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4. Lecture notes on matroid optimization

4.1 Definition of a Matroid

Matroids are combinatorial structures that generalize the notion of linear independence in
matrices. There are many equivalent definitions of matroids, we will use one that focus on
its independent sets. A matroid M is defined on a finite ground set £ (or E(M) if we want
to emphasize the matroid M) and a collection of subsets of F are said to be independent.
The family of independent sets is denoted by Z or Z(M), and we typically refer to a matroid
M by listing its ground set and its family of independent sets: M = (E,Z). For M to be a
matroid, Z must satisfy two main axioms:

(I) f X CY and Y €7 then X € T,
(L) ifXeZandY €Z and |Y| > |X|thenJe e Y\ X : X U{e} €T.

In words, the second axiom says that if X is independent and there exists a larger independent
set Y then X can be extended to a larger independent by adding an element of Y\ X. Axiom
(I3) implies that every mazimal (inclusion-wise) independent set is maximum; in other words,
all maximal independent sets have the same cardinality. A maximal independent set is called
a base of the matroid.

Examples.

e One trivial example of a matroid M = (E,Z) is a uniform matroid in which
IT={XCE:|X| <k},

for a given k. It is usually denoted as Uy, where |E| = n. A base is any set of
cardinality k (unless k£ > |E| in which case the only base is |E]|).

A free matroid is one in which all sets are independent; it is U,, .

e Another is a partition matroid in which E is partitioned into (disjoint) sets Ey, Es, - - - , E
and
I={XCE:|XNE;)| <k foralli=1,--- 1},
for some given parameters ky, -+, k;. As an exercise, let us check that (1) is satisfied.

If X,Y €7 and |Y| > | X]|, there must exist ¢ such that |Y N E;| > |X N E;| and this
means that adding any element e in £; N (Y \ X) to X will maintain independence.

Observe that M would not be a matroid if the sets E; were not disjoint. For example,
if By = {1,2} and Ey = {2,3} with k; = 1 and k3 = 1 then both Y = {1,3} and
X = {2} have at most one element of each F;, but one can’t find an element of Y to
add to X.
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e Linear matroids (or representable matroids) are defined from a matrix A, and this is
where the term matroid comes from. Let E denote the index set of the columns of
A. For a subset X of E, let Ay denote the submatrix of A consisting only of those
columns indexed by X. Now, define

I ={X CFE:rank(Ax) =1|X|},

i.e. a set X is independent if the corresponding columns are linearly independent. A
base B corresponds to a linearly independent set of columns of cardinality rank(A).

Observe that (1) is trivially satisfied, as if columns are linearly independent, so is a
subset of them. (I3) is less trivial, but corresponds to a fundamental linear algebra
property. If Ax has full column rank, its columns span a space of dimension | X|, and
similarly for Y, and therefore if |Y| > |X|, there must exist a column of Ay that is not
in the span of the columns of Ay; adding this column to Ax increases the rank by 1.

A linear matroid can be defined over any field F (not just the reals); we say that the
matroid is representable over F. If the field is Fy (field of 2 elements with operations
(mod 2)) then the matroid is said to be binary. If the field is F5 then the matroid is
said to be ternary.

For example, the binary matroid corresponding to the matrix

1 10
A=1]1 0 1
011

corresponds to U, 3 since the sum of the 3 columns is the 0 vector when taking com-
ponents modulo 2. If A is viewed over the reals or over F3 then the matroid is the free
matroid on 3 elements.

