
A COMPARATIVE STUDY OF LINKED
LIST SORTING ALGORITHMS

by Ching-Kuang Shene1

Michigan Technological University
Department of Computer Science

Houghton, MI 49931-1295
shene@mtu.edu

1 Introduction
Carraway recently published an article [2] describing
a sorting algorithm (the sediment sort) for doubly
linked lists. He claimed that the sediment sort is one
of the fastest and most efficient sorts for linked list,
and planned to determine its complexity. In this
article, a comparative study will be presented to show
that the sediment sort is only a minor variation of the
bubble sort which has been known to the computer
science community for more than three decades and
that the sediment sort is perhaps the slowest
algorithm for sorting linked lists.

In my data structures class I taught two years ago,
students were required to compare various sorting
algorithms for arrays of different size. It was
followed by a study of fine tuning the quick sort by
removing recursion, using median-of-three, and
sorting small files with other algorithms. Students
were asked to run their programs with different small
file sizes and to choose an optimal one. They also
ran the same program under different hardware (PCs
and SPARCstations) with different compilers
(Borland C++, Turbo C++, Microsoft C, and GCC).
Different configuration yields different optimal size.
Students were excited about this approach because
they believed they learn something “practical” rather
than a theoretical treatment of different algorithms.

Students were also encouraged to compare linked list
sorting algorithms with tree-based ones (binary
search trees, AVL trees, and B-trees). Usually,
bucket sort was chosen as a benchmark since it is a
linear algorithm. Although I have not been teaching a
data structures course for two years, it would be
worthwhile to share some sample solutions and

1 This work was supported in part by a NSF grant CCR-9410707.

comparison results in my file with other educators.
As a result, in addition to the sediment sort, five other
linked list sorting algorithms are selected for a
comparative study. They are bubble sort, selection
sort, merge sort, quick sort, and tree sort. All of
them take a linked list as input.

In the following, Section 2 reviews the similarity
between the sediment sort and the traditional bubble
sort. Section 3 gives a description of tree sort, which
uses a doubly linked list implementation, while
Section 4 presents the other four singly linked list
sorting algorithms. Section 5 provides a comparison
and finally Section 6 has our conclusion.

2 Sediment Sort
The sediment sort uses a bounding variable
new_tail, which is set when a pair of nodes are
swapped, to limit the range for next scan. This
algorithm was known to the computer community
much earlier and was discussed in Knuth's
monumental work (Knuth [4]). Figure 1 is a direct
translation from Knuth's description, where SWAP()
is a macro that swaps two integers a[i] and
a[i+1]. Notice the striking similarity between this
one and the sediment sort.

void BUBBLEsort(int a[], int n)
{
 int bound = n-1, done = 0;
 int swapped, i;

 do {
 swapped = -1;
 for (i = 0; i < bound; i++)
 if (a[i] > a[i+1]) {
 SWAP(a[i], a[i+1]);
 swapped = i;
 }
 if (swapped < 0)
 done = 1;
 else
 bound = swapped;
 } while (!done);
}

Figure 1: Bubble Sort

The complexity of this algorithm is O(n2). The worst
case happens when the given array is reversely sorted
and in this case exactly n(n-1)/2 comparisons and
swaps are required. The “best” case, however, only

requires n-1 comparisons and no swap when the
array is already sorted. Note that theoretically bubble
sort is one of the several O(n2) algorithms, the others
being the insertion sort and selection sort. However,
since worst-case study usually does not always
provide the average behavior of an algorithm, the
remaining for me to do is a comparative study.

3 Doubly Linked List Sorting Algorithms
Two doubly linked list sorting algorithms are
included in this study, the sediment sort and the tree
sort. There is no need to repeat the sediment sort
here and the interested reader should refer to [2] for
the details.

