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Summary 
Knapsack problem is a surely understood class of optimization 
problems, which tries to expand the profit of items in a knapsack 
without surpassing its capacity, Knapsack can be solved by 
several algorithms such like Greedy, dynamic programming, 
Branch & bound etc…. 
In this paper we will exhibit a relative investigation of the 
Greedy, dynamic programming, B&B and Genetic algorithms 
regarding of the complexity of time requirements, and the 
required programming efforts and compare the total value for 
each of them. 
Greedy and Genetic algorithms can be used to solve the 0-1 
Knapsack problem within a reasonable time complexity. The 
worst-case time complexity (Big-O) of both algorithms is O(N). 
Nevertheless, these algorithms cannot find the exact solution to 
the problem; they are helpful in finding a local optimal result 
only. Our main contribution here is to test both algorithms 
against well-known benchmark data sets and to measure the 
accuracy of the results provided by each algorithm. In other 
words, we will compare the best local result produced by the 
algorithm against the real exact optimal result. 
Key words: 
0/1 Knapsack, Algorithm, Greedy algorithm, dynamic 
programming. 

1. Introduction 

The 0-1 Knapsack Problem is vastly studied in importance 
of the real world applications that build depend it 
discovering the minimum inefficient approach to cut crude 
materials seating challenge of speculations and portfolios 
seating challenge of benefits for resource supported 
securitization, A few years ago the generalization of 
knapsack problem has been studied and many algorithms 
have been suggested [1]. Advancement Approach for 
settling the multi-objective0-1 Knapsack Problem is one 
of them, and there is numerous genuine worked papers 
established in the writing around 0-1 Knapsack Problem 
and about the algorithms for solving them.  
The 0-1 KP is extremely well known and it shows up in 
the real life worlds with distinctive application. The 
solution of the 0-1 KP can be viewed as the result of a 
sequence of decisions [2]. 0-1 KP is NP problem 
(nondeterministic polynomial time) - complete and it also 
speculation of the 0 - 1  
 

Knapsack problem in which numerous Knapsack are 
considered. 
The KP is a: given an arrangement of items, each with 
weight and a value, decide the number of each item to 
include in a capacity so that the total weight is little than a 
given capacity and the total value must as large as possible 
[3]. 
We have n of items. Each of them has a value Vi and a 
weight Wi. The most extreme weight that we can convey 
the knapsack is C. The 0 – 1 KP is an uncommon case of 
the original KP problem in which each item can't be Sub 
separated to fill a holder in which that input part fits. The 
0 – 1 KP confines the quantity of each kind of item xj to 0 
or 1. Mathematically the 0 – 1 KP can be formulated as: 
Maximize∑ 𝐏𝐏𝐏𝐏 𝐗𝐗𝐏𝐏𝒏𝒏

𝒊𝒊=𝟏𝟏  Subject to ∑ 𝐖𝐖𝐏𝐏 𝐗𝐗𝐏𝐏𝒏𝒏
𝒊𝒊=𝟏𝟏 ≤ 𝑪𝑪 

Example: 
Assume 7 numbers of items arrive as shown in table 1. We 
need to choose such items so that it will satisfy our two 
goals as follows: 

1) Fill it to get the greatest benefit. 
2)  Knapsack holds a most extreme of 22 pounds. So 

the aggregate weight of the chose items not 
surpasses our greatest limit. 

In this research, a 0/1 KP is presented. As a solution of the 
0/1 knapsack problem, greedy algorithm, dynamic 
programming algorithm, B&B algorithm, and Genetic 
algorithm are applied and evaluated both analytically and 
experimentally in terms of time and  the total value for 
each of them, Moreover, a comparative study of the 
greedy ,dynamic programming, branch and bound, and 
Genetic algorithms is presented.  

Table 1: Knapsack Example 
Items 1 2 3 4 5 6 7 
Profit 10 8 9 15 7 7.2 5.5 

Weight 12 8 6 16 4 5 8 
 
The rest of this paper is organized as follows: in Section 2, 
gives a general view of background of knapsack problem, 
also presents the previous related work of the 0-1 KP and 
the algorithms that are used to solve it. All algorithms 
illustrated in Section 3. While in Section 4, analytical 
view of algorithm results will be presented. Moreover, the 
analysis involves the estimation of several performance 
metrics, including: the worst case time complexity. In 

http://en.wikipedia.org/wiki/Nondeterministic_algorithm
http://en.wikipedia.org/wiki/Polynomial_time
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Section 5, a comparison of the experimental results 
between the four algorithms will be shown. Finally, the 
conclusions will be discussed in Section 6. 