Not every matroid is linear. Among those that are linear, some can be represented
over some fields ' but not all. For example, there are binary matroids which are not
ternary and vice versa (for example, Us 4 is ternary but not binary). Matroids which
can be represented over any field are called regular.

e Here is an example of something that is not a matroid. Take a graph G = (V, E), and
let Z={F C E: F is a matching}. This is not a matroid since (I5) is not necessarily
satisfied ((I) is satisfied!, however). Consider, for example, a graph on 4 vertices and
let X ={(2,3)} and Y ={(1,2),(3,4)}. Both X and Y are matchings, but one cannot
add an edge of Y to X and still have a matching.

e There is, however, another matroid associated with matchings in a (general, not nec-
essarily bipartite) graph G = (V| F), but this time the ground set of M corresponds to
V. In the matching matroid, Z = {S C V : S is covered by some matching M}. In
this definition, the matching does not need to cover precisely S; other vertices can be
covered as well.

"When (I;) alone is satisfied, (F,Z) is called an independence system.
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e A very important class of matroids in combinatorial optimization is the class of graphic
matroids (also called cycle matroids). Given a graph G = (V, E), we define independent
sets to be those subsets of edges which are forests, i.e. do not contain any cycles. This
is called the graphic matroid M = (E,Z), or M(G).

(1) is clearly satisfied. To check (1), first notice that if F' is a forest then the number of
connected components of the graph (V, F') is given by K(V, F') = |V| — |F|. Therefore,
if X and Y are 2 forests and |Y| > | X| then K(V,Y) < K(V, X) and therefore there
must exist an edge of Y\ X which connects two different connected components of X;
adding this edge to X results in a larger forest. This shows (I5).

If the graph G is connected, any base will correspond to a spanning tree T" of the graph.
If the original graph is disconnected then a base corresponds to taking a spanning tree
in each connected component of G.

A graphic matroid is a linear matroid. We first show that the field F can be chosen to
be the reals. Consider the matrix A with a row for each vertex ¢ € V' and a column for
each edge e = (i,7) € E. In the column corresponding to (7, j), all entries are 0, except
for a 1in ¢ or j (arbitrarily) and a —1 in the other. To show equivalence between the
original matroid M and this newly constructed linear matroid M’, we need to show
that any independent set for M is independent in M’ and vice versa. This is left as an
exercise.

In fact, a graphic matroid is regular; it can be represented over any field F. To obtain
a representation for a field I, one simply needs to take the representation given above
for R and simply view/replace all —1 by the additive inverse of 1 (i.e. by p — 1 for
F,).

4.1.1 Circuits

A minimal (inclusionwise) dependent set in a matroid is called a circuit. In a graphic matroid
M (G), a circuit will be the usual notion of a cycle in the graph G; to be dependent in the
graphic matroid, one needs to contain a cycle and the minimal sets of edges containing a
cycle are the cycles themselves. In a partition matroid, a circuit will be a set C' C E; with
|CNE;)| =k + 1.

By definition of a circuit C', we have that if we remove any element of a circuit then we
get an independent set. A crucial property of circuit is given by the following property,

Theorem 4.1 (Unique Circuit Property) Let M = (E,Z) be a matroid. Let S € T and
e such that* S +e & I. Then there exists a unique circuit C C S + e.

The unicity is very important. Indeed, if we consider any f € C' where C' is this unique
circuit then we have that C'+e— f € Z. Indeed, if C'+e— f was dependent, it would contain
a circuit C” which is distinct from C' since f ¢ C’, a contradiction.

2For a set S and an element e, we often write S + e for SU {e} and S — e for S\ {e}.
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As a special case of the theorem, consider a graphic matroid. If we add an edge to a
forest and the resulting graph has a cycle then it has a unique cycle.
Proof:

Suppose S+e¢ contains more than one circuit, say C and Cs with C # Cs. By minimality
of C; and Cy, we have that there exists f € C; \ Cy and g € Cy \ Cy. Since Cy — f € T (by
minimality of the circuit C}), we can extend it to a maximal independent set X of S + e.

Since S is also independent, we must have that | X| = |S| and since e € C} — f, we must have
that X = S +e— f € Z. But this means that Cy, C S+ e — f = X which is a contradiction
since (5 is dependent. A

Exercise 4-1. Show that any partition matroid is also a linear matroid over F = R. (No
need to give a precise matrix A representing it; just argue its existence.)