Since a node in a doubly linked list has two fields,
prev and next, pointing to the previous node and
the next node, it is good enough for representing a
binary tree. Therefore, we can use these fields to
build a binary search tree and reconstruct a sorted
doubly linked list as the binary search tree is
traversed with inorder. Since building a binary
search tree is quite popular, the following only
describes the reconstruction phase.

static NodePTR head, tail;

void Traverse(NodePTR root)
{
 NodePTR work;

 if (root != NULL) {
 Traverse(root->LEFT);
 work = root->RIGHT;
 APPEND_NODE(root);
 Traverse(work);
 }
}

Figure 2: Reconstruct a List from a Tree

Figure 2 shows a modified recursive inorder traversal
of a binary search tree. Two static variables, head
and tail, are set to NULL before calling
Traverse(). Function Traverse() receives
the current root pointer. If it is not NULL, the left
subtree is traversed. Then, the pointer to root's
right subtree is saved to work, the root is appended
to the end of the doubly linked list with head and tail
pointers head and tail, and finally the right
subtree pointed to by work is traversed. Note that

the pointer to the right subtree must be saved before
the root is appended to the doubly linked list since
macro APPEND_NODE destroys prev and next.

As is well-known, the complexity of binary search
tree insertion is O(n2), since in a binary search tree,
except for one leaf, all nodes could have exactly one
child and in this case the tree reduces to a linked list.
However, if the input data are random, the resulting
binary search tree could be reasonably balanced and
the complexity would be approximately O(nlog2n).

4 Singly Linked List Sorting Algorithms
Since a singly linked list has only one link field, any
sorting algorithm for a singly linked list can only scan
the list along one direction. Thus, the selection sort,
insertion sort and bubble sort can easily be tuned into
a list sorting algorithm. Although Shell sort can also
be made into a list sorting algorithm, it could be
inefficient since we have to step through nodes in
order to find a neighboring node if the gap is greater
than one.

An efficient implementation of heap sort requires an
array that is accessed almost randomly (i.e.,
accessing the index sequence i, i/2, i/22, and so on).
Although it could be done with other heap data
structures (see, for example, Weiss [8]), the material
might be inappropriate for a CS2 type course.

For quick sort, Hoare's original algorithm [3] cannot
be used since this algorithm “burns a candle from
both ends”. Nico Lomuto's algorithm as described in
Bentley [1] could be a better candidate for our study
since it keeps two forward scanning pointers.
However, since quick sort is not stable (Sedgewick
[6]), it is not included. Instead, an algorithm which
was originally designed to make quick sort stable and
to handle equal keys is selected for this study. This
algorithm was first proposed by Motzkin [5] and then
analyzed by Wegner [7]. In fact, Wegner showed
that on average this algorithm is of order
O((m+n)log2(n/m)), where n is the number of keys in
an input linked list in which each key occurs m times.

The idea of Wegner's algorithm is simple. Three
linked lists are used, less, equal and larger.

The first node of the input list is chosen to be a pivot
and is moved to equal. The value of each node is
compared with the pivot and moved to less (resp.,
equal or larger) if the node's value is smaller
than (resp., equal to or larger than) the pivot. Then,
less and larger are sorted recursively. Finally,
joining less, equal and larger into a single list
yields a sorted one. Figure 3 shows the basic
concept, where macro APPEND() appends the first
argument to the tail of a singly linked list whose head
and tail are defined by the second and third
arguments. On return, the first argument will be
modified so that it points to the next node of the list.
Macro JOIN() appends the list whose head and tail
are defined by the third and fourth arguments to the
list whose head and tail are defined by the first and
second arguments. For simplicity, the first and
fourth arguments become the head and tail of the
resulting list.