2. Background and Related Work 

In this part, we will introduce the 0-1 knapsack problem, 
and then we will present the related research work of the 
algorithms used to solve the knapsack problem and the 
comparisons done to demonstrate the differences between 
them. and finally the 0-1 knapsack applications. 

2.1 0/1 Knapsack problem (0/1 KP) 

The first appears of knapsack problem was in 1957, in two 
publications. The first was a paper by George Dantzig 
(1957); He is a creator of the field of Operations Research 
and a developer of linear programming. He demonstrated 
that the persistent of the KP, The second paper is 
flawlessly maximized by selecting items by bang-for-buck. 
[4] 
KP is a well-known optimization problem, which has 
restriction of the value either 0 (leave it) or 1 (take it), for 
a given collection of items, where each has a weight and a 
value, that to determine the items to be included in a sets, 
then the total cost is less or equal to a given capacity and 
the total profit is as max as possible. Obviously, the items 
are indivisible, accordingly the problem is been called “0-
1 Knapsack Problem”, that because you can't derive, that 
mean take all value of the item or leave it. 

2.2 Greedy algorithm and how to solve the problem 

A greedy algorithm is a straight forward design technique, 
which can be used in much kind of problems. Mainly, a 
greedy algorithm is used to make a greedy decision, which 
leads to a feasible solution that is maybe an optimal 
solution. Clearly, a greedy algorithm can be applied on 
problems those have ‘N’ number of inputs and we have to 
choose a subset of these input values those satisfy some 
preconditions. While, this selection is been taken as a 
greedy decision which is hopefully leads to an optimal 
solution from the inputs list. Where, the next input will be 
chosen if it is the most input that satisfies the 
preconditions with minimizes or maximizes the value 
needed in the preconditions [5, 17]. 
 KP can be solved by many algorithms like Greedy 
algorithm by select the option that look like the best at the 
moment and its  trust the local optimal solution will lead 
to a global optimal solution[17], Greedy are used for 
optimization problems. Its typically use some heuristic 
knowledge to create a pool of sub optimal that hope 
converges to an optimum solution [6]. 

2.3 Dynamic programming algorithm and how to 
solve the problem 

Dynamic algorithm is an algorithm design method, which 
can be used, when the problem breaks down into simpler 
sub problems; it solves problems that display the 
properties of overlapping sub problems. In general, to 
solve a problem, it’s solved each sub problems 
individually, then join all of the sub solutions to get an 
optimal solution [13, 15].  
The dynamic algorithm solve each sub problem 
individually, once the solution to a given sub problem has 
been computed, it will be stored in the memory, since the 
next time the same solution is needed, it's simply looked 
up. Distinctly, a Dynamic algorithm guarantees an optimal 
solution. 
Here are two key traits that the problem must have all 
together for dynamic programming to apply: the first one 
is an overlapping sub problems and the second is an 
optimal substructure. The Overlapping sub problems is 
mean: the space of sub problems should be small, that is 
any recursive algorithm solving the problem should solve 
the same sub problems recursively [18], rather than 
creating new sub problems, and the optimal substructures 
mean: the solution to a given optimization problem can be 
acquired by the mix of optimal solutions to its sub 
problems. 
Dynamic Programming algorithm was created by Richard 
Bellman which whose the term dynamic programming in 
1957 [12], the authors were solves problems by 
consolidating the solutions for problems that contain sub-
problems but notice that there are a distinction between 
Dynamic programming and Divide &Conquer, Divide & 
Conquer are solving sub-sub-problems many times but DP 
it solve the each sub - problem one time and store the 
solution's in a table [6]. 
Also [7] has solve the problem by two new algorithms 
recently proved to outperform all previous methods for the 
exact solution of the 0-1 Knapsack Problem by Dynamic 
Programming and Strong Bounds algorithms. 

