T ) ≥ ρ(S ∪ T ) + ρ(S ∩ T ).

With this definition, an independent set is a set S satisfying ρ(S) = |S|. As usual, this definition turns out
to be equivalent to the given definition.

Finally, using closure, we define a matroid to be a set E, and a map cl(·) from the subsets of E to the
subsets of E, such that

(S1) If S is a set, then S ⊆ cl(S).

(S2) If S is a set, then cl(cl(S)) = cl(S).

(S3) If S ⊂ T , then cl(S) ⊆ cl(T ).

(S4) If x /∈ cl(S), but x ∈ cl(S ∪ {y}), then y ∈ cl(S ∪ {x}).

With this definition, a set I is independent iff for every x ∈ I, x /∈ cl(I \ {x}).
Many of these equivalent definitions were noted by Whitney in his original paper [10], though he sometimes

used slightly different axioms from what has later become standard. For the most part, the axioms given
here agree with Wilson’s [11] and Oxley’s [7] expositions. There are other definitions of matroids, some of
which are more abstract. For example, if we look at the partially ordered set of closed sets, ordered under
inclusion, we obtain a lattice (as with any closure operation), but the lattice also has the property that it is
semimodular and atomistic6 Conversely, any lattice that is semimodular and atomistic comes from a matroid,
and the semimodular atomistic lattices end up being equivalent to “simple matroids” (which are matroids in
which every circuit has cardinality at least 3 - see below) [2]. There is also a definition of matroids involving
the greedy algorithm, which seems oddly unrelated to any of the previous definitions.

The presence of a multitude of definitions, which are non-obviously equivalent, has been called “crypto-
morphism” by some writers. This term was originally coined by Birkhoff in the context of universal algebra,
but it certainly is applicable to matroid theory. The variety of definitions is useful in spotting matroids,
since for certain examples of matroids, one definition is easy to verify, while another definition is completely
opaque. For example, in the matroids arising in linear algebra (the matric matroids), concepts like rank and
independence are completely straightforward, but circuits are a bizarre construct. For the case of algebraic
closure, the closure axioms seem easiest to check, while for the case of dual matroids, the rank axioms are
easiest. Also, the equivalence of the definitions implies that any structure which satisfies one of the defini-
tions immediately has a rich structure involving all the other constructs. For example, as soon as we know
that algebraic closure satisfies something like (S4), we immediately can see that a notion like transcendence
degree is meaningful, because all the transcendence bases are equal in size, by (B3). Thus for the theory of
matroids, one of the most useful tools is simply the ability to seamlessly switch between definitions.

4 Examples of Matroids

We have already seen three types of matroids: graphic, matric, and uniform matroids7. In this section, we
present several more examples, though there is hardly enough space to prove that all are valid matroids.

6A lattice is a partial order in which any finite non-empty set has an infimum and supremum. Equivalently, any two elements
x and y have a supremum x ∨ y, and an infimum x ∧ y. For the case of finite lattices, all sets will have infima and suprema.
A semimodular lattice can be defined in various ways, but one way is to say that whenever x covers x ∧ y (meaning that no z
satisfies x∧y < z < x), then x∨y covers y. For finite semimodular lattices, there is always a rank function ρ into the integers such
that ρ(x) ≥ ρ(y) if x ≥ y, ρ(x) = ρ(y) + 1 if x covers y, and the semimodular inequality holds: ρ(x∨ y) + ρ(x∧ y) ≤ ρ(x) + ρ(y).
The rank of x is the length of any sequence between x and the least element of the lattice, in which each element of the sequence
covers its successor. Such a sequence is called a composition sequence, and semimodular lattices have the property that any
two composition sequences between two elements are equal in length. An atom in a lattice is an element which covers the least
element, and a lattice is atomistic if each element is the supremum of a (possibly empty) set of atoms. It seems like there
should be a matroid structure defined on the atoms of any finite semimodular lattice.

7In fact, both graphic matroids and uniform matroids are representable/matric. Graphic matroids are representable over
any field, which is easily seen by choosing the free vector space generated by the vertices, and associating an edge between
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4.1 Cographic matroids

We have already seen how to define a “graphic” or “cycle” matroid for any graph G. There is also another
matroid, the cographic matroid ([11]) of G, which is likewise defined on the edges of E. The circuits in the
cographic matroid are the cut-sets of G, where a cut-set is a collection of edges C, such that when the edges
in C are deleted from G, the number of connected components of G increases by one. So if G is connected,
then a cut-set is a group of edges which separet G into two connected halves. Equivalents, we could define
x to be in the closure of S if x ∈ S or the two endpoits of x are disconnected by S. Equivalently, for x /∈ S,
x ∈ cl(S) iff every path between the endpoints of x, not using x itself, passes through S.

The significance of this definition becomes evident when considering a planar graph G. Any connected
planar graph has a dual graph G∗, and the edges of G can be naturally identified with the edges of G. With
this identification, the cut-sets in G∗ are exactly the cycles in G, and vice versa. Therefore, the cographic
matroid of G is the graphic matroid of G∗, and vice versa. So in some sense, the graphic and cographic
matroid of a planar graph are “dual” to one another. We will see later that this sort of duality can be
extrended to any matroid, not just the graphic matroid of a planar graph.