void Qsort(NodePTR *first, NodePTR *last)
{
 NodePTR lesHEAD=NULL, lesTAIL=NULL;
 NodePTR equHEAD=NULL, equTAIL=NULL;
 NodePTR larHEAD=NULL, larTAIL=NULL;
 NodePTR current = *first;
 int pivot, info;

 if (current == NULL)
 return;
 pivot = current->data;
 APPEND(current, equHEAD, equTAIL);
 while (current != NULL) {
 info = current->data;
 if (info < pivot)
 APPEND(current,lesHEAD,lesTAIL)
 else if (info > pivot)
 APPEND(current,larHEAD,larTAIL)
 else
 APPEND(current,equHEAD,equTAIL);
 }
 Qsort(&lesHEAD, &lesTAIL);
 Qsort(&larHEAD, &larTAIL);
 JOIN(lesHEAD,lesTAIL,equHEAD,equTAIL);
 JOIN(lesHEAD,equTAIL,larHEAD,larTAIL);
 *first = lesHEAD;
 *last = larTAIL;
}

Figure 3: Quick Sort

At a first glance, merge sort may not be a good
candidate since the middle node is required to
subdivide the given list into two sublists of equal
length. Fortunately, moving the nodes alternatively
to two lists would also solve this problem (Sedgewick

[6]). Then, sorting these two lists recursively and
merging the results into a single list will sort the
given one. Figure 4 depicts the basic idea of this
merge sort.

NodePTR Msort(NodePTR first)
{
 NodePTR list1HEAD = NULL;
 NodePTR list1TAIL = NULL;
 NodePTR list2HEAD = NULL;
 NodePTR list2TAIL = NULL;

 if (first==NULL || first->next==NULL)
 return first;
 while (first != NULL) {
 APPEND(first,list1HEAD,list1TAIL);
 if (first != NULL)
 APPEND(first,list2HEAD,list2TAIL);
 }
 list1HEAD = Msort(list1HEAD);
 list2HEAD = Msort(list2HEAD);
 return merge(list1HEAD, list2HEAD);
}

Figure 4: Merge Sort

Moreover, almost all external sorting algorithms can
be used for sorting linked lists since each involved
file can be considered as a linked list that can only be
accessed sequentially. Note that one can sort a
doubly linked list using its next fields as if it is a
singly linked one and reconstruct the prev fields
after sorting with an additional scan.

5 Comparisons
Of these six algorithms, two (sediment sort and tree
sort) use a doubly linked list while the other four
(bubble sort, selection sort, quick sort and merge
sort) use a singly linked list. Due to the similarity
between sediment sort and bubble sort, one can
immediately conclude that the later is faster since
fewer pointer manipulations are involved.
Furthermore, the selection sort should be faster than
the bubble sort since the former requires only n-1
swaps while the later may require as many as n(n-
1)/2. Thus, for these three algorithms, the matter is
not which one is faster than the other, but
determining the relative efficiency.

All of these six algorithms were coded in ANSI C
and SWAP(), APPEND() and JOIN() are C
macros rather than functions except for the sediment

sort whose swap function is taken directly from
Carraway's paper.2 For those who love C++, these
macros and variable parameters can easily be
changed to inline functions and aliases,
respectively. Each sorting algorithm is repeated
several times sorting the same set of input to
minimize timing error and the average elapsed time is
recorded. The clock() function is used to retrieve
the elapsed time between the start and the end of a
sorting algorithm, excluding data generation and all
other operations. Note that clock() returns the
number of clock ticks rather than the number of
seconds. Moreover, since clock() returns elapsed
time rather than user time (i.e., the CPU time used by
a user program), this test is performed under MS-
DOS rather than Windows and Unix to minimize the
multitasking effect. The machine used for this test is
an Intel 66mhz 486DX2 IBM PC compatible and the
compiler is Watcom C/C++ Version 10.0 with
compiler options set to /oneatx/zp4/4/fp3 as
suggested by Watcom for maximum efficiency.

