k-way merging and k-ary sorts

William A. Greene
Computer Science Department
University of New Orleans
New Orleans, LA 70148
wagcs@uno.edu

Abstract: We present a divide-and-conquer algo-
rithm for merging k sorted lists, namely, recur-
sively mergethefirst | k/2 | lists, do likewise for
thelast| k/2] lists, then mergethetwo results. We
get atight bound for the expense, in comparisons
made between list elements, of this merge. We
show the algorithm is cheapest among al similar
divide-and-conquer approachesto k-way merging.
We compute the expense of the k-ary sort, which,
in analogy to the binary sort, dividesitsinput list
into k sublists. Sometimes the k-ary sort has the
same expense asthe binary sort. Finally webriefly
consider parallelizing these algorithms.

I ntroduction

Knuth tellsus[10, p. 161] that the merge sort --
herewe shall call it the binary sort -- was one of the
first sorting algorithms suggested for computer
implementation. There has been continuing
interest in speeding up the merge operation (for
instance, Sprugnoli [12], Carlsson [3], Thanh et al.
[13], Dudzinski and Dydek [5], Brown and Tarjan
[2], Trabb Pardo [14], Hwang and Lin[9]) and also
interest in the speed-ups possible through paral-
lelism (Cole [4], Shiloach and Vishkin [11],
Hirschberg [8], Gavril [7], Even [6]). Inal the
references listed, the authors have considered the
case of merging two sorted lists. In this paper we
shall study the merging of k > 2 sorted lists. The

topic of k-way merging has been considered
before, but only lightly and in the context of
external sorting ([1], [10]).

We present asimple divide-and-conquer algorithm
for k-way merging. The agorithm resembles the
merge sort itself: first recursively merge the first
| k/2 | lists, then do likewise for the last [k/ 2]
lists, and finally merge the two results. We obtain
agood tight bound on the number of comparisons
between list elements made by our divide-and-
conquer k-way merge algorithm. We show that the
algorithm does the fewest comparisons among all
similar divide-and-conquer approaches to k-way
merging. We compute the cost (in comparisons) of
the k-ary sort, which generalizes the binary sort by
dividing itsinput list into (not 2 but) k approxi-
mately equal-sized sublists; sometimes the cost of
the k-ary sort isidentical to that of the binary sort.
Finally we briefly consider parallelizing our algo-
rithms.

In this paper we will always sort listsinto
ascending (versus descending) order. Listsare
assumed to be sequentially implemented (versus a
linked implementation). Thefloor | x | and ceiling
[x | functions havetheir usual meanings: for areal
number X,

| x| = greatest integer i such that i < x,
[x| = least integer i such that i > x.

“log” will mean base two logarithm logs; aloga-
rithm to some other base b will be explicitly
subscripted logy,. When measuring the run-times of
algorithms we will consider worst-case run-times.

The binary sort achieves its good runtime by a

divide-and-conquer strategy, namely, that of
halving the list being sorted: the front and back
halves of the list are recursively sorted separately,
then thetwo resultsaremerged into the answer list.
Animplementation is

procedure BINARY _SORT(L: infout List_type);
local L1, L2: List_type;
begin
if length(L) >1 then
L1:=L@A.[n/2));
L2:=L(n/2]+1.n);
BINARY_SORT(L1);
BINARY_SORT(L2);
MERGE(L1, L2, L);
end if;
end;

The procedure MERGE(L1, L2: in List_type;

L: out List_type) that we havein mind for sorting
two listsisdescribed asfollows. Initialize pointers
tothefirstitemineachlist L1, L2, and then

repeat
compare the two items pointed at;
move the smaller into L;

advance the corresponding pointer to the
smaller's neighbor;

until one of L1,L2 exhausts;

drain the remainder of the unexhausted
listintoL;

The basic operation (BO) we shall be counting to
obtain the (worst-case) cost of algorithms will be
that of comparing two list elements. If the two
input liststo MERGE have lengths m and n respec-
tively, then MERGE doesat most m+n—1 BO's
(the draining does comparisons, but not of list
elements). (MERGE does at least min{m, n}
BO's.) If |m—n|<1thenalgorithm MERGE does
asfew BO's as any algorithm for merging two
sorted lists [Knuth, Theorem 5.3.2-M].