Figure 1: Planar Graph Duality

vertices a and b with the formal difference a− b (or b−a). Then a set of edges is cyclic iff the corresponding vectors are linearly
dependent. Such matroids, which are representable over all fields, are called regular matroids. A uniform matroid Uk,n can be
represented over, say Q, by just choosing n random vectors in a k-dimensional space. With high probability, this will produce
the correct matroid. This construct doesn’t work in finite fields, however. So for example, U2,4 is not representable over the
field of order 2, as shown on p. 20 of [7].
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4.2 Bicircular matroids

We can assign yet another matroid to a graph G, using a slight modification to the definition of the
graphic/cycle matroid. In the cycle matroid of G, the independent sets were the sets of acyclic edges, that
is, the forests. In the bicircular matroid, the independent sets are the pseudoforests, where a pseudoforest is
a graph in which there is at most one cycle in each connected component [9].

It is easy to see that the number of edges in a pseudoforest P is equal to the number of vertices in P minus
the number of acyclic connected components of P . A maximal pseudoforest P in a connected graph G will
necessarily have a cycle in each component of P , unless G is itself acyclic. Furthermore, if the pseudoforest
is truly maximal, its edges must cover all the vertices in G. Therefore the size of a maximal pseudoforest is
the number of vertices in G, or one less if G is acyclic. Then if G is not connected, the size of a maximal
pseudoforest is the total number of vertices in G minus the number of acyclic connected components of G.
Since this doesn’t depend on the pseudoforest, we see that the maximal pseudoforests in any graph are all
the same size. Therefore, if S is a set of edges in a graph, and we define a set of edges to be independent iff
it is a pseudoforest, then the maximal independent subsets of S are all the same size. It follows that axioms
(I1) and (I2’) hold. The resulting matroid is called a bicircular matroid. Unlike graphic matroids, these are
not necessarily representable over all fields, though they are always representable over Q.

4.3 Transversal matroids

A completely different type of matroid comes from transversal theory. Suppose that we have two sets, E and
F , with a relationship between them: R ⊆ E × F . A good example might be the case where E is a set of
classes, F is a set of time slots, and xRy if class x is offered at time slot y. Another example is when E is a
set of women, F is a set of men, and xRy if x can be married to y. With this in mind, a transversal (defined
in [3]) is a one-to-one mapping f from E to F , such that eRf(e) for all e ∈ E. Similarly, a partial transversal
is a one-to-one mapping f from a subset E′ ⊆ E to F , such that eRf(e) for e ∈ E′. For the first example,
a partial transversal would be a way to schedule all of the classes in non-overlapping times, and a partial
transversal is a way to schedule some of the classes. For the marriage example, a partial transversal would
be a way to marry off a set of women. We can define a transversal matroid on E by taking the independent
sets to be the E′ for which a partial transversal exists [3]. Amazingly, this defines a matroid. This type of
matroid partially explains the significance of matroid theory in the field of combinatorial optimization.

4.4 Matching matroids

If we have an undirected graph G, then a matching is a collection of edges in G such that no two edges share
a vertex. If we imagined that the vertices were people, and an edge connected any two people who could
be married, then a matching would be a way of marrying off some of the people. As in the previous case,
we can define a matroid, in which a set of vertices I is independent if it is covered by a partial matching.
We could also restrict ourselves to only consider sets I ⊆ J , for some fixed J , while still allowing matches
to involve vertices outside of J . This sort of matroid is called a matching matroid [3]. In the case that the
graph is bipartite, and J is one side of the partition, this is just a transversal matroid.

4.5 Gammoids

Let G be a directed graph, and S and T be two sets of vertices in G, not necessarily disjoint. Let a subset
I ⊆ S be independent if there exists a directed path from each element of I to an element of T , and the
paths are pairwise vertex-disjoint. This bizarre definition defines a matroid on S, called a gammoid [11]. If
S and T are disjoint, and every vertex in G is in S ∪ T , and every edge in G runs from S to T , then the
gammoid will just be a transversal matroid again. Gammoids are mainly of interest because they are the
closure of transversal matroids under the operations of minors and duality, defined below in §5.
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4.6 Matroids from projective configurations

Suppose we have some points in the projective plane. Define the rank of a finite set of points to be 0 if the
set is empty, 1 if the set consists of just one point, 2 if the points are contained in a line, and 3 otherwise.
In other words, the rank is one more than the dimension of the smallest subspace containing all the points.
This also defines a matroid, with the semimodular inequality following from the incidence relationships.
Furthermore, this can be generalized easily to higher dimensions, and works just as well over projective and
affine spaces from any field. In fact, these matroids are just the representable matroids in disguise. Suppose
we have some set of points in a projective space Pn. The space Pn is usually defined as a quotient space of a
vector space V of dimension (n+ 1), so for each of our points, we can choose some vector in V . The rank-k
linear subspaces of V correspond to the (k− 1)-dimensional subspaces of Pn, and so the matroid associated
with the configuration of points in projective space is the same as the representable matroid coming from
the associated points in V .

In particular, a matroid M of rank n is representable over a field k iff it can be represented in terms of
some configuration of points in the projective space of dimension n − 1 over k. This connection was noted
by Saunders MacLane [5], who used it to explain why certain matroids were not representable. For example,
consider the following abstract configuration of points and lines:

Figure 2: An impossible configuration

This configuration violates Pappus’s Theorem, and so it cannot occur in any projective space coming
from a field. Yet we can still define a matroid for this structure, by defining the rank of any one point to be
1, the rank of any two points to be 2, and the rank of any 3 points to be 3, unless the 3 points are on one
of the “lines” marked in the diagram (in which case they have rank 2). All sets with more than 3 elements
have rank 3. The resulting matroid is not representable over any field. This example had been originally
found by Whitney, but the geometric understanding is due to MacLane.