Table 1: Running Time for n = 100 to 1000

O(n2) Group O(nlog2n) Group
n D-Bub S-Bub Select Msort Qsort Tree
100 0.22 0.12 0.10 0.08 0.07 0.05
200 0.98 0.54 0.44 0.15 0.13 0.10
300 2.20 1.22 0.76 0.23 0.22 0.19
400 4.18 2.42 1.44 0.32 0.30 0.21
500 6.38 3.74 2.18 0.42 0.37 0.29
600 10.22 6.48 4.06 0.53 0.51 0.40
700 15.38 10.10 6.46 0.69 0.57 0.43
800 21.20 14.82 9.68 0.76 0.69 0.51
900 28.34 20.20 13.62 0.88 0.79 0.61

1000 36.58 26.14 17.88 1.01 0.89 0.69

Since some algorithms perform better for small size
input but poorly for large ones, timing will be divided
into two groups. Table 1 and Table 2 contain the
number of clock ticks used for all six algorithms.
These two tables show that the fastest algorithm is
the tree sort and the slowest is the sediment sort.
Merge sort, quick sort and tree sort have very similar
timing results. Sediment sort, which is a doubly
linked list implementation of bubble sort, is about 1.5
times slower than the bubble sort. Its cause could be
some extra time for maintaining two link fields. The

2 All test programs are available on request. Please send an e-mail to the
author.

function implementation of swapping might consume
some processing time as well. Swapping is
implemented with C macros in all other algorithms.

Table 2: Running Time for n = 2000 to 10000

O(n2) Group O(nlog2n) Group
n D-Bub S-Bub Select Msort Qsort Tree
2000 159 127 93 2.75 2.00 1.38
3000 379 302 220 3.38 3.38 2.88
4000 693 549 401 5.50 4.12 4.12
5000 1104 867 643 6.00 6.88 5.50
6000 1763 1395 1082 9.00 8.88 6.38
7000 3037 2604 2169 12.38 11.00 9.62
8000 4449 3850 3252 13.75 11.62 10.25
9000 5515 4630 3917 16.38 14.38 12.25

10000 6591 5509 4619 19.25 16.50 12.25

Note that comparing timing values of two algorithms
for a particular n usually does not provide much
insight. This is particularly true if two algorithms
from different groups are compared. For example,
the sediment sort is about four times slower than the
tree sort when n = 100 and it becomes 538 times
slower when n = 10000. By the definition of O(), the
number of data items n and the required clock ticks t
to sort them satisfy t=α(n2) and t=α(nlog2n) for the
O(n2) group and the O(nlog2n) group, respectively. A
least square (regression) fit, taking n and t as input,
will deliver an estimation of the constant factor α.3

Table 3 shows this result. The third column is the
ratio of the second and the first columns. Note that n
is divided by 100 to make the value α larger. So, the
equations are t=α(k2) and t=α(klog2k), where
k=n/100.

Now we can compare these constant factors to
determine their relative efficiency. For the O(n2)
group, if n ≤ 1000, the sediment sort is 1.43 ≈
0.342743 / 0.239701 (resp., 2.14 ≈ 0.342743 /
0.160253) times slower than the bubble (resp.,
selection) sort, while the bubble sort is 1.50 ≈
0.239701 / 0.160253 times slower than the selection
sort. If n > 1000, the sediment sort is 1.19 ≈
0.649589 / 0.546267 (resp., 1.42 ≈ 0.649589 /
0.456876) times slower than the bubble (resp.,
selection) sort, while the bubble sort is 1.19 ≈

3 We do not have to write a program to carry out the least square fitting
since most commercial spreadsheet packages such as Lotus 1-2-3, Excel
and Quatro Pro have this capability built-in.

0.546267 / 0.456876 times slower than the selection
sort. Thus, for larger size input, the speed gap is
narrower than smaller size input.