If f(n) = the (worst-case) number of BO's done by
BINARY _SORT in sorting alist of length n, then f
satisfies

1 f(1)=0
2 f(n) =n-1+f(Ln/2]))+f([n/2])

When n isapower of 2, the second equation
becomes

(2) f(n=n-1+2f(n/2)
which has solution

f(n) = nlogon —n+1 , Napower of 2.

The generd solution is
f(n) = n[logn]—2logn’ + 1
for arbitrary integersn = 1.

[1, Ex. 9.12]. In particular, binary sort'sruntimeis
O(nlog n).

k-way merging

Now let usgeneralizeto aninteger k> 2. Let L be
alist of nelements. DivideL intok digoint contig-
uoussublistsL 4, Lo, ..., Ly of nearly equal length.
Some L's (namely, n rem k of them, so possibly
none) will havelength [n/k] + 1 -- for reasons
that will become clear later, let these have the low
indices: Ly, Ly, Other Li'swill have length

| n/k], and areto have high indices. ..., Ly_q, L.

We intend to recursively sort the L;'s and then
merge the k resultsinto an answer list. The
expense of our k-ary sort is completely determined
by the cost of merging k sorted lists. Here arethree
alternative algorithms for merging k sorted lists.
Note below that we do not assume the source lists
have approximately equal lengths.

(1) Linear-Search-Merge: Find the smallest of k
items (one from each of the k sorted sourcelists), at
acost of k-1 BO's. Movethe smallest into the
answer list and replaceit by its neighbor (the next
largest element) in the source list from which it
came. Again there are k items, from among which
the smallest isto be selected. (When alist
exhausts, the last moved item has no replacement,
so next we find the smallest of fewer than k items.)

(2) Heap-Merge: k items (one from each sorted
source list) are maintained in a heap (under disci-
pline: root = smallest). Move the smallest item

into the answer list, replace the moved item by its
neighbor in the source list from which it came, and
then, with cost 2| logk | BO's, re-heapify. (Whena
list exhausts, the last moved item is not replaced,
and we re-heapify to a heap with fewer than k
items.)

(3) Divide-and-Conquer-Merge: recursively
mergethefirst | k/ 2| lists, recursively merge the
last [k/ 2] lists, then MERGE the two results. (If
k =2 thenjust MERGE; if k=1 then output =
input.)

We shall show that Divide-and-Conquer-Merge
performs the fewest BO's among these three alter-
natives for doing k-way merging.

The problem of k-way merging has been studied
before, in the context of external sorting. See[1,
Chapter 11, especially pages 354-355]; also see
[10, especially section 5.4.1, pages 251-253]. In
thecited referencestheauthorsin passing generally
assume that Heap-Merge is used to merge k lists
(we might call them short-ish) stored in central
memory. But thisisaminor interest to the authors,
for they are mostly concerned with those problems
peculiar to extenal sorting, namely, minimizing
accesses of external memory such as tapes, which
amountsto the judicious building and arranging of
"runs’ (sets of adjacent records that are in sorted
order) on k very long tapes.

For externa sorting, Heap-Merge is the sensible
choice and Divide-and-Conquer-Merge is not.
Heap-Merge makes one sequentia pass through
each of itsk sourcelists; for external sorting thisis
appropriate. The recursive algorithm Divide-and-
Conquer-Merge revisits its input records; for
external sorting this has the undesirable effect of
increasing the number of accesses of external
memory (and unless tapes can be read backwards,
also the number of tape rewinds will increase).