MacLane also used this idea to construct matroids which are only recognizable over special fields. For
example, in the following affine configuration, the ratio between the distances on the bottom line must be√

2. By adding the line at infinity, we get a projective configuration which can only exist when the underlying
field includes

√
2.
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Figure 3: Planar Graph Duality

So the corresponding matroid is not representable over Q. Similar tricks can be used to construct matroids
which are only representable over finite fields, or over the fields in which an arbitrary equation can be solved.

5 Operations on Matroids

5.1 Deletion and Submatroids

Like many other structures in mathematics, there is a well-defined notion of a substructure. If M is a
matroid on a set E, and E′ is any subset of E, then we can define a matroid on E′ by taking a subset of
E′ to be independent if and only if it was independent in the original matroid. In other words, we simply
restrict the notion of independence and dependence to the subsets of E′. This is clearly still as matroid, as
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it satisfies axioms (I1) and (I2). This new matroid M ′ is a submatroid of M , called the restriction of M
to E′ [7]. We could also have defined the submatroid structure in terms of rank, bases, circuits, or closure.
The rank function on the submatroid M ′ will just be the restriction of the rank function from the original
matroid. That is, if S ⊆ E′, then ρM ′(S) = ρM (S). The circuits in the submatroid are just the original
circuits that were contained in E . That is, if S ⊆ E, then S is a circuit in M ′ iff it is a circuit in M . The
closure operator in the submatroid is also somewhat similar: for x ∈ E′ and S ⊆ E′, x is in the closure of S
with respect to M ′ exactly if it is in the closure of S with respect to M . That is,

clM ′(S) = M ′ ∩ clM (S).

These ideas reflect the fact that independence, rank, and closure are in some sense intrinsic properties of a
set.

On the other hand, whether a set S is a basis depends on the relationship between S and the ambient
matroid M . So a basis in M ′ will generally not be a basis in M , but will instead be a maximal independent
subset of E′.

If M is a matroid, and x ∈M , then the submatroid on the set E \ {x} is called the matroid obtained by
deleting x, and is denoted by M \ x. We can also delete a subset S of E, which is the same as restricting to
the complement of S.

5.2 Duality

An important concept in matroid theory is the notion of duality. To each matroid M on a set E, there is a
dual matroid MD defined on the same set E. The simplest definition of MD is through bases: the bases of
MD are the complements of the bases of M . However, it is not obvious from this definition that MD is a
matroid. Instead, we’ll define duality using rank:

Definition 6. (Whitney) If M is a matroid on a set E, then the dual matroid MD is another matroid on
the same set E, with rank function given by:

ρMD (S) = ρM (E \ S) + |S| − ρM (E).

It’s still not obvious that this defines a matroid, but axioms (R1-3) are easy to verify.

Theorem 5. MD is a valid matroid satisfying (R1-3).

Proof. For (R1), note that by the semimodular inequality,

ρM (E) ≤ ρM (S) + ρM (E \ S),

so that
ρMD (S) = ρM (E \ S) + |S| − ρM (E) ≥ |S| − ρm(S) ≥ 0,

and since ρM (E \ S) ≤ ρM (E), we have

ρMD (S) = ρM (E \ S) + |S| − ρM (E) ≤ |S|.

So (R1) holds in MD.
Next, for (R2), suppose that S ⊆ T ⊆ E. Then E \ S = (E \ T ) ∪ (T \ S), so again applying the

semimodular inequality,

ρM (E \ S) ≤ ρM (E \ T ) + ρM (T \ S) ≤ ρM (E \ T ) + |T | − |S|,

so that
ρMD (S) = ρM (E \ S) + |S| − ρM (E) ≤ ρM (E \ T ) + |T | − ρM (E) = ρMD (T ),

establishing (R2).
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Finally, (R3) follows by adding together the following three (in)equalities:

ρM (E \ S) + ρM (E \ T ) ≥ ρM (E \ (S ∪ T )) + ρM (E \ (S ∩ T )),

|S|+ |T | = |S ∪ T |+ |S ∩ T |,

−ρM (E)− ρM (E) = −ρM (E)− ρM (E).

Now that the definition of dual is established, we can consider the bases of the dual matroid. Clearly a
basis in M was just a set B for which

|B| = ρM (B) = ρM (E).

Similarly, a basis in MD is just a set B such that

ρMD (B) = |B| = ρMD (E),

or, using the definition of MD,

ρM (E \B) + |B| − ρM (E) = |B| = ρM (E \ E) + |E| − ρM (E) ≡ |E| − ρM (E),

which is equivalent to
ρM (E \B) = ρM (E) = |E| − |B| ≡ |E \B|.

We have just proven the following:

Theorem 6. A set B ⊆ E is a basis in a dual matroid MD iff its complement E \B is a basis in the original
matroid M .

This justifies the earlier claim that the bases in the dual matroid are exactly the complements of the
bases in the original matroid. It also shows that duality is truly an involution. With this result, it is not
hard to see that a codependent set in a matroid M , i.e., a dependent set in the dual matroid MD, is just a
set which intersects every basis of M .

Duality can also be expressed in terms of the closure operator, by the following theorem:

Theorem 7. Suppose that M is a matroid on a set E, and E can be written as a disjoint union of S∪{x}∪T .
Then exactly one of the following is true:

(a) x ∈ clM (S).

(b) x ∈ clMD (T ).

Proof. Note that x ∈ clMD (T )⇔ ρMD (T ∪ {x}) = ρMD (T )⇔

ρM (S) + |T ∪ {x}| = ρM (S ∪ {x}) + |T | ⇔ ρM (S ∪ {x})− ρM (S) = 1.