Exercise 4-2. Prove that a matching matroid is indeed a matroid.
Exercise 4-3. Show that U, 4 is representable over Fj.

Exercise 4-4. Consider the linear matroid (over the reals) defined by the 3 x 5 matrix:

210 1
201 -1
201 -1

A=

—_ = =

The ground set E = {1,2,3,4,5} has cardinality 5, corresponds to the columns of A, and
the independent sets are the set of columns which are linearly independent (over the reals).
1.Give all bases of this matroid.
2.Give all circuits of this matroid.
3.Choose a base B and an element e not in B, and verify the unique circuit property for

B +e.

Exercise 4-5. Given a family Ay, As,--- , A, of sets (they are not necessarily disjoint), a
transversal is a set T such that T = {ay, as, - , a,}, the a;’s are distinct, and a; € A; for all
i. A partial transversal is a transversal for A, , A;,,--- , A;, for some subfamily of the A;’s.

Show that the family of all partial transversals forms a matroid (on the ground set £ = UA;).
(Hint: Think of bipartite matchings.)

Exercise 4-6. Let M = (F,Z) be a matroid. Let k£ € N and define
I, ={X eZ:|I| <k}

Show that My = (F,Zy) is also a matroid. This is known as a truncated matroid.
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Exercise 4-7. A family F of sets is said to be laminar if, for any two sets A, B € F, we
have that either (i) A C B, or (ii) B C A or (iii) AN B = (. Suppose that we have a laminar
family F of subsets of E and an integer k(A) for every set A € F. Show that (F,Z) defines
a matroid (a laminar matroid) where:

T={XCE:|[XNA| <k(A) for all A€ F}.

4.2 Matroid Optimization

Given a matroid M = (F,7) and a cost function ¢ : £ — R, we are interested in finding
an independent set .S of M of maximum total cost c(S) = > .4 c(e). This is a fundamental
problem.

If all ¢(e) > 0, the problem is equivalent to finding a maximum cost base in the matroid.
If ¢(e) < 0 for some element e then, because of (I1), e will not be contained in any optimum
solution, and thus we could eliminate such an element from the ground set. In the special case
of a graphic matroid M (G) defined on a connected graph G, the problem is thus equivalent
to the maximum spanning tree problem which can be solved by a simple greedy algorithm.
This is actually the case for any matroid and this is the topic of this section.

The greedy algorithm we describe actually returns, for every k, a set Sy which maximizes
c(S) over all independent sets of size k. The overall optimum can thus simply be obtained
by outputting the best of these. The greedy algorithm is the following:

> Sort the elements (and renumber them) such that c(e;) > c(ez) > -+ > c(ejn)
> SO = @, k=0
> For j =1 to |E|
> if Sy +e; € Z then
> k—k+1
> Sp— Sp_1 + €;
> Sk €
> Output Sy, So, -+, Sk

Theorem 4.2 For any matroid M = (E,Z), the greedy algorithm above finds, for every k,
an independent set Sy of maximum cost among all independent sets of size k.

Proof: Suppose not. Let Sy = {s1, 52, -+, sk} with ¢(s1) > ¢(s2) > -+ > ¢(sg), and
suppose T} has greater cost (¢(Ty) > ¢(Sk)) where T}, = {t1,ta, -+, tx} with c(t1) > c(ta) >
-+ > ¢(tg). Let p be the first index such that c(t,) > c(s,). Let A = {t1,ts,--- ,t,} and
B = {s1,89, - ,8,-1}. Since |A| > |B|, there exists ¢; ¢ B such that B + ¢, € Z. Since
c(ti) > c(t,) > c(sp), t; should have been selected when it was considered. To be more
precise and detailed, when t; was considered, the greedy algorithm checked whether ¢; could
be added to the current set at the time, say S. But since S C B, adding ¢; to S should have
resulted in an independent set (by (/1)) since its addition to B results in an independent set.
This gives the contradiction and completes the proof. A
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Observe that, as long as ¢(sg) > 0, we have that ¢(Sg) > ¢(Sk—1). Therefore, to find a
maximum cost set over all independent sets, we can simply replace the loop

> For j =1 to |F]
by

> For j=1togq
where ¢ is such that c(e;) > 0 > ¢(e411), and output the last Sj.

