Master Theorem

The master theorem provides a solution to recurrence relations of the form

n

T(n) = a7 () + o),

for constants @ > 1 and b > 1 with f asymptotically positive. Such recurrences occur frequently in the runtime analysis of
commonly encountered algorithms.

Contents

Introduction

Statement of the Master Theorem
Examples

See Also

References

Introduction

Many algorithms have a runtime of the form

n

T(n) = aT(b) + f(n),

where n is the size of the input and a (2 1) and b (> 1) are constants with f asymptotically positive. For instance, one cat
that runtime of the merge sort algorithm satisfies

n

T(n) = 2T(5) +n.

Similarly, traversing a binary tree takes time

T(n) = 2T<g> +0(1).

By comparing log; a to the asymptotic behavior of f(n) the master theorem provides a solution to many frequently seen
recurrences.

Statement of the Master Theorem

First, consider an algorithm with a recurrence of the form

n
T(n) =aT <3> ,
where a represents the number of children each node has, and the runtime of each of the three initial nodes is the runtime ¢

T(%).

https://brilliant.org/wiki/recurrence-relations/
https://brilliant.org/wiki/merge/
https://brilliant.org/wiki/binary-tree/

The tree has a depth of log;, n and depth ¢ contains a' nodes. So there are a!°% ™ = nl°® 2 |eaves, and hence the runtime

® (nlogb a))
a
ﬁ?“
log,n

AN T

Intuitively, the master theorem argues that if an asymptotically positive function f is added to the recurrence so that one ins

has

T(n) = aT(%) + f(n),

it is possible to determine the asymptotic form of 1" based on a relative comparison between f and nlos @

THEOREM

Master Theorem

Given a recurrence of the form

T(n) = aT(%) + (),

for constants a (Z 1) yand b (> 1) with f asymptotically positive, the following statements are true:

« Case 1.If f(n) =

) (n'°8 97¢) for some € > 0, then T'(n) = O (n'°&).
 Case 2.If f(n)
)

O

O (n'°&), then T'(n) = O (n'*® *logn).

« Case3.If f(n) = Q(n'°® *¢) for some € > 0 (and af(T) < cf(n) for some ¢ < 1 for all n sufficiently large), tr
T(n) = ©(f(n)

N—""

Simply put, if f(n) is polynomially smaller than nl°% @ then n'°% @ dominates, and the runtime is © (nlogb “). If f(n)isins

log, a

polynomially larger than 721°% @ then f(n) dominates, and the runtime is @(f(n)) Finally, if f(n) and n are asympto

the same, then T'(n) = © (n'°® “logn).

log, a

Note that the master theorem does not provide a solution for all f. In particular, if f is smaller or larger than n by less ti

polynomial factor, then none of the three cases are satisfied. For instance, consider the recurrence

T(n) = 3T<g> + nlogn.

https://brilliant.org/wiki/big-o-notation/

log, a

In this case, = n. While f is asymptotically larger than n, it is larger only by a logarithmic factor; it is not the case th:

f(n) = O(nlogb “_5) for some € > 0. Therefore, the master theorem makes no claim about the solution to this recurrence.

Examples

As mentioned in the introduction, the mergesort algorithm has runtime

T(n) = 2T(g> +n.
n'°% % = pand f(n) = n, so case 2 of the master theorem gives T'(n) = © (n'8 @ logn) = ©(nlogn).

Similarly, as mentioned before, traversing a binary tree takes time

n

T(n) = 2T< 2) +0(1).

nlos ¢ — n, which is asymptotically larger than a constant factor, so case 1 of the master theorem gives
T(n) = ©(n'&*) = O(n).

EXAMPLE

Consider the recurrence

T(n) = 9T<%) +n.

In this case, n'°% ¢ = n? and f(n) = n. Since f(n) is polynomially smaller than n'°8 ¢ case 1 of the master theorem ir

that T'(n) = @(nz).

EXAMPLE

Consider the recurrence

T(n) = 27T<g> +n.

In this case, n'°% ¢ = n3 and f(n) = n3. Since f(n) is asymptotically the same as nlog @

implies that T'(n) = © (n?logn).

, case 2 of the master theorer

EXAMPLE

Consider the recurrence

T(n) = 2T(%> +n?.

In this case, n'°% ¢ = n and f(n) = n?. Since f(n) is asymptotically larger than n'°% ¢, case 3 of the master theorem a

us to check whether af(%) < cf(n) for some ¢ < 1 and all n sufficiently large. This is indeed the case, so

T(n) = ©(f(n)) = ©(n?).

EXAMPLE

Consider the recurrence

3

n n
T(n)=8T| = .
(n) =28 <2>+logn

3
In this case, n'°% ¢ = n? and f(n) = 107;n . f(n) is smaller than n'°® @ but by less than a polynomial factor. Therefore, 1

master theorem makes no claim about the solution to the recurrence.

See Also

* Merge Sort

e Binary Tree

References

[1] Cormen, T.H., et al. Introduction to Algorithms. MIT Press, 2009.

Cite as: Master Theorem. Brilliant.org. Retrieved 19:49, November 4, 2018, from https://brilliant.org/wiki/master-theorem/

Rate This Wiki: Give feedback about

https://brilliant.org/wiki/master-theorem/
https://brilliant.org/wiki/merge/
https://brilliant.org/wiki/binary-tree/