Now
ρM (S) ≤ ρM (S ∪ {x}) ≤ ρM (S) + ρM ({x}) ≤ ρM (S) + 1,

so therefore ρM (S ∪ {x})− ρM (S) is either 0 or 1. It follows that

x ∈ clMD (T )⇔ ρM (S ∪ {x})− ρM (S) = 1⇔ ρM (S ∪ {x})− ρM (S) 6= 0⇔ x /∈ clM (S).
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We have already seen an example of a pair of dual matroids: if G is a graph, then the graphic and
cographic matroids of G are dual to each other8. In fact, the notion of duality stems from this example, and
is closely connected with graph-theoretic duality. If G is a planar graph, then it has some graph-theoretic
dual G∗, whose vertices are the faces of G, and vice versa. We can naturally identify the edges of G∗ with
the edges of G. Importantly, the cut-sets of G∗ are the circuits of G, and vice versa. Therefore, the matroids
of two dual graphs are dual to each other.

We can also talk about an abstract dual of a graph G, which is another graph G∗, whose edges are
identified with the edges of G, such that the circuits of G are the cut-sets of G∗ (and vice versa). By
Whitney’s Planarity Criterion, any graph with an abstract dual is in fact planar (see [11] section 8). Stated
in terms of matroid theory, this tells us that if a matroid M is graphic, and its dual MD is also graphic
(or equivalently, M is cographic), then M is the cycle matroid of a planar graph. Such matroids are called
planar matroids.

We can discuss the duals of our other examples of matroids, but sometimes things are more opaque.

• In the uniform matroid of rank k on a set of size n, Uk,n, the bases are exactly the sets of size k.
Therefore, the bases in the dual matroid are exactly the sets of size n− k, so the dual matroid is just
Un−k,n.

• The dual of a transversal matroid or a gammoid is always a gammoid, though this is non-trivial (see
[7] sections 2.4 and 3.2).

• Interestingly, if a matroid M is representable over a field, then so is its dual MD. In proving this, we
can assume without loss of generality that the elements of M correspond to the columns of a matrix.
If M has rank m and size n, we can assume that the matrix is an m × n matrix, since the size of
the vector space containing the columns might as well be m. After reducing the matrix to reduced
echelon form, and rearranging the columns, we can assume that the matrix is of the form [I|A], for an
m×m identity matrix I and an m× (n−m) matrix A. Then consider the matrix [AT |I], where I is
an (n−m)× (n−m) identity matrix. This new matrix is an (n−m)× n matrix, whose columns can
be identified with the columns of [I|A] in the obvious manner. When this is done, it is not too hard to
show that the resulting matroid is dual to the original one (see [7] p. 80). The duals of representable
matroids can also be understood geometrically through hyperplanes, as Whitney noted in his original
paper ([10]). Whitney’s construction is equivalent to the one given here.

5.3 Contraction and minors

The operation of deletion defined above has a dual notion of contraction. Specifically, if M is a matroid, and
a is an element of M , then the contraction of M by a is the matroid

M/a = (MD \ a)D.

This definition may be best understood in terms of closure: if S ⊆ E\{a} and x ∈ E\{a}, then x ∈ clM/a(S)
iff x ∈ clM (S ∪ {a}). The term “contraction” comes from graph theory, since if G is a graph and M is its
graphic matroid, then for an edge e, M/e is the graphic matroid of the graph obtained from G by contracting
the edge e.

Just as multiple elements of a matroid can be deleted to produce a submatroid, multiple elements can be
contracted. In fact, contraction and deletion can be done simultaneously. Specifically, if M is a matroid, and
S and T are two disjoint subsets of E, then we can define the matroid M \S/T = M/T \S, called a minor of
M , to be the matroid M ′ on E \ (S ∪T ), in which clM (X) = clM (X ∪T ) \ (S ∪T ), for any X ⊆ E \ (S ∪T ).
By the discussions on contraction and deletion above, and their effects on the closure operator, it is clear
that the matroid M can be obtained by successively deleting all the edges in S and contracting all the edges
in T , in any order. Of course, either S or T might be empty.

8This is because a set is dependent in the dual of the graphic matroid iff it intersects every spanning forest, iff it separates
a connected component of G. A set is dependent in the cographic matroid iff its removal increases the number of connected
components by some amount.
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For the case of graphic matroids, matroid minors correspond to the usual minors of graph theory. That
is, if G is a graph, and M is the cycle matroid of G, then a minor M \ S/T is just the cycle matroid of the
graph obtained by deleting all the edges in S and contracting all the edges in T . This new sort of graph is
called a minor in the standard terminology of graph theory. Minors can be used to express several interesting
results. For example, it turns out that a graph is planar exactly when it has neither of the following two
graphs as minors:

Figure 4: Forbidden minors for planar graphs (images from Wikipedia)

These two graphs are called the forbidden minors of the class of planar graphs. Any class definable
through forbidden minors must be closed under minors, because the relationship of being a minor is a
partial order. Amazingly, any class of graphs which is closed under minors can be defined with a finite
set of forbidden minors. This is the celebrated Robertson-Seymour theorem. No similar result is known
for matroids, but the notion of forbidden minors is still quite useful. For example, the matroids that are
representable over the field of order 2 have been classified in terms of forbidden minors, as have regular,
graphic, cographic, and planar matroids ([7], pp. 203,213).

