
What is the fastest algorithm for computing
the kth smallest element in the union of two
sorted lists of size m and n?

John Kurlak, works at Facebook
Updated Jan 15, 2016

Here is a fully coded solution that addresses as many edge cases as I could

think of. It technically finds the th smallest element of the concatenation of the two

sorted lists, but it's easily extendable to the union of two lists if that is what you're

really after (Simply remove the duplicate values from the arrays. There are a few ways

to do this since the arrays are sorted. One way would be to create a hash table and a

counter. Iterate over both arrays in one loop. If the first array's value isn't in the hash

table, add it to the hash table, add it to a new first array, and increment your counter.

If the second array's value isn't in the hash table, add it to the hash table, add it to a

new second array, and increment your counter. When your counter reaches , you

can stop iterating over the arrays. The previous operation can be done in place if you

want to optimize for space as well. Then, move elements from the larger list into the

smaller list until both lists have unique elements in them. The reason I didn't code

this method is that I don't think the original question poster intended for the union of

two arrays. If so, the run-time would be dependent on the number of duplicates in

the array, so the worst-case run time would be).

Explanation:

The idea here is to do a modified binary search. There are a few different ways to

apply binary search to this problem. I will discuss the simplest approach that I know,

which is to binary search for the number of values in the first list that are less than or

equal to the th value.

For example, suppose we have the lists:

And we want to find the third smallest value. The values before and including the

third value from the first list and second list are:

The number of values in the first list that are less than or equal to the third value, 4, is

1. We will be binary searching for that value. Let's call the number of values that we

select from the first list .

Now, once we've done our binary search, how do we get our answer? Well, we know

that we select a total of elements from the first and second list. We know that we

select x elements from the first list. That means we select elements from the

second list. We know the the th smallest value will be the last element that we select

from the first list, or it will be the last element that we select from the second list.

Since we know what these elements are (list1[k - 1] and list2[k - x - 1]), we just need to

figure out which list has the th smallest element. The answer is simply the larger of

the two values. So in our example, we're deciding between 1 in A and 4 in B, we select

the larger, 4. As expected, 4 is the 3rd smallest element.

O(lg k)

k

2k

k

O(n)

k

A = [1, 5, 9, 13]

B = [3, 4]

A = [1, . . .]

B = [3, 4, . . .]

x

k

k − x

k

k

 Upvote 24 · Share

Add QuestionHome Answer Notifications Search Quora

https://www.quora.com/What-is-the-fastest-algorithm-for-computing-the-kth-smallest-element-in-the-union-of-two-sorted-lists-of-size-m-and-n
https://www.quora.com/profile/John-Kurlak
https://www.quora.com/What-is-the-fastest-algorithm-for-computing-the-kth-smallest-element-in-the-union-of-two-sorted-lists-of-size-m-and-n/answer/John-Kurlak
https://www.quora.com/profile/John-Kurlak
https://www.quora.com/
https://www.quora.com/
https://www.quora.com/answer

Now that the basic algorithm has been presented, let me dive into the details of the

binary search a little more.

The first thing we need to decide (and this is probably the hardest part of this

algorithm) is the range of values we are binary searching. The values we are

searching are the possible number of elements to select from the first list. If the size

of the first list is and the size of the second list is , our first instinct would be to say

that we can select to elements from the first list. While this is true, we have to be

careful... because it isn't true for all possible inputs.

For example, suppose we have the lists:

A = [v1, v2, v3, v4, v5]

B = [u1]

And is 3.

We can't possibly select 0 elements from A because B doesn't have enough elements

to allow us to select values. Therefore, the lower bound for the number of elements

we can select from the first list is . When is larger than , we can

select 0 elements from the first list. Otherwise, we have to select at least

elements from the first list.

As you might suspect, we run into a similar scenario with the upper bound. For

example, suppose we have the lists:

A = [v1, v2, v3, v4, v5]

B = [u1]

And is 3.

We can't possibly select values from A because then we would be selecting more

than elements. Therefore, the upper bound for the number of elements we can

select from the first list is .