Notation: Let n be the sum of the lengths of the k
source lists. Also, D& C-Merge abbreviates the
name Divide-and-Conquer-Merge.

When the k source lists all exhaust at nearly the
sametime, Linear-Search-Merge performs dightly
fewer than (k-1)n BO's. (The exact worst-case
number of BO's made by Linear-Search-Mergeis
(k-1) (n-k/2), and it isa pleasant induction argu-
ment on k to show this.)

When the k source lists all exhaust at nearly the
same time, Heap-M erge performs approximately
2n| logk | BO's.

Now we shall show that, if thek lists are presented
in decreasing order of length, then D& C-Merge
performs at most

n logk]—(n/k)2/ogkT+ n—k+ 1

BO's, whichisaways< | logk | BO's, so about
half asmany BO'sasHeap-Merge. Infairness, the
actual runtimes of D& C-Merge can be expected to
approximate and perhaps exceed the runtimes of
Heap-Merge. Both have other expenses besides
BO'sand in particular D& C-Merge has recursion
expenses, though these can be reduced by using a
stack variable to simulate recursive procedure
calls. We shall re-compare Heap-Merge and
Divide-and-Conqguer-Merge in the section on
parallelism.

Now to bound D& C-Merge's expense. First we
need alemma. Below, function “len” isthe length
function.

Lemma: Letlq, Lo, ..., Ly belists, wherek isodd,
and suppose

len(Lq) = len(L,) = ... = len(L,).
Denote j=|k/2] (which hereis (k-1)/2),

A=len(Ly +len(Lp) + ... +len(L),
B =len(Lj+p) +len(Lj.p) + ... +len(Ly),
n=A +B.
Then
(1) B-A<nk,

(2) B-A = n/k if andonly if all thelistshave
the same length,

(3) Al(k-1) + B/(k+1) = n/k, with equaity
holding if and only if all the lists have the same
length.

Proof:
B-A = len(Ly) —[len(L) —len(Ly-y)]
~[len(Ly) ~len(Ly—p)] - -..
— [len(L;) —len(Lj+p)]
< len(Ly)
--sncelen(L;) — len(Ly-) =0, fori <]
<n/k

--since the shortest list has length <
average length.
Thisgives (1), and implies (2). Part (3) follows
from (1) and (2).

Theorem 1. LetlLq, Lo, ..., Ly be sorted lists that
satisfy
len(Ly) 2len(L,) = ... 2 len(L,).

Let n bethe sum of their lengths. Then Divide-
and-Conquer-Merge performs at most

(1) nllogk]—(n/k)2Mogk1+ n—k+1
BO'sin merging these lists.

Proof: The proof isby induction on k. When k =
2, formula (1) becomes n—1, which is correct for
the (maximum) number of BO's performed by
MERGE when it merges two lists whose lengths
sum to n. Now assume the desired bound holds
whenever h<k and D& C-Merge merges h lists
(whose lengths descend). Denotingj=| k/2 |, we
notethat listset Ly, Ly, ..., Lj, andlist set Lj4q,
Lj+2, .- Lx arealsoindescending order of length.
Let

A =the sum of thelengths of thefirst | k/2 | lists,
B =the sum of the lengths of thelast [k/2] lists.
There will be two cases, one of which has two
subcases.
Case 1: kiseven. By induction the number of
BO'sisat most the sum

A 2 =L ollog(k/2)7 4 A—-+

k B k

212 _ollog(k/2)] 2
+B(|092W k/22 +B 2+1
+n-1

where the first two lines are the costs of recursion
and thethird lineisthe cost of MERGE. Next using
the relations

A +B=n,
[log(k/2)] = [logk—17 = [logk -1,
our sum easily simplifies to expression (1).