2.4 Branch & bound algorithm 

In fact, Branch & bound is a well-known technique that is 
mainly used to solve the problem which categorized as 
optimization problems [14]. Actually, it is an 
improvement over exhaustive search that because B&B 
builds applicant solutions as one part at a time and 
assesses the built arrangements as unmistakable parts. 
From other side, in the event that there are no potential 
estimations of the remaining parts, which can give the 
solution, as a result, the remaining parts will not be 
created at all. Despite the fact that, in the worst case still 
has an exponential complexity, but it is may use to solve a 
large cases of difficult mixed problems. In [19] they use A 
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Branch & Bound algorithm for the KP by exhibited which 
can acquire either optimal or inexact solutions. A few 
attributes of the algorithm are talked about and 
computational experience is introduced. And the B& B is 
a credulous way to deal the 0–1 KP is to consider thusly 
all the 2n possible solutions X, figuring the benefit every 
time and monitoring the most elevated benefit discovered 
and the relating vector.[9] 

2.5 Genetic Algorithm 

In [3] they utilize the Genetic Algorithms which is 
computer algorithm that look for good solution for a 
problem from among huge arrangements of possible 
solutions. Also they proposed and created in the 1960s by 
John Holland, his understudies, and his colleagues at the 
University of Michigan. These computational standards 
were enlivened by the mechanics of characteristic 
advancement, including survival of the fittest, generation, 
and transformation. These mechanics are appropriate to 
determine an assortment of commonsense problems, 
including computational problems, in numerous fields [15, 
16]. A few utilization's of Genetic Algorithms are 
streamlining, economics, machine learning, and social 
framework. 

2.6 0/1 Knapsack applications 

There are many applications for 0-1 Knapsack like 
cryptography for public key encryption. Different spaces 
where the problem shows up are: budget control, network 
flow, journals for a library A good overview of the early 
applications is located in [2]. 

3. Algorithms for Solving 0/1 knapsack 
problem 

In this section the Greedy, dynamic programming, B&B 
and Genetic algorithms will be presented. 

3.1Greedy Algorithm 

Greedy Algorithm for solving 0-1 knapsack problem is 
calculate the ratio, where a ratio between the inputs values 
and the inputs weights will be calculated and according to 
this value the next input will be chosen to fill the knapsack 
in a proper way. A greedy algorithm mainly tests all 
inputs according to some preconditions then arranges 
them in a proper order to maximize or minimize the value 
of the required solution. Next, it starts to choose the most 
appropriate input that will lead to an optimal solution. 
(See Figure 1). The following is an illustration of the 
greedy programming for 0/1 knapsack problem supported 
with an example that applied the algorithm on knapsack 

the solution of knapsack problem is achieved according to 
the following steps: 
Step 1 calculates the ratio for n inputs between weight and 
Benefit as (Benefit /weight). 
Step 2 arranges the items in a non-diminishing order as 
per of the ratio value. 
Step 3 picks the biggest ratio of the item that its weight is 
not exactly or equivalent to the W (knapsack limit) to add 
it to the arrangement vector. 
Where n the number of input items, W the knapsack 
capacity, Weight [] is an array holds the weights of the 
items, Benefit [] holds the benefit values of the items, 
Ratio [] holds the value comes from dividing the items 
value by it weight and finally, an array that holds the 
solution vector. As an example of how the array Weight [] 
and Benefit [] is constructed shown in Figure 1, will make 
the algorithm running clearer, considering a 4 input items 
and the knapsack capacity is 50.  

1) Computing the Ratio[i] of all items (lines 5-7 in 
Figure 1) by dividing the Benefit[i] by the weight[i].  

2) Sorting the items according to the Ratio value is 
done in (lines 8-13). 

3) Pick the largest value of the ratio that its Weight[] 
does not exceed the knapsack capacity (50 in this 
example)  

4) Experience every one of the items and check which 
item can be fit in the knapsack to get the most 
extreme benefit but the total weights are not exactly 
or equivalent to the knapsack limit. 

Based on an example of knapsack, greedy algorithm 
Solution steps will be as follows: 
1) Calculate the ratio between the items values and 

weights by dividing the item’s value by the item’s 
weight (Table 2). 

2) Arranges the items in a non-diminishing order 
according to their ratio (Table 3) . 

3) Pick up the largest value, which stands at the top of the 
array. Thus, the array will be as Table 4. 

Now, the first item will be chosen which has a weight as 3 
which is less than the available knapsack capacity 5, so 
still there is another chance to get more items. In the next 
iteration, the capacity will be 2 instead of 5 because the 
first item filled it with its weight which equals 3.  
4) Another time the first item which has the largest ratio 

and its weight is equal to the capacity reminds from 
the first iteration will be chosen and added to the 
knapsack. Then, the knapsack is full with a value 
equals to 9. 