For the maximum cost spanning tree problem, the greedy algorithm reduces to Kruskal’s
algorithm which considers the edges in non-increasing cost and add an edge to the previously
selected edges if it does not form a cycle.

One can show that the greedy algorithm actually characterizes matroids. If M is an
independence system, i.e. it satisfies (I1), then M is a matroid if and only if the greedy
algorithm finds a maximum cost set of size k for every k and every cost function.

Exercise 4-8. We are given n jobs that each take one unit of processing time. All jobs
are available at time 0, and job j has a profit of ¢; and a deadline d;. The profit for job
j will only be earned if the job completes by time d;. The problem is to find an ordering
of the jobs that maximizes the total profit. First, prove that if a subset of the jobs can be
completed on time, then they can also be completed on time if they are scheduled in the
order of their deadlines. Now, let E(M) = {1,2,--- ,n} and let Z(M) = {J C E(M) : J
can be completed on time }. Prove that M is a matroid and describe how to find an optimal
ordering for the jobs.

4.3 Rank Function of a Matroid

Similarly to the notion of rank for matrices, one can define a rank function for any matroid.
The rank function of M, denoted by either 7(-) or r3/(-), is defined by:

rar 28 = Niry(X) =max{|Y|: Y C X,Y € I}.
Here are a few specific rank functions:

e For a linear matroid, the rank of X is precisely the rank in the linear algebra sense of
the matrix Ay corresponding to the columns of A in X.

e For a partition matroid M = (E,Z) where

(the E;’s forming a partition of E) its rank function is given by:

r(X) = me<|EmX|,/%).

=1
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e For a graphic matroid M (G) defined on graph G = (V, E), the rank function is equal

to:
rve)(F) =n—K(V,F),

where n = |V| and K(V, F') denotes the number of connected components (including
isolated vertices) of the graph with edges F.

The rank function of any matroid M = (E,Z) has the following properties:
(R1) 0 <r(X)<|X]| and is integer valued for all X C F
(Ry) X CY = r(X) < r(Y),
(R3) r(X)+r(Y)>r(XNY)+r(XUY).

The last property is called submodularity and is a key concept in combinatorial optimization.
It is clear that, as defined, any rank function satisfies (R;) and (Rg). Showing that the rank
function satisfies submodularity needs a proof.

Lemma 4.3 The rank function of any matroid is submodular.

Proof: Consider any two sets X,Y C. Let J be a maximal independent subset of
X NY; thus, |J| =r(X NY). By (I3), J can be extended to a maximal (thus maximum)
indenpendent subset of X, call it Jx. We have that J C Jx C X and |Jx| = r(X).
Furthermore, by maximality of J within X NY, we know

Jx\Y:J)(\J. (1)

Now extend Jx to a maximal independent set Jxy of X UY. Thus, |Jxy|=r(X UY).
In order to be able to prove that

r(X)+rY)>r(XNY)+r(XUY)

or equivalently
x| +r(Y) = [J] + |Jxvl,

we need to show that »(Y') > |J| + |Jxy| — |/x|. Observe that Jxy NY is independent (by
(I1)) and a subset of Y, and thus r(Y) > |Jxy NY|. Observe now that

Ixy NY =Jxy \ (Ux \Y) = Jxy \ (Jx \ J),

the first equality following from the fact that Jx is a maximal independent subset of X and
the second equality by (1). Therefore,

r(Y) > |Ixy NY| = |Jxy \ (Jx \ )| = |Ixy| = [Ix| + |J],

proving the lemma. A
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4.3.1 Span

The following definition is also motivated by the linear algebra setting.
Definition 4.1 Given a matroid M = (E,Z) and given S C E, let
span(S) ={e € E:r(SU{e}) =r(9)}.