5.4 Sums and components

Given two matroids M1 and M2, we can form a sum matroid M1 + M2 on the disjoint unions of the base
sets, by saying that a set S ⊆ E1 ∪ E2 is independent if S ∩ E1 and S ∩ E2 are independent. Equivalently,
we have

ρM1+M2(S) = ρM1(S ∩ E1) + ρM2(S ∩ E2),

clM1+M2(S) = clM1(S ∩ E1) ∪ clM2(S ∩ E2).

The sum operator cooperates with duality: MD
1 +MD

2 = (M1 +M2)D. A matroid which can be written as a
non-trivial sum is called a separable matroid. Equivalently, a matroid M is separable if E can be partitioned
as E1∪E2, for disjoint E1 and E2, such that ρ(E1)+ρ(E2) = ρ(E). In his initial paper [10], Whitney proved
that any matroid has a unique decomposition as a union of non-separable matroids. Moreover, he proved
the following:

Theorem 8. (Whitney) Two elements e1, e2 of a matroid M belong to the same non-separable component
of M iff there is some circuit C with e1, e2 ∈ C.

It is rather surprising that this relationship should be transitive, but can be proven using (C1-2).
For the case of graphic matroids, non-separability is just biconnectivity9. Thas is, a graph’s matroid will

be nonseparable if the graph is biconnected10, and the components of a graphic matroid are just the largest
biconnected components of the graph.

9A graph is biconnected if it remains connected after the removal of any edge.
10This ignores the case when there are vertices detached from any edges.
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6 Simple Matroids

Within graph theory, we often speak of “simple graphs,” which are graphs in which there is at most one
edge between any two nodes, and no self-loops running between a vertex and itself. These notions have
straightforward analogs in matroid theory. First, we define a loop in a matroid M to be an element x ∈ M
which is a circuit by itself. Equivalently, a loop is a singleton set {x} of rank 0. Loops are exactly the elements
in the closure of the empty set, and are also the elements which are not contained in any independent sets
or bases. In the case of a representable matroid, this would correspond to the zero vector. In a graphic
matroid, these correspond to self-loops. For the transversal matroid corresponding to classes and timeslots,
this would correspond to a class which was not scheduled at any time.

If x and y are not loops, then we say that x and y are parallel if {x, y} is a 2-element circuit. This is
equivalent to any of the following statements:

• The rank ρ({x, y}) = 1.

• x ∈ cl({y}) and y ∈ cl({x}).

• At most one of x and y occurs in any basis or independent set.

Note that if x is parallel to y and y is parallel to z, then by (C2), there is some circuit contained in
({x, y} ∪ {y, z}) \ {y} = {x, z}, and since neither x nor y is a loop, x is parallel to z. It follows that
parallelship is an equivalence relationship, and we can speak of parallel classes.

For the case of a graphic matroid, two edges are parallel if they have the same endpoints. For a repre-
sentable matroid, two vectors are parallel if one is a scalar multiple of another (i.e., they are parallel!). For
the transversal matroid corresponding to classes and timeslots, two classes are parallel if each is only offered
at one time, and the two times are the same.

With these definitions, a simple matroid is one in which there are no loops, and the parallel relationship
is trivial (no two elements are parallel). Equivalently, a simple matroid is one in which all sets of one or two
elements are independent, or even more simply, one in which all circuits have at least three elements.

A matric matroid will be simple if it does not contain the zero vector, and no two vectors are parallel. In
projective geometry, we throw out the zero vector, and identify vectors which are parallel, so the matroids
coming from configurations in projective space are always simple. A graphic matroid will be simple if the
graph is simple.

There is a certain sense in which any matroid is associated with a canonical simple matroid ([7]). If M
is a matroid on E, let E′ be the set obtained by removing the loops from E, and factoring out the parallel
equivalence relationship. That is, the elements of E′ are the parallel classes of non-loops in M . Then we
can give E′ a matroid structure M ′, by any of the equivalent ways:

• A set S ⊆ E is independent if, when some arbitrary representative in E is chosen for each element of
S, the set of representatives is independent. (This turns out to not depend on the choice of represen-
tatives).

• If S is a set in E′, and T is any set which projects onto S when taken modulo parallelicity, then
ρ′M (S) = ρM (T ).

• If B is a basis in E, then when B is projected onto E′ (seeing how no loops are in B), the resulting
set is a basis in M , and all bases are generated in this way.

• If S is a set in E′, and T is any set which projects onto S modulo parallelicity, then the closure of S
is the closure of T with the loops removed, modulo parallelicity.

These rules show that the structure of M and M ′ are closely related. In fact, the structure of M can
be reconstructed from the structure of M ′, using only the set of loops L ⊆ M , and the quotient map of
M \L→M ′. So really, simple matroids contain all the complexity of general matroids. Interestingly, simple
matroids are determined by the structure of their lattice of closed sets. The lattice of closed sets will be a
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“geometric” lattice11 for any matroid, and it turns out that every “geometric” lattice is the lattice of closed
sets of an essentially unique simple matroid. If we take a matroid, obtain the lattice, and then obtain the
simple matroid, we have just obtained the simple matroid associated with the original matroid.

The notion of a simple matroid does not play well with duality. Neither the notion of a “loop” or a
pair of “parallel” elements is self-dual. A loop is an element not contained in any base, so a coloop is one
contained in every basis, or equivalently, an element which is not in the span of everything else. For graphic
matroids, this would be an edge which is not part of any cycle, because it connects two otherwise unconnected
subgraphs.