5) Finally, 
a) The knapsack will be filled by two items  
b)  The knapsack value is 9  
c)  The array will hold the rest of the items as Table 

5. 
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Table 2: Ratio between the items 
Item.NO(𝒊𝒊) Weight of (𝒊𝒊) Value of (𝒊𝒊) Value(i) 

1 2 3 1 
2 3 7 2 
3 4 2 0 
4 5 9 1 

Table 3: Arranges the items 
Item.NO(𝒊𝒊) Weight of (𝒊𝒊) Value of (𝒊𝒊) Value(i) 

1 3 7 2 
2 2 3 1 
3 5 9 1 
4 4 2 0 

Table 4: Pick up largest value 
Item.NO(𝒊𝒊) Weight of (𝒊𝒊) Value of (𝒊𝒊) Value(i) 

1 2 3 1 
2 5 9 1 
3 4 2 0 

Table 5: rest of the items 
Item.NO(𝒊𝒊) Weight of (𝒊𝒊) Value of (𝒊𝒊) Value(i) 

2 5 9 1 
3 4 2 0 

3.2 Dynamic programming algorithm 

The DB is an algorithm for solving the problems that 
categorize as optimization problems, the main idea is to 
calculate the solutions to the sub-problems for one time 
and store the solutions in a table, so that it can be  reused 
in future  like: (See Figure 2) 
 
1) Characterize the structure of an optimal solution  by 

derive  the problem into small problems, and look 
about a connection between the structure of the 
optimal solution of the first problem(Original) and the 
solutions of the smaller problems. 

2) Define the optimal solution Recursively by express the 
solution of the first (original) problem in terms of 
optimal solutions for smaller problems. 

3) Calculate the value of an optimal solution in a bottom-
up approach by using a table. 

4) Construct an optimal solution from computed 
information. 

As an example about how DB solves the KP, suppose 
there is an item with weight and value as Table 6 and with 
capacity (W) of 10.DP algorithm will generate a matrix 
that holds all solutions as table 7.  And the final output it 
will be V (4, 10) = 90. 

Table 6: Knapsack Example in DP 
Item 01 02 03 04 
Profit 10 40 30 50 
Weight 5 4 6 3 

 

Table 7: Dynamic Programming Matrix 
V(i,w) 0 1 2 3 4 5 6 7 8 9 10 
0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 10 10 10 10 10 10 
2 0 0 0 0 40 40 40 40 40 50 50 
3 0 0 0 0 40 40 40 40 40 50 70 
4 0 0 0 50 50 50 50 90 90 90 90 

 

Fig. 1 Greedy Algorithm for 0/1 KP 

3.3Branch & Bound algorithm 

This section presents the branch & bound Algorithm for 
solving the 0-1 knapsack problem .branch & bound is a 
technique that is used to solve the problems that 
categorized as optimization problems. 

 
Greedy algorithm for solving knapsack problem (Weight [] 
and Benefit []) 
Input: 
1. Array for Weight, which holds the weight of all items. 
2. Array for Benefit, which holds the Benefit of all items. 
3. Capacity. 
Output: Array Solution, which holds the items that its 
weight does not surpass the knapsack  and it had the 
maximum  amount of value 

A. Calculate the ratio[1…n] 
1. n is the number of input items; 
2. W is the  knapsack capacity; 
3. Weight [i] holds the weight of ith item; 
4. Benefit [i] holds the Benefit of the ith item; 
5. Calculate the Ratio value for each item : 
6. for all  input items do 
7. Ratio[i] = Benefit[i]/weight[i]; 

B. Sort the items in a non-decreasing order according 
the items ratio value 
 
8. 𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖 = 𝑛𝑛 − 2; 𝑖𝑖 >= 0; 𝑖𝑖 − −) 
9. 𝑓𝑓𝑓𝑓𝑓𝑓(𝑗𝑗 = 0; 𝑗𝑗 <= 𝑖𝑖; 𝑗𝑗 + +) 
10. 𝑖𝑖𝑓𝑓(𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑓𝑓𝑖𝑖𝐵𝐵[𝑗𝑗] < 𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑓𝑓𝑖𝑖𝐵𝐵[𝑗𝑗 + 1]) 
11. Swap (Benefit [j+1] , Benefit [j]) ; 
12. Swap (Weight[j+1] , Weight [j]) ; 
13. Swap (Ratio[j+1] , Ratio [j]) ; 