Observe that S C span(S). We claim that 7(S) = r(span(95)); in other words, if adding
an element to S does not increase the rank, adding many such elements also does not increase
the rank. Indeed, take a maximal independent subset of S, say J. If r(span(S)) > |J| then
there exists e € span(S)\ J such that J+e € Z. Thusr(S+e) >r(J+e)=|J|+1>|J| =
r(S) contradicting the fact that e € span(5).

Definition 4.2 A set S is said to be closed if S = span(S).

Exercise 4-9. Given a matroid M with rank function r and given an integer k € N, what
is the rank function of the truncated matroid My (see Exercise 4-6 for a definition).

Exercise 4-10. What is the rank function of a laminar matroid, see exercise 4-77

4.4 Matroid Polytope

Let
X = {x(9) € {0,1}}*I . 5 € 7}

denote the incidence (or characteristic) vectors of all independent sets of a matroid M =
(E,Z), and let the matroid polytope be defined as conv(X). In this section, we provide
a complete characterization of conv(X) in terms of linear inequalities. In addition, we
illustrate the different techniques proposed in the polyhedral chapter for proving a complete
description of a polytope.

Theorem 4.4 Let
P={zecRIFl: 2(5)<r(S) VSCE
Te >0 Ve € E'}

where ©(S) =) g Te. Then conv(X) = P.
It is clear that conv(X) C P since X C P. The harder part is to show that P C conv(X).

In the next three subsections, we provide three different proofs based on the three techniques
to prove complete polyhedral descriptions.
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4.4.1 Algorithmic Proof

Here we provide an algorithmic proof based on the greedy algorithm. From conv(X) C P,
we know that

max{c’zr:z € X} = max{cTz: z € conv(X)} <max{cTz: z(S)<r(S) SCE
e >0 e€ E}.
Using LP duality, we get that this last expression equals:

min{ZSr(S)yS : ZS:@GS Ys Z C(G) Vee E
ys >0 S C E}.

Our goal now is, for any cost function ¢, to get an independent set S and a dual feasible
solution y such that ¢¥x(S) = >4 r(S)ys which proves that conv(X) = P.

Consider any cost function c¢. We know that the maximum cost independent set can be
obtained by the greedy algorithm. More precisely, it is the last set Sy returned by the greedy
algorithm when we consider only those elements up to e, where c(e;) > 0 > c(eg41). We
need now to exhibit a dual solution of the same value as Si. There are exponentially many
variables in the dual, but this is not a problem. In fact, we will set most of them to 0.

For any index j < k, we have S; = {s1, 52, -+, s;}, and we define U; to be all elements in
our ordering up to and excluding s;1, i.e. U; = {e1, ez, -+ , e/} where ;11 = sj41. In other
words, Uj; is all the elements in the ordering just before s;;;. One important property of U;
is that

r(U;) = r(S;) = J.
Indeed, by independence r(S;) = |S;| = j, and by (R1), r(U;) > r(S;). If r(U;) > r(S;),
there would be an element say e, € U;\ S; such that S;U{e,} € Z. But the greedy algorithm
would have selected that element (by (1)) contradicting the fact that e, € U; \ 5.
Set the non-zero entries of yg in the following way. For j =1,--- |k, let

yu, = c(s5) — c(sj11),

where it is understood that ¢(sg11) = 0. By the ordering of the ¢(-), we have that yg > 0 for
all S. In addition, for any e € E/, we have that

zys_zm—cst ) > cle),

S:eeS

where t is the least index such that e € U, (implying that e does not come before s; in the
ordering). This shows that y is a feasible solution to the dual. Moreover, its dual value is:

Zr Jys = Zr(Uj)ij =D lelsy) —clsir)) = Y (=(i=D)e(s;) = D e(s5) = e(Sh)-

J=1 J=1 Jj=1

This shows that the dual solution has the same value as the independent set output by the
greedy algorithm, and this is true for all cost functions. This completes the algorithmic
proof.
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4.4.2 Vertex Proof

Here we will focus on any vertex x of

P={zecRIFl: 2(5)<r(S) VSCE
Te >0 Ve € £}

e

and show that z is an integral vector. Since z({e}) < r({e}) < 1, we get that = € {0, 1}/
and thus it is the incidence vector of an independent set.

Given any x € P, consider the tight sets S, i.e. those sets for which z(S5) = r(S). The
next lemma shows that these tight sets are closed under taking intersections or unions. This
lemma is really central, and follows from submodularity.

Lemma 4.5 Let x € P. Let
F={SCE:x(S)=r(9}

Then
SeFTeF=SNTeF,SUTeF.

Observe that the lemma applies even if S and T are disjoint. In that case, it says that ) € F
(which is always the case as z(0) =0 =r(0)) and SUT € F.
Proof: The fact that S,T € F means that:

r(S) +7r(T) = x(S) + z(T). (2)
Since z(S) = > .. Te, We have that
z(S)+z(T)=z(SNT)+2(SUT), (3)

i.e. that the function z(-) is modular (both z and —z are submodular). Since z € P, we know
that x(SNT) < r(SNT) (this is true even if SNT = ) and similarly (SUT) < r(SUT);
this implies that

z(SNT)+z(SUT) <r(S)+r(T). (4)

By submodularity, we have that
r(SNT)+r(SUT) < r(S) +r(T). (5)

Combining (2)-(5), we get
r(S)+r(T)=z(S)+z(T)=z(SNT)+z(SUT) <r(SNT)+r(SUT) <r(S) +r(T),

and therefore we have equality throughout. This implies that x(SNT) = r(SNT) and
z(SUT)=r(SUT),ie. SNT and SUT in F. JAN

To prove that any vertex or extreme point of P is integral, we first characterize any face
of P. A chain C is a family of sets such that for all S,T € C we have that either S C T or
T C S (or both if S =T).
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Theorem 4.6 Consider any face F' of P. Then there exists a chain C and a subset J C E
such that:
F={xcRFl: 2(5)<rS) VSCE
z(C)=r(C) VCeC
e >0 Vee E\J
Te =0 Ve € J.}

Proof: By Theorem 3.5 of the polyhedral notes, we know that any face is characterized
by setting some of the inequalities of P by equalities. In particular, F' can be expressed as

F={zeRFl: 2(8)<r(S) VSCE
z(C)=r(C) VYCeF
e >0 Vee E\J
e =0 Ve € J.}

where J ={e:x., =0forall z € F} and F = {S : z(S) = r(9) for all z € F'}. To prove the
theorem, we need to argue that the system of equations:

z(C)=r(C) VYCeF

can be replaced by an equivalent (sub)system in which F is replaced by a chain C. To be
equivalent, we need that
span(F) = span(C)

where by span(L) we mean
span(L) = span{x(C) : C € L}.

Let C be a maximal subchain of F, i.e. C C F, C is a chain and for all S € F \ C, there
exists C' € C such that S € C' and C' € S. We claim that span(C) = span(F).

Suppose not, i.e. H # span(F) where H := span(C). This means that there exists
S € F\ C such that x(S) ¢ H but S cannot be added to C without destroying the chain
structure. In other words, for any such S, the set of ’chain violations’

V(S)={CeC:C¢ZSandS¢C}

is non-empty. Among all such sets S, choose one for which |V(S)] is as small as possible
(IV(S)| cannot be 0 since we are assuming that V(.S) # () for all possible S). Now fix some
set C' € V(95). By Lemma 4.5, we know that both CN.S € F and CUS € F. Observe that
there is a linear dependence between x(C), x(S), x(CUT), x(CNT):

X(C) +x(5) = x(CUS) +x(CNS).