Interestingly, the dual notion to two elements x and y being parallel is x and y being serial. Since x and
y are parallel iff only one is contained in any basis, x and y are serial iff at least one is contained in any
basis. Equivalently, any set which spans x contains y, and vice versa. For the case of graphic matroids, this
corresponds to two edges which are in series12, hence the name. Since a simple graph can have coloops and
serial edges, we see that the dual to a simple matroid is not necessarily simple.

7 The Greedy Algorithm

One of the main reasons for the importance of matroids in the field of combinatorial optimization is the
association between matroids and greedy algorithms. The archetypical example of a greedy algorithm of the
sort we’re interested in is Kruskal’s algorithm for finding a minimal (or maximal) spanning tree. Suppose
we have a network of nodes and links between the nodes, and each link has a weight or a cost. We wish to
find a collection of links that connect all nodes, using the cheapest total cost. A minimal spanning set will
clearly be a tree, so this amounts to finding a spanning tree with minimal cost. Since all spanning trees have
the same number of edges, we could also have subtracted all the weights from some upper bound, and asked
for a spanning tree with maximal value. Either way, Kruskal’s algorithm works as follows:

1. Initialize a set of edges I = ∅.

2. Sort the edges in order of weight.

3. Run through the edges, starting with the cheapest or most valuable. For each edge e, add e to I unless
this produces a cycle in I.

This algorithm is guaranteed to always find a minimal (or maximal) spanning tree, whose elements will end
up in I. With the proper data structures, the bulk of the time is spent sorting the edges in the second
step, and fast sorting algorithms exist. Consequently, Kruskal’s algorithm is of much practical value. The
terminology “greedy” refers to the fact that at each step, the algorithm chooses to add the best edge possible
at the moment, without any planning ahead. It is rather astonishing that such a greedy algorithm, which
only makes locally optimal decisions, manages to always find the globally optimal solution. This often doesn’t
occur for naive greedy algorithms.

This algorithm can be generalized to any matroid. Suppose we have a matroid M and a function
w : M → R which assigns weights to each element. The weights could be negative or positive. Our goal is
to find the basis B of M such that ∑

x∈B

w(x)

is minimized. If all the weights are positive, we could let B range over not only the bases but all sets which
span M . If all the weights are negative, we could let B range over all independent sets. In both cases, the
optimal solution will necessarily be a basis.

As in Kruskal’s algorithm, we proceed as follows:

1. Initialize a set of elements I to be the empty set ∅.
11an atomistic semimodular lattice, [7] p. 55
12with the caveat that neither edge can be a coloop. Also, if we have a long string of edges in series, then any two in the

string will be “in series,” as this relationship must be an equivalence relationship.
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2. Sort the elements of M according to weight.

3. Run through the elements, starting with the smallest/most-negatively weighted elements. For each
element x, add x to I unless I ∪ {x} is dependent.

This algorithm is guaranteed to find a basis. Note that I will certainly end up being an independent
set. Moreover, for any element x of the matroid, x must be spanned by I, since if x /∈ I, then when x was
considered on the list, the intermediate set I ′ must have had I ′ ∪ {x} being dependent, which implies that
x ∈ cl(I ′) ⊆ cl(I). So the final set is always an independent set which spans the entire matroid. This is the
same as being a basis.

Moreover, this algorithm is guaranted to find an optimal basis.

Lemma 3. At each step, the set I is contained in an optimal basis.

Proof. We prove this by induction, by showing that this property is initially true, and is never lost. Clearly
the empty set ∅ is contained in an optimal basis, as it is contained in all bases.

Now suppose that the set I is contained in an optimal basis, and we add x, to produced the new set
I ∪ {x}. Let B be an optimal basis which contained I. If x /∈ B, then I ∪ {x} is a subset of B, so we still
have a subset of an optimal basis. So suppose that x /∈ B.

Since I∪{x} is still independent, it is contained in some basisB′, which is not optimal. We have x ∈ B′\B,
so by the dual of the basis exchange principle, there is some y ∈ B \B′, such that B′′ = (B \ {y})∪ {x} is a
basis. Now since y ∈ B, we know that I ∪{y} is independent, and clearly this would remain true with fewer
elements in I. It follows that y could not have been rejected at a prior step, and so we know that y has not
yet been considered. Since we are considering things in order by weight, we know that w(y) ≥ w(x), which
implies that ∑

z∈(B\{y})∪{x}

w(z) ≤
∑
z∈B

w(z).

Therefore, the basis (B \ {y}) ∪ {x} is also optimal, and it contains I ∪ {x}, so we are done.

Theorem 9. At the end of the algorithm I will contain an optimal basis. That is, the greedy algorithm
always works.

Proof. We have already seen that at the final step, I will be a basis. Furthermore, by the lemma, I will
be contained in an optimal basis B. Since no basis in a subset of another basis, I = B, so I is an optimal
basis.

As another example of a greedy algorithm, consider the transversal matroids defined above. Suppose a
student has a set of classes she would like to take, and each one can occur in a different time slot. It may
not be possible to take all the classes, but the sets of classes which can be all taken are the independent sets
of a transversal matroid. So if she has preferences between different classes, then she can find an optimal
schedule by running through her classes from most to least favorite, and adding each one to the set that
she is going to take, unless it cannot be added. This requires the ability to tell whether or not a given set
of classes is feasible, but there are algorithms to do this. It is interesting that she only needs to rank the
classes, and not to assign numerical weights to each one.

In fact, by considering the matching matroid on the bipartite graph associated with the classes and time
slots, she could also factor in preferences between different time slots. Confusingly, however, this algorithm
might ask her to compare a timeslot with a class.