C. Knapsack algorithm (find the Knapsack solution) 
14. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =  1;  𝑖𝑖 < 𝑛𝑛;  𝑖𝑖 + +    ) 
15. 𝑖𝑖𝑓𝑓 (𝑊𝑊𝐵𝐵𝑖𝑖𝑊𝑊ℎ𝐵𝐵[𝑖𝑖] < 𝑊𝑊)  𝐵𝐵ℎ𝐵𝐵𝑛𝑛 
16. 𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵 =  𝑊𝑊𝐵𝐵𝑖𝑖𝑊𝑊ℎ𝐵𝐵[𝑖𝑖] ; 
17. 𝑎𝑎𝑎𝑎𝑚𝑚_𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝐵𝐵 =  𝑎𝑎𝑎𝑎𝑚𝑚_𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝐵𝐵 + 𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑓𝑓𝑖𝑖𝐵𝐵[𝑖𝑖]; 
18. 𝑆𝑆𝑓𝑓𝑣𝑣𝑎𝑎𝐵𝐵𝑖𝑖𝑓𝑓𝑛𝑛[𝑖𝑖]  =  𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵; 
19. else 
20. 𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵 =  𝑘𝑘𝑛𝑛𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘𝑘𝑘; 
21. 𝑘𝑘𝑓𝑓𝑣𝑣𝑎𝑎𝐵𝐵𝑖𝑖𝑓𝑓𝑛𝑛[𝑗𝑗 + +]  =  𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵     ; 
22. break; 
23. 𝑊𝑊 = 𝑊𝑊−𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵 ; 
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Dynamic Programing for solving knapsack problem 
Input: 
1. Array of Value (v). 
2. Array of Weights (w). 
3. Number of items(n) 
4. capacity(W) 
 
DP(w.v.W){ 
for i = 0 to W do 
    m[0,i] = 0 
end for 
 
for i = 1 to n do  
    for j = 0 to W do  
        if w[i] ≤ j then  
           m[i,j] = max (m[i-1,j],m[i-1,j-w[i]] + v[i]) 
        else 
           m[i,j] = m[i-1,j] 
        end if 
    end for 
end for 
} 
Return Max Value 

Fig. 2 Dynamic Programming for 0/1 KP. 

Branch & Bound Pseudo code 
Input: 
Array of Weights and array of values 
Output:  
Max Value 
Note: Items are sorted according to value/weight ratios 
Queue Q 
Node Type: current, temporary  
*Create the root 
Q.enqueue(root) 
Max Value = value 
While (Q is not empty) 
    current = PQ.GetMax() 
 if (current >MaxValue) 
      Then Set the left child of the current node to include 
the next item8 
If child.Left value is greater than MaxValue 
MaxValue = Value of the Left Child 
End if 
If child.left bound better than MaxValue 
Q.enqueue(Left Child) 
End if 
If child.Right bound better than MaxValue 
Q.enqueue(Right Child) 
End if 
Return Best solution 

Fig. 3 Branch and Bound Algorithm for 0/1 KP. 

It is a changeover comprehensive search, on the grounds 
that not at all like it, branch & bound builds hopeful 
arrangements one part at a time and assesses the 
somewhat developed solutions. On the off chance that no 
potential estimations of the remaining parts can prompt a 
solution [8], the remaining segments are not created. This 
methodology makes it conceivable to settle some huge 
occasions of troublesome difficult combinatorial problems, 
however, in the most pessimistic scenario; regardless it 
has an exponential complexity. 
B & B is based on state space tree. The state space tree is a 
root of the tree where every level represent to a decision in 
the solution space that relies on the upper level and any 
conceivable solution is represented to by a few ways 
beginning at the root and finishing with a leaf. 
The root stayed in level 0 and represents the state where 
no incomplete solution has been made. A leaf has no 
youngsters and represents the state where all decisions 
making up an answer have been made. 
The most well-known way, branch & bound uses to cross 
the state space tree, are best first traversal. This quits 
looking in a specific sub-tree when it is clear that to seek 
further down is pointless and it utilizes a customary line. 
In the state space tree, a branch is heading off to one side 
demonstrates the consideration of the following thing 
while a branch to the privilege shows its avoidance. 
In every node of the tree, we were record the 
accompanying data: 
Level ,cum Value , cum Weight, node Bound and the 
upper bound on the estimation of any subset by including 
the aggregate estimation of the items officially chose in 
the subset, v, and the result of the remaining limit of the 
knapsack and the best per unit result among the remaining 
items, which is vi+1/wi+1.(See Figure 3) 
 
Upper Bound = v + (vi +1 / wi+1)*(C – w) 
 
In the worst scenario, B&B algorithm will create every 
moderate stage and all leaves. Hence, the tree will be 
finished and will have 2 n-1 – 1 node. 
 