Table 3: The Constant Factors

Method ≤ 1000 > 1000 Ratio
D-Bub 0.342743 0.649589 1.895
S-Bub 0.239701 0.546267 2.279
Select 0.160253 0.456876 2.851
Msort 0.032090 0.027577 0.859
Qsort 0.028548 0.024358 0.853
Tree 0.021951 0.019862 0.905

For the O(nlog2n) group, if n ≤ 1000, the merge sort
is 1.12 ≈ 0.032090 / 0.028548 (resp., 1.46 ≈
0.032090 / 0.021951) times slower than the quick
sort (resp., tree sort), while the quick sort is 1.30 ≈
0.028548 / 0.021951 times slower than the tree sort.
If n > 1000, the merge sort is 1.13 ≈ 0.027577 /
0.024358 (resp., 1.39 ≈ 0.027577 / 0.019862) times
slower than the quick sort (resp., tree sort), while the
quick sort is 1.22 ≈ 0.024358 / 0.019862 times
slower than the tree sort. The speed difference is
very similar to that of the O(n2) group.

Consider the ratios. Since a larger constant means
less efficient, a ratio that is larger than (resp., smaller
than) one means the corresponding algorithm is more
efficient (resp., less efficient) in handling small input
size. Thus, the O(n2) group algorithms have better
performance in handling small data set, and the
O(nlog2n) group algorithms are more efficient in
handling larger data set, although the difference is
not as significant as that of the O(n2) group.
Whatever the input size, the O(nlog2n) group
performs much better than the O(n2) group. Note
that this only shows the test results for n ≥ 100, it
could be different for n < 100.

6 Conclusion
The six algorithms included in this test are only a
small sample of sorting algorithms. There are other
interesting algorithms that are worth to be mentioned.
For example, the shaker sort is an extension to the
bubble sort in which two bounds are used to limit the
range for next scan (Knuth [4] and Wirth [9]). Since
the shaker sort scans the list in both directions, it

would be very interesting to know the contribution of
using two bounds rather than one in the bubble sort
and the sediment sort.

Two factors are not addressed in this article. Since
the input data for this test are random, some extreme
characteristics cannot be tested. For example, the
tree sort and the quick sort perform poorly if the
input is sorted or reversely sorted, while bubble sort
requires only n-1 comparisons and no swap if the
input is sorted. Therefore, a comparison could be
based on the sortedness of the input data. Second, in
practice input data might not be distinct. Yet another
comparison could be based on the level of data
uniqueness. If there are duplicated items in the input,
some algorithms could perform better than the others.
For example, the quick sort presented in this paper
has the capability of collecting equal items into a list
so that they will not involve in subsequent sorting
phases, while others (i.e., merge sort) are insensitive
to the presence of duplicated data.

Please note that performing these comparison tests is
not new and has been carried out many times based
on different criteria by many researchers ever since
people knew sorting is an important and useful
technique (see Knuth [4] for historical notes).
However, as an educator, I believe that making these
theoretical results down to the earth and accessible
for students would be an important job.

References
1. Jon Bentley, Programming Pearls, Addison-

Wesley, 1986.
2. Jim Carraway, Doubly-Linked Opportunities,

ACM 3C ONLINE, Vol. 3 (1996), No. 1
(January), pp. 9-12.

3. R. Hoare, Quicksort, The Computer Journal,
Vol. 5 (1962), pp. 10-15.

4. Donald E. Knuth, The Art of Computer
Programming. Volume 3: Sorting and
Searching, second printing, Addison-Wesley,
1975.

5. Dalia Motzkin, A Stable Quicksort, Software-
Practice and Experience, Vol. 11 (1981), No. 6,
pp. 607-611.

6. Robert Sedgewick, Algorithms in C++,
Addison-Wesley, 1992.

7. Lutz M. Wegner, Sorting a Linked List with
Equal Keys, Information Processing Letters,
Vol. 15 (1982), No. 5 (December), pp. 205-208.

8. Mark Allen Weiss, Data Structures and
Algorithm Analysis in C++,
Benjamin/Cummings, 1994.

9. Niklaus Wirth, Algorithms & Data Structures,
Prentice-Hall, 1986.