Matroid duality has an interesting implication for these sorts of algorithms. We are trying to find an
optimal basis, and the total weight of a basis is inversely related to the total weight of its complement.
So we could also negate the weights and run the greedy algorithm to find the optimal cobase, and then
take the complement. In the case of finding a minimal spanning tree, this would produce the following
“reverse-delete” algorithm:

1. Initialize a set I to contain all of the edges.
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2. Sort the edges in order of weight.

3. Run through the edges, starting with the most expensive. For each edge e, remove e from I unless this
disconnects the graph (that is, makes I no longer span the whole graph).

The really astonishing property of these greedy algorithms is the fact that they characterize matroids,
and can be used as an alternative definition. That is, suppose we have a set E, and a non-empty collection
F of “feasible” subsets of E. We might as well assume that a subset of a feasible subset is a subset. Suppose
we have a weighting function which assigns positive values to each element of E. We want to find a feasible
set with maximum total weight. The greedy algorithm works by initializing a set I to be empty, sorting the
elements of E, and at each step adding to I the element of greatest value among those that don’t make I
infeasible. Then the key result is the following (from [3], p. 276):

Theorem 10. (Rado and Edmonds) If the greedy algorithm works for any possible set of weights, the feasible
sets are the independent sets of a matroid.

Proof. We already know that axiom (I1) holds, by assumption, so it remains to prove (I2). Suppose we have
some set S, and F1 and F2 are maximal feasible subsets of S, but |F2| > |F1|. By assigning weights of the
form 1+εx to each x ∈ S, and 0 to all other elements, we can arrange that the first elements which are added
to I are the elements of F1. After this point, no more elements of S can be added, because F1 is a maximal
independent subset of S. Therefore the final feasible set will consist of elements of F1 and elements of E \S.
Then since the weights in S are all approximately 1, and the weights outside of S are approximately 0, the
weight of this final feasible set will be approximately |F1|, which is less than the weight of the feasible set
F2. So the greedy algorithm failed to produce the optimal feasible set.

Or dually, suppose we have a set E, and a non-empty collection F of “feasible” subsets of E. In this
case, we might as well assume that a superset of a feasible set is also feasible. Suppose we have a weighting
function that assings a positive cost to each element of E. Then the greedy algorithm will work by defining
the set I to be the entire set E, and at each step, removing from I the costliest element which can be removed
without losing feasibility. If this algorithm finds an optimal solution for any set of weights, then the minimal
feasible sets are the bases of a matroid on E.

To prove that this dual algorithm works only for matroids, note that the complements of the feasible sets
in the second algorithm can be taken as the feasible sets in the first algorithm, and then the two algorithms
will basically do the same thing. Then the minimal feasible sets in the second algorithm are the complements
of bases of a matroid M , and so are the bases of a dual matroid MD.

8 Conclusion

Matroids seem to be fairly interesting mathematical objects, if only for the sake of novelty. They unite
concepts from linear algebra, projective geometry, transversal theory, graph theory, combinatorial optimiza-
tion, lattice theory, and even transcendence theory. The most distinctive feature of matroids seems to be
the diversity of definitions of one concept. For example, we could roughly paraphrase some of the different
definitions of a matroid as follows

• A structure for which the greedy algorithm always works.

• An intrinsic notion of coherence or acceptability, for which the maximal coherent sets are all the same
size13

• A closure operation, where one element is in the closure of a set of others exactly when it satisfies some
symmetric relationship with some of the others14.

13For example, the notions of being a forest or a pseudoforest.
14For example, the notion of linear dependence. Any closure operation that comes from a symmetric relationship in this way

will satisfy (S4).
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On the surface, these notions seem totally unrelated, and it is indeed surprising that in some sense they
produce exactly the same definition. It is also fascinating that as soon as a structure satisfies one set of
axioms, a dozen more concepts are immediately defined on the structure, including some which may have
been not at all obvious from the original structure. Since algebraic closure satisfies the closure axioms,
we immediately get a notion of transcendence degree. Since maximal pseudoforests all have the same size,
there’s some sort of interesting closure operation associated with them.

Moreover, matroids provide a nice framework for generalizing results from graph theory and linear algebra.
For example, if a theorem about a graph can be defined in terms of cycles, bases, and spanning trees, then
the statement can be translated into the framework of matroids, and we can ask whether the new statement
holds for all matroids, or for some interesting class of matroids. One example of a problem which was solved
by generalizing from graphs to matroids was the Shannon Edge-Switching game15[3]. In this game, two
players, called Short and Cut, alternatively choose an edge in a graph, either contracting it or deleting
it, respectively. There is also a special edge linking the source and sink, which neither player can choose.
In the end, Short wins by connecting the source and sink (or equivalently, by spanning the designated
edge), and Cut wins by preventing this. This has an obvious generalization to matroids, and we see by the
characterization of duals in terms of closure, that Cut wins exactly by co-spanning the designated edge. So
matroid theory reveals the symmetry between the two players: the roles of the two players are exactly dual.
Moreover, matroid theory was used by Alfred Lehman to solve the game in full generality, in [4]. Only later
was the solution translated back into a graph- theoretic construct, for the case of the edge-switching game.
Interestingly enough, the edge-switching game includes the game Gale, which was marketed commercially
as Bridg-It during the 1960s.