Example:  
The operation of the algorithm is illustrated with the 
following example. Consider a problem with seven items 
whose weight and values are given as table 8. 
The total allowable weight in the load W = 100. A 
preliminary test reveals that the problem possesses a 
nonempty feasible solution and is not trivial, and       ∑ 
wi> 100. We compute the ratios vi/wi and reorder the 
items. They are given below with the new indexing as 
Table 9. 
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Table 8: Knapsack Example in B&B 
Item No Weight Value 

1 40 40 
2 50 60 
3 30 10 
4 10 10 
5 10 3 
6 40 20 
7 30 60 

Table 9: compute the ratios with new Indexing 
New Index Item No Weight Value Ratio 

1 7 30 60 2 
2 2 50 60 6/5 
3 1 40 40 1 
4 4 10 10 1 
5 6 40 20 ½ 
6 3 30 10 1/3 
7 5 10 3 3/10 

 

Fig. 4 Branch and Bound Tree for 0/1 KP. 

The first node shown in Figure 2 is that including all 
possible solutions. The first branching uses index 1 as the 
first pivot and at node 2 where this index is excluded from 
the solution the upper bound is computed by: 
B (2) = v2 + v3 + v4 = 110 
While at node 3 where this index is included, we obtain   
B (3) = v1 + v2 + ½ v3 = 140 
As B (3) is the maximum upper bound, the next branching 
is made at node 3 and index 2 is selected as the pivot. The 

results of the repeated application of the algorithm are 
given in Figure 3. The optimum is reached at node 15. The 
total value being 133 and is attained by loading items 7, 2, 
4, and 5. (See Figure 4) 

3.4 Genetic Algorithms 

Genetic Algorithms which is computer algorithm that 
looks for good solution for a problem from among huge 
arrangements of possible solutions. They were proposed 
and developed in the 1960s by John Holland, his students, 
and his colleagues at the University of Michigan. These 
computational paradigms were inspired by the mechanics 
of natural evolution, including survival of the fittest, 
reproduction, and mutation. These mechanics are well 
suited to resolve a variety of practical problems, including 
computational problems, in many fields. Some 
applications of GAs are optimization, automatic 
programming, machine learning, economics, immune 
systems, population genetic, and social system [1]. 
The main idea of Gas an arrangement of applicant 
solutions (chromosomes) called population. A new 
population is generated from an old population in any 
expectation of getting a better Solution. Solutions which 
were selected to form new solutions (offspring) are chosen 
according to their fitness. The more suitable the solutions 
are the greater chances they need to replicate. This 
procedure is rehashed until some condition is fulfilled [19]. 
Most GAs methods are based on the following elements, 
populations of chromosomes, selection according to 
fitness, crossover to produce new offspring, and random 
mutation of new offspring. 
The function that introduces the array chromosomes has 
an O (N). Crossover, fitness and mutation functions have 
also O (N). The two selection functions and the function 
that checks for the terminating condition do not depend on 
N and they have constant times of running O (1).and the 
aggregate complexity of the program is O(N). 
Example: 
Utilize an information structure, called cell, with two 
fields benefit and volume to represent all items. At that 
point we utilize an array of sort cell to store all items in it, 
which looks as table 10. 
A chromosome can be represented in the knapsack by 
(‘1’) or not (‘0’). For instance, look to table 11, that 
Indicates the first and fourth item are included in the 
knapsack. 
At that point we ascertain the fitness of every 
chromosome by summing up the profit of the things that 
are incorporated into the knapsack, while ensuring that the 
limit of the knapsack is not surpassed. On the off chance 
that the volume of the chromosome is more noteworthy 
than the limit of the backpack then one of the bits in the 
chromosome whose worth is "1" is transformed and the 
chromosome is checked once more. 
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For the usage of the group selection method, they utilize 
another array indexes size (table 12), where we put the 
indexes of the elements in the array fitness Size. 
Now, Sort the array in slipping request as indicated by the 
fitness of the relating elements in the array fitness (table13). 
Thus, the indexes of the chromosomes with grater fitness 
values will be at the beginning of the array indexes, and the 
ones with little fitness will be towards the end of the array. 
Now, divide the array into four groups: 