Next, we do binary search as normal over the integers in the range:

.

What we need to determine now is when we've found the correct number of elements

to select from the first list.

With each iteration of the binary search, we have a guess for the correct number of

elements to select from the first list. Let's call that guess . If that value is correct,

then we will select values from the second list ().

When we've found the correct value for , then the values list1[0...x - 1] and list2[0...y -

1] will all be smaller than or equal to the values list1[x...a-1] and list2[y...b-1]. This is an

important observation, and it's crucial that you understand it. I'm basically saying

that the first values must be less than or equal to the remaining values. I hope

that makes sense.

We will use this observation to determine when we've selected the first values. In

other words, our binary search is done when all the values from list1[0...x-1] and

list2[0...y-1] are less than or equal to the values from list1[x...a-1] and list2[y...b-1].

Since the values in list1 are all monotonically increasing and the values in list2 are all

monotonically increasing, then we only need to verify that the values list1[x-1] and

list2[y-1] are less than or equal to list2[y] and list1[x]. We can write that in two checks:

list1[x - 1] < list2[y] and list2[y - 1] < list1[x].

Therefore, after we have a guess for and , we need to find the values at list1[x - 1],

list1[x], list2[y - 1], and list2[y]. It's possible that list1[x] and list2[y] are outside of the

bounds of their respective lists, so we treat those values as positive infinity in those

scenarios. Once we have those values, we perform the comparison above to

a b

0 a

k

k

max (0, k − b) b k

k − b

k

a

k

min (a, k)

[min (a, k), max (0, k − b)]

x

y = k − x x + y = k

x

k n − k

k

x y

Recommended All

determine if we're done. If we're not done, we split our search space in half binary

search style.

Let me know if you have questions!

Java Code:

Output:

7.1k Views · View Upvoters

public class KthSmallestIterative {1

 public static void main(String[] args) {2

 int[] list1 = new int[] { 3, 4, 10, 23, 45, 55, 56, 58, 60, 65 }3

 int[] list2 = new int[] { 3, 3, 3, 15, 16, 28, 50, 70, 71, 72 };4

 int k = 13;5

 6

 int kthSmallest = kthSmallest(list1, list2, k);7

 System.out.println(k + "th smallest is " + kthSmallest);8

 }9

 10

 public static int kthSmallest(int[] A, int[] B, int k) {11

 if (A == null || B == null) {12

 throw new IllegalArgumentException("Arrays cannot be null!")13

 }14

 15

 int a = A.length;16

 int b = B.length;17

 18

 if (k < 1 || k > a + b) {19

 throw new IllegalArgumentException("k is not within range!")20

 }21

 22

 int minSizeA = Math.max(0, k - b);23

 int maxSizeA = Math.min(a, k);24

 25

 while (minSizeA <= maxSizeA) {26

 int sizeA = minSizeA + (maxSizeA - minSizeA) / 2;27

 int sizeB = k - sizeA;28

 int indexA = sizeA - 1;29

 int indexB = sizeB - 1;30

 int indexANext = syzeA;31

 int indexBNext = sizeB;32

 int valA = (indexA < 0) ? Integer.MIN_VALUE : A[indexA];33

 int valB = (indexB < 0) ? Integer.MIN_VALUE : B[indexB];34

 int valANext = (indexANext >= a) ? Integer.MAX_VALUE : A[inde35

 int valBNext = (indexBNext >= b) ? Integer.MAX_VALUE: B[index36

 37

 if (valA <= valBNext && valB <= valANext) {38

 return Math.max(valA, valB);39

 } else if (valA > valBNext) {40

 maxSizeA = sizeA - 1;41

 } else {42

 minSizeA = sizeA + 1;43

 }44

 }45

 46

 return 0;47

 }48

}49

13th smallest is 551

Add a comment...

View 4 other answers to this question

https://www.quora.com/What-is-the-fastest-algorithm-for-computing-the-kth-smallest-element-in-the-union-of-two-sorted-lists-of-size-m-and-n
https://www.quora.com/api/mobile_expanded_voter_list?key=mWgNW6YDXCj&type=answer