8.1 Limitations and Generalizations of Matroids

There are several unsatisfactory properties of matroids. One of these is the poor theory of infinite matroids.
Many of the fundamental theorems about matroids rely on the assumption that the underlying set is finite.
It is not clear how to generalize (I2) or (I2’) to the case when the underlying set is infinite. While some
of the definitions, such as the closure axioms, have obvious generalizations, the resulting structure will not
necessarily have any meaningful notion of a basis or an independent set. We can handle the case of infinite
matroids of finite rank, but such matroids have no theory of duality (because the complement of a finite
base will always be infinite; Oxley sees duality as one of the main obstacles towards a reasonable theory of
infinite matroids, [7] p. 68).

Another thing that is sometimes useful is a notion of orientation. In a graph, we might like to distinguish
between two orientations of an edge, corresponding to the two directions in which we transverse it. Then
we can ask meaningful questions about whether we have a directed cycle, or whether a series of edges in a
path span another one in a directed way. This notion doesn’t really fit into a matroid, so we must extend
the matroid with additional structure, to create an “oriented matroid.” This turns out to be related to the
notion of the orientation of a basis in a vector space (over an ordered field). More details are in [8].

Also, the characterization of matroids in terms of greedy algorithms is a little less universal than we
made it out to be. There are many sorts of algorithms which are generally seen as “greedy,” but have little
to do with any kind of matroid structure. One example would be Dijkstra’s algorithm for finding shortest
paths in a graph. By relaxing the constraints on feasible sets, and putting more requirements on the weight
function, we can consider more general structures called “greedoids,” of which matroids are a special class.
Another type of greedoid is an “antimatroid.” Like matroids, antimatroids are also associated with special
semimodular lattices, as well as a special type of closure operator, one that generalizes the notion of the
convex hull of a set [1].

15Not to be confused with the related Shannon Vertex-Switching game, which is known to be (NP-)hard to solve in full
generality. This contains as an instance the well-known strategy game Hex.
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A The Matroid Definition Cheat Sheet

For a matroid on a finite set E. . .

(I0) I, the collection of independent sets, is a non-empty collection of subsets of E.

(I1) A subset of an independent set is independent.

(I2) If I1 and I2 are independent sets, and |I2| > |I1|, then for some x ∈ I2 \ I1, I1 ∪ {x} is independent.

(I2’) If S ⊆ E, then all maximal independent subsets of S have the same size.

(R0) Each subset S of E is assigned a rank ρ(S), which is an integer.

(R1) For any S, 0 ≤ ρ(S) ≤ |S|.

(R2) For any S, T , ρ(S) + ρ(T ) ≥ ρ(S ∪ T ) + ρ(S ∩ T ).

(B0) B, the collection of bases, is a non-empty collection of subsets of E.

(B1) No basis is contained in another basis.

(B2) If B1 and B2 are bases, for every x ∈ B1 \B2, there is some y ∈ B2 \B1, such that (B1 \ {x})∪ {y} is
a basis.

(B2’) If B1 and B2 are bases, for every x ∈ B1 \B2, there is some y ∈ B2 \B1, such that (B2 \ {y})∪ {x} is
a basis.

(C0) C, the set of circuits, is a collection of non-empty subsets of E.

(C1) No subset of a circuit is a circuit.

(C2) If C1, C2 are two distinct circuits both containing some x, then (C1 ∪ C2) \ {x} contains a circuit.

(C2’) If C1, C2 are two distinct circuits both containing some x, then (C1 ∪ C2) \ {x} is a union of circuits.

(S0) Closure is an operation cl(·) from the subsets of E to the subsets of E.

(S1) For any S, S ⊆ cl(S).

(S2) For any S, cl(cl(S)) = cl(S).

(S3) If S ⊆ T , then cl(S) ⊆ cl(T ).

(S4) If x ∈ cl(S ∪ {y}) \ cl(S), then y ∈ cl(S ∪ {x}).

(I → R) The rank of a set S is the size of a maximal independent subset of S.

(I → B) A basis is a maximal independent set.

(I → C) A circuit is a minimal dependent set (i.e., a minimal not-independent set).

(R → I) An independent set is a set whose size is its cardinality, that is, ρ(S) = |S|.

(R → B) A basis is a set S for which |S| = ρ(S) = ρ(E).

(R → B) A basis is a minimal set S for which ρ(S) = ρ(E).

(R → S) The closure of a set S is the maximum set S′ for which ρ(S′) = ρ(S), and S′ ⊇ S.

25



(R → S) The closure of a set S is the set

{x ∈ E : ρ(S ∪ {x}) = ρ(S)}.

(B → I) An independent set is a set contained in a basis.

(C → I) An independent set is a set not containing a circuit.

(C → S) The closure of a set S is the set

S ∪ {x ∈ E : S′ ∪ {x} is a circuit for some S′ ⊆ S}.

(S → I) An independent set is a set I for which x /∈ cl(I \ {x}) for every x ∈ I.

(S → R) The rank of a set S is the size of the smallest subset S′ ⊆ S whose closure contains S.

(S → B) A basis is a minimal set B whose closure contains all of E.

A.1 Key to the Cheat Sheet

Each set of statements starting with the same letter can be taken as a definition of a matroid. Primed
statements are equivalent given the other axioms in the set. Given one set of axioms, the arrowed statements
serve as definitions of the other concepts in terms of the chosen one. For instance, we can take (C0), (C1),
and (C2) as the matroid axioms, or alternatively, (C0), (C1), and (C2’). Either way, we would then define
rank, independence, bases, and closure using the statements (C → I), (C → S), and then, say, (I → B) and
(S → R). As a coherent whole, all of these statements listed here are true in every matroid.
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