Master Theorem

The master theorem provides a solution to recurrence relations of the form

$$T(n) = aTigg(rac{n}{b}igg) + f(n),$$

for constants $a \ge 1$ and b > 1 with f asymptotically positive. Such recurrences occur frequently in the runtime analysis of commonly encountered algorithms.

Contents

Introduction

Statement of the Master Theorem

Examples

See Also

References

Introduction

Many algorithms have a runtime of the form

$$T(n) = aTigg(rac{n}{b}igg) + f(n),$$

where n is the size of the input and $a \ge 1$ and $b \ge 1$ are constants with f asymptotically positive. For instance, one car that runtime of the *merge sort* algorithm satisfies

$$T(n)=2Tigg(rac{n}{2}igg)+n.$$

Similarly, traversing a binary tree takes time

$$T(n)=2Tigg(rac{n}{2}igg)+O(1).$$

By comparing $\log_b a$ to the asymptotic behavior of f(n), the **master theorem** provides a solution to many frequently seen recurrences.

Statement of the Master Theorem

First, consider an algorithm with a recurrence of the form

$$T(n) = aT\left(\frac{n}{b}\right),$$

where a represents the number of children each node has, and the runtime of each of the three initial nodes is the runtime of $T\left(\frac{n}{b}\right)$.

The tree has a depth of $\log_b n$ and depth i contains a^i nodes. So there are $a^{\log_b n} = n^{\log_b a}$ leaves, and hence the runtime $\Theta(n^{\log_b a})$.

Intuitively, the master theorem argues that if an asymptotically positive function f is added to the recurrence so that one instead has

$$T(n) = aTigg(rac{n}{b}igg) + f(n),$$

it is possible to determine the asymptotic form of T based on a relative comparison between f and $n^{\log_b a}$.

THEOREM

Master Theorem

Given a recurrence of the form

$$T(n) = aTigg(rac{n}{b}igg) + f(n),$$

for constants $a \, (\geq 1)$) and $b \, (> 1)$ with f asymptotically positive, the following statements are true:

- Case 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- Case 2. If $f(n) = \Theta ig(n^{\log_b a} ig)$, then $T(n) = \Theta ig(n^{\log_b a} \log n ig)$.
- Case 3. If $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$ for some $\epsilon > 0$ (and $af\left(\frac{n}{b}\right) \le cf(n)$ for some c < 1 for all n sufficiently large), the $T(n) = \Theta\left(f(n)\right)$.

Simply put, if f(n) is polynomially smaller than $n^{\log_b a}$, then $n^{\log_b a}$ dominates, and the runtime is $\Theta(n^{\log_b a})$. If f(n) is instead polynomially larger than $n^{\log_b a}$, then f(n) dominates, and the runtime is $\Theta(f(n))$. Finally, if f(n) and $n^{\log_b a}$ are asymptothe same, then $T(n) = \Theta(n^{\log_b a} \log n)$.

Note that the master theorem does not provide a solution for all f. In particular, if f is smaller or larger than $n^{\log_b a}$ by less the polynomial factor, then none of the three cases are satisfied. For instance, consider the recurrence

$$T(n) = 3Tigg(rac{n}{3}igg) + n\log n.$$

In this case, $n^{\log_b a} = n$. While f is asymptotically larger than n, it is larger only by a logarithmic factor; it is not the case that $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$. Therefore, the master theorem makes no claim about the solution to this recurrence.

Examples

As mentioned in the introduction, the mergesort algorithm has runtime

$$T(n)=2Tigg(rac{n}{2}igg)+n.$$

 $n^{\log_b a} = n$ and f(n) = n, so case 2 of the master theorem gives $T(n) = \Thetaig(n^{\log_b a} \log nig) = \Theta(n\log n).$

Similarly, as mentioned before, traversing a binary tree takes time

$$T(n)=2Tigg(rac{n}{2}igg)+O(1).$$

 $n^{\log_b a} = n$, which is asymptotically larger than a constant factor, so case 1 of the master theorem gives $T(n) = \Theta(n^{\log_b a}) = \Theta(n)$.

EXAMPLE

Consider the recurrence

$$T(n) = 9T\left(rac{n}{3}
ight) + n.$$

In this case, $n^{\log_b a} = n^2$ and f(n) = n. Since f(n) is polynomially smaller than $n^{\log_b a}$, case 1 of the master theorem in that $T(n) = \Theta(n^2)$.

EXAMPLE

Consider the recurrence

$$T(n)=27Tigg(rac{n}{3}igg)+n^3.$$

In this case, $n^{\log_b a} = n^3$ and $f(n) = n^3$. Since f(n) is asymptotically the same as $n^{\log_b a}$, case 2 of the master theorem implies that $T(n) = \Theta(n^3 \log n)$.

EXAMPLE

Consider the recurrence

$$T(n)=2Tigg(rac{n}{2}igg)+n^2.$$

In this case, $n^{\log_b a} = n$ and $f(n) = n^2$. Since f(n) is asymptotically larger than $n^{\log_b a}$, case 3 of the master theorem a us to check whether $af\left(\frac{n}{b}\right) \leq cf(n)$ for some c < 1 and all n sufficiently large. This is indeed the case, so $T(n) = \Theta(f(n)) = \Theta(n^2)$.

Consider the recurrence

$$T(n) = 8Tigg(rac{n}{2}igg) + rac{n^3}{\log n}\,.$$

In this case, $n^{\log_b a} = n^3$ and $f(n) = \frac{n^3}{\log n}$. f(n) is smaller than $n^{\log_b a}$ but by less than a polynomial factor. Therefore, to master theorem makes no claim about the solution to the recurrence.

See Also

- Merge Sort
- Binary Tree

References

[1] Cormen, T.H., et al. Introduction to Algorithms. MIT Press, 2009.

Cite as: Master Theorem. Brilliant.org. Retrieved 19:49, November 4, 2018, from https://brilliant.org/wiki/master-theorem/

Rate This Wiki: * * * * *

Give feedback about