1) 0 – 2 (0 ………. Size / 4) 
2) 3 – 5 (Size / 4 ……. Size / 2) 
3) 6 – 8 (Size / 2 ……… 3* Size / 4) 
4) 9 – 11 (3* Size / 4 ……  Size) 

Arbitrarily pick an item from the 1st group with 50%, from 
the 2ed group with 30%, from the 3ed group gathering with 
15%, and from the last group gathering with 5%. In this 

way, the fitter a chromosome is the more risk it must be 
decided for a guardian in the next generation as table 14. 

Table 10: Sort cell to store all items 
Items 0 1 2 3 
Benefit|vol 20 | 30 5 | 10 10 | 20 40 | 50 

Table 11: Chromosome 
items 0 1 2 3 
chromosome 1 0 0 1 

4. Analytical Modeling 

The analytical study will be presented in this section, 

Table 12: Selection Method 
items 0 1 2 3 4 5 6 7 8 9 10 11 
Chr 

fitness 
40 20 5 1 9 7 38 27 16 19 11 3 

indexes 0 1 2 3 4 5 6 7 8 9 10 11 

Table 13: Fitness Array 
items 0 1 2 3 4 5 6 7 8 9 10 11 
indexes 0 6 7 1 9 8 10 4 5 2 11 3 

Table 14: Generation Method 

Population Size 
Group Selection Method 

No of Gen Max fit found Items chosen 

100 39 3825 1,2,3,4,5,7,9,12 

200 51 4310 1,2,3,4,5,6,7,8,11 

300 53 4315 1,2,3,4,5,6,7,8,10 

400 49 4320 1,2,3,4,5,6,7,8,9 

500 65 4320 1,2,3,4,5,6,7,8,9 

750 45 4320 1,2,3,4,5,6,7,8,9 

1000 53 4320 1,2,3,4,5,6,7,8,9 
 
the most vital metrics to evaluate the efficiency of The 
greedy, dynamic programming, branch and bound, and 
Genetic algorithms for solving the 0-1 knapsack problem, 
which will be used to show their effect on the 0/1 
knapsack problem. These analyses include the following 
parameters: execution time and their efficiency to get the 
max benefit into the knapsack. 
Execution time: 
 The execution time metric measures to what extent do the 
algorithm take to be finished. Time complexity analyses to 
get an estimated of the time required in the worst case to 
solve the 0/1 knapsack problem as a function of input data 

size. The execution time assumes a huge part in enhancing 
the systems performance. In this manner, the target of any 
algorithm solving KP is to perform productive efficient 
solution in the minimum possible time. 

1) Greedy algorithm  
The complexity time for greedy algorithm execution time 
will be as: 
1. Sorting by Merge sort algorithm is O(NlogN)  
2. ∑ 1 = n − 0 n

i=0  is O(N)  
From 1 and 2, the total complexity is O (NlogN) + O(n) 
which approximately equal O(NlogN). 
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2) Dynamic programming algorithm 
The worst case time complexity of the dynamic 
programming algorithm used to solve the 0-1 KP   is O 
(W ∗ n) . 

3) Branch and bound algorithm 
In the worst case, the B&B algorithm will generate all 
intermediate stages and all leaves. Therefore, the tree will 
be complete then the Time complexity = O (2n). 

4) Genetic algorithm 
The function for   introduces the array chromosomes has 
an O (N). Crossover, fitness and mutation functions have 
O (N). The two selection functions have O (1).The 
function that checks for the terminating condition has O 
(1). Then the total complexity of the program is O (N). 
Table 15 shows the time complexity for the four 
algorithms. 