This means that, since x(C) € H and x(S) ¢ H, we must have that either x(CUS) ¢ H
or x(CNS) ¢ H (otherwise x(S) would be in H). Say that x(B) ¢ H where B si either
CUS or CNS. This is a contradiction since |V (B)| < |V(.5)], contradicting our choice of
S. Indeed, one can see that V(B) C V(S) and C € V(S) \ V(B). A

As a corollary, we can also obtain a similar property for an extreme point, starting from
Theorem 3.6.
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Corollary 4.7 Let x be any extreme point of P. Then there exists a chain C and a subset
J C FE such that x s the unique solution to:

z(C)=r(C) VCeC
Te =0 Ve € J.

From this corollary, the integrality of every extreme point follows easily. Indeed, if the
chain given in the corollary consists of C; C Cy C C,, the the system reduces to

LU(CZ \ Cl'fl) = T’(C» — T(Cl',l) = 17 e, p
Te =0 Ve € J,

where Cy = (). For this to have a unique solution, we’d better have |C;\ C;_1 \ J| < 1 for all
1 and the values for the resulting z.’s will be integral.

4.4.3 Facet Proof

Our last proof of Theorem 4.4 focuses on the facets of conv(X).

First we need to argue that we are missing any equalities. Let’s focus on the (interesting)
case in which any singleton set is independent: {e} € Z for every e € E. In that case
dim(conv(X)) = |E| since we can exhibit |F| + 1 affinely independent points in X: the
0 vector and all unit vectors x({e}) for e € E. Thus we do not need any equalities. See
exercise 4-11 if we are not assuming that every singleton set is independent.

Now consider any facet F' of conv(X). This facet is induced by a valid inequality o’z < 3
where 3 = max{) ., o : I € Z}. Let

O={I€l:)> a =4}

ecl

i.e. O is the set of all independent sets whose incidence vectors belong to the face. We’ll
show that there exists an inequality in opur description of P which is satisfied at equality
by the incidence vectors of all sets I € O.

We consider two cases. If there exists e € M such that o, < 0 then I € O implies that
e ¢ I, implying that our face F' is included in the face induced by x. > 0 (which is in our
description of P).

For the other case, we assume that for all e € E, we have a, > 0. We can further assume
that amax := max.cp a, > 0 since otherwise F is trivial. Now, define S as

S={e€ FE:a.=ama}
Claim 4.8 For any I € O, we have |I N S| = 7r(S).

This means that the face F' is contained in the face induced by the inequality z(S) < r(S)
and therefore we have in our description of P one inequality inducing each facet of conv(X).
Thus we have a complete description of conv(X).
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To prove the claim, suppose that [I N S| < r(S). Thus I NS can be extended to an
independent set X € Z where X C S and |X| > [INS|. Let e € X \ (I NS); observe
that e € S by our choice of X. Since o > 0 we have that [ + e ¢ Z, thus there is a
circuit C' C I + e. By the unique circuit property (see Theorem 4.1), for any f € C' we have
I+e—feZ But C\S #0since (INS)+e € Z, and thus we can choose f € C'\ S. The
cost of I + e — f satisfies:

c(l+e—f)=c(l)+cle) —c(f) > c(]),

contradicting the definition of O.

4.5 Facets?

Now that we have a description of the matroid polytope in terms of linear inequalities, one
may wonder which of these (exponentially many) inequalities define facets of conv(X).

For simplicity, let’s assume that r({e}) = 1 for all e € E' (e belongs to some independent
set). Then, every nonnegativity constraint defines a facet of P = conv(X). Indeed, the 0
vector and all unit vectors except x({e}) constitute |E| affinely independent points satisfying
xe = 0. This mean that the corresponding face has dimension at least |E| — 1 and since the
dimension of P itself is |E|, the face is a facet.