Table 15: Time Complexity 
Metric Greedy DP B&B Genetic 

Ex.Time O(NlogN) O(W*N) O(2n) O(N) 

4. Experimental Results 

 The version of all algorithms presented in Section 3 
(Greedy, dynamic programming, Branch and bound and 
Genetic Algorithm)    has been coded in C++, We are test 
all of them using different array size but with the same 
Capacity size on a Core i5 1.70 GHz and 4GB Ram laptop 
and, we are run each Algorithms 40 time and we get the 
average time, we read the data set from files that we are 
generate with values between 1-1000 with deferent sizes, 
but at the beginning we test each of them in small size 
array to check that its work fine and gives a correct results. 
The experimental time that appears in table 16 is the 
execution time for Greedy, DP, B&B and Genetic 
Algorithm with different size where K mean thousand 
which 100K is mean 100,000 items.  
Since the Branch and bound O(2n) then its need more 
space and in the device that we are test on, it does not 
work for 100000 array size so we test it just to the max 
number(60000) and Capacity size(100) that what  we can 
and the experimental time for the four algorithms is shown 
in table 17. 
From the result we can see that all of the experimental 
time for each algorithm are expected depend on the 
analytical model ,we can see that the minimal time is for 
genetic algorithm then Greedy, DB and B&B respectively. 
The dynamic programming algorithm are always give the 
optimal result but the greedy and genetic algorithms are 
given the local optimal result, for that we are implement 
each of them on the same data set to compare which one 
that give the best local optimal result. 
 From the two tables (18 and 19) we can see that the 
genetic algorithm gives better local optimal results than 
the greedy algorithm not always but as an the average we 

can notify that the genetic local result is best than the 
greedy local result. 

Table 16: Experimental Time 
Size Greedy DP B&B Genetic 
100K 0.8623 7.7177 NA 0.7325 
200K 1.7758 13.9441 NA 1.4669 
200K 2.8489 21.0783 NA 2.1652 
400K 3.8071 28.1098 NA 2.8336 
500K 4.9852 34.5011 NA 3.6795 

Table 17: Experimental Time 
Size Greedy DP B&B Genetic 

20000 0.1325 0.2513 1.365 0.1683 
30000 0.1687 0.3718 3.057 0.2251 
40000 0.2041 0.4893 7.725 0.3112 
50000 0.2549 0.6363 18.418 0.3552 
60000 0.2943 0.7738 32.131 0.4316 

 

 

 Fig. 5  .  Execution time for Greedy,DP  and  Genetic Algos 

 

 Fig. 6  .  Execution time for Greedy,DP  and  Genetic Algos 
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5. Conclusion 

The greedy, dynamic programming, branch and bound and 
genetic algorithms have been presented. The performed 
analysis and the conducted comparisons have been 
presented, and compared to the experiment results 
obtained from applying these algorithms on 0/1 knapsack 
problem. 

Table 18: Greedy algorithm V.s Genetic algorithm  
Data Size Greedy Genetic  Dynamic programming  

100 224 239 239 
200 328 328 334 
300 417 416 417 
400 477 477 477 
500 510 510 510 
600 529 544 544 
700 555 555 563 
800 555 555 563 
900 572 572 581 
1000 572 572 581 

Table 19: Greedy algorithm V.s Genetic algorithm 
Data Size Greedy Genetic  Dynamic programming  

100 379 387 387 
200 496 510 512 
300 682 682 682 
400 761 771 771 
500 805 816 816 
600 881 887 887 
700 952 945 952 
800 952 952 952 
900 1002 1002 1002 
1000 1009 1009 1015 

The results demonstrate the effectiveness of the 
algorithms, in terms of execution time. We can conclude 
that the branch and bound and dynamic programming 
algorithms outperform the greedy and genetic algorithm in 
term of the total value it generated. 
We used both, the greedy and the genetic algorithms in 
finding a local optimal result. From our experiments, it 
can be shown that genetic algorithms provide better results 
in terms of how close the results are to the real exact ones. 
This is mainly because genetic algorithms allow for 
diversity in generating alternative solutions and they 
measure the fitness of these solutions at each step. In 
general, two factors affect the genetic algorithms accuracy. 
First, the possibility of representing the problem in a 
manner suitable for genetic algorithms evaluation and 
second the accuracy of the fitness function designed for 
the problem. In our research, we study the 0-1 Knapsack 

problem, which can be easily mapped to the genetic 
algorithm context. Also, the better parameters used (such 
as the number of chromosomes, crossover, mutation, and 
other population characteristics etc…), a more accurate 
output can be assumed. 
The worst execution time is suffered by the branch and 
bound algorithm, since its complexity grows exponentially. 
Also if we increase the capacity of knapsack over the 
input items the execution time needed by dynamic greater 
than greedy algorithm. 
The best execution time is suffered by genetic and Greedy 
algorithms since its complexity grows is O (n). 
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