We now consider the constraint z(S) < r(.S) for some set S C E. If S is not closed (see
Definition 4.2) then z(S) < r(S) definitely does not define a facet of P = conv(X) since it
is implied by the constraints x(span(S)) < r(S) and . > 0 for e € span(S) \ S.

Another situation in which z(S) < r(S) does not define a facet is if S can be expressed
as the disjoint union of U # () and S\ U # 0 and r(U) + r(S \ U) = r(S). In this case, the
inequality for S is implied by those for U and for S\ U.

Definition 4.3 S is said to be inseparable if there is no U with ) # U C S such that
r(S)=rU)+r(S\U).

From what we have just argued, a necessary condition for x(.S) < r(5) to define a facet
of P = conv(X) is that S is closed and inseparable. This can be shown to be sufficient as
well, although the proof is omitted.

As an example, consider a partition matroid with M = (E,Z) where

I={XCE:|XNE;)| <k;foralli=1,--- 1},
for disjoint F;’s. Assume that k; > 1 for all 7. The rank function for this matroid is:
!
r(S) = min(k;, |S N Ej).
i=1

For a set S to be inseparable, there must exist (i) ¢ € {1,--- ,{ with S C E;, and (ii) |SN E|
is either < 1 or > k; for every i. Furthermore, for S C FE; to be closed, we must have that if
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|S N E;| > k; then SN E; = E;. Thus the only sets we need for the description of a partition
matroid polytope are (i) sets S = E; for ¢ with |E;| > k; and (ii) singleton sets {e} for e € E.
The partition matroid polytope is thus given by:

P={zecRIFl: o(E)<k ic{l,--- I}:|E|>k
0<z.,<1 e€E}.

As another example, take M to be the graphic matroid M (G). For a set of edges FF C E
to be inseparable, we need that the subgraph (V| F') has only one non-trivial (i.e. with more
than 1 vertex) connected component; indeed, if we partition F' into the edge sets Fy,--- , F,.
of the (¢ non-trivial) connected components, we have that r(F) = > ¢, r(F;) and thus ¢
must be 1 for F' to be inseparable. Given a set F' of edges, its span (with respect to the
graphic matroid) consists of all the edges with both endpoints within the same connected
component of F'; these are the edges whose addition does not increase the size of the largest
forest. Thus, for F' to be inseparable and closed, we must have that there exists a vertex
set S C V such that F' = E(S) (E(S) denotes all the edges with both endpoints in .5)
and (S, E(S)) is connected. Thus the forest polytope (convex hull of all forests in a graph
G = (V,F)) is given by:

P={zcRF: 2(B(S)) <|S|-1 S CV:ES) connected
0 <z e € E}.

(As usual, z(E(S)) denotes }_ sy @e.) Observe that this polyhedral description still has
a very large number of inequalities.

From this, we can also easily derive the spanning tree polytope of a graph, namely the
convex hull of incidence vectors of all spanning trees in a graph. Indeed, this is a face of
the forest polytope obtained by replacing the inequality for S =V (z(E) < |[V]| —1) by an
equality:

P={zecRfl: X(E)=|V|-1
z(E(S)) <|S|—1 S CV :E(S) connected

0<z, e € E}.

Exercise 4-11. Let M = (E,Z) be a matroid and let S = {e € E : {e} € Z}. Show that
dim(conv(X)) = |S| (where X is the set of incidence vectors of indpendent sets) and show
that the description for P has the required number of linearly independent equalities.

Exercise 4-12. Let M = (E,Z) be a matroid and let P be the corresponding matroid
polytope, i.e. the convex hull of characteristic vectors of independent sets. Show that two
independent sets I; and I, are adjacent on P if and only if either (i) [; C Iy and |[;]|+1 = | 5],
or (11) IQ Q Il and |_[2| +1= |Il|, or (111) |[1\IQ| = |12\Il| =1 and Il UIQ ¢ T.