Case2: kisodd. Then| k/2|= (k-1)/2,[k/2]
= (k+1)/2, and by induction the number of BO'sis
at most

k-1
_ log®=1 _
A(IonglW—iJ 972 W+A_k_1+1

k-1 2
2
k+1
k+1 B POQTW k+1
- - -+
+B('°g 2} K+ 12 tB-—5m+d
2
+n-1

which simplifiesto expression *E* =
Allog(k—1)]+ B[log(k+ 1)
__A oliogk-1)T_ _B_oflog(k+1)7
k-1 k+1
+n-k+1

Subcase 2.1: the odd number k is not of the form
1+ 2P (for some positive integer p). Then

[log(k—1)] = [logk] = [log(k +1)]
so formula*E* simplifiesto
nflogk|+n—-k+1

—[A/(k—=1) + B/ (k + 1)] 2l ogk]

which isless than or equal to formula (1) of the
Theorem'’s statement if and only if
A/(k=1)+B/(k+1)=n/k

The latter holds by the lemma.

Subcase 2.2: the odd number k isof theform 1+
2P, Then

[log(k+1)] = [logk] = 1+[log(k—1)]
2llog(k-1)T = k-1
2llogk] = 2llog(k+)T = 2(k—1)
S0 *E* becomes
A([logk1—1) + B[logk]
A%zrlogﬂ

+n-k+1
which simplifiesto
nflogk]+n—k+1

B
—-2A— mZ(k -1)
which isless than or equal to formula (1) if and
only if
B

n n
2 _ —2ollogk] = _ _
2A + i 12(k 1) > k2 k2(k 1)

that is, if and only if

=

X135

A B
ko1 k+1
which once again the lemmactells us holds.

Notes:

(1) Examining the above proof and the lemma,
itfollowsthat if thek listsall have the samelength,
then the worst-case number of BO's performed by
Divide-and-Conquer-Merge exactly equals

n[logk]—(n/k)2Mogkl+ n—k+1

(Thisexpression isan integer, since nisamultiple
of k.) Thusour bound istight, inthesensethat itis
achieved, for infinitely many n (namely, all the
multiplesof k). Of course, the previous sentenceis
true for al k.

(2) The proof and lemma also show that if the
k lists do not all have the same length, then the
theorem's bound is strictly greater than the actual

worst-case number of BO's that get performed.

When the lists are of rather disparate
lengths, the actual worst-case number of BO's
performed can be considerably less than the
theorem's bound. An extreme exampleisillustra-
tive. Let k =3, so that the theorem's bound is (5/
3)n— 2. If threelists have respective lengths n—2,
1, 1 then D& C-Merge groups them asindicated by
the parenthesization (n—2, (1, 1)) and so will
performat most 0+ 1+ (n—1) =n BO'sinmerging
them, not (5/3) n — 2, so the theorem's bound is
about 66% too big, for these three lengths.

The preceding paragraph should not cause
discouragement about the theorem's bound. The
theorem isto be thought of as quantified over all
sets of k lists whose lengths sumto n. There are
setswhose lengths are nearly equal (to n/k) and for
such sets the theorem's bound is quite near the
actual worst-case number of BO's performed. For
example, if k =9 and n = 9005 (which is halfway
between two multiples of 9) then for the following
list lengths (parenthesized to mirror how recursion
groups thelists),

(((1001 1001) (1001 1001))
((1001 1000) (1000 (1000 1000))))

the worst-case number of BO'sis actually 29007,
whereas the theorem's bound is 29008.11. Since
costs as we compute them are integers, this same
example shows that floor-ing expression (1)
improves the bound but does not in every case
calculate exactly the worst-case number of BO's
performed by D& C-Merge.

(3) If kisapower of 2 then the theorem's bound
simplifiesto
nlogk —k + 1.

(4) If thek sourcelistsarenot initially arranged
in descending order of length, then a one-time up-
front cost of = k log k will make them so, and the
remaining cost of merging them is as stated in the
theorem. Thustotal cost = (n + k) log k, which
=nlogk for typical k and n.

Optimality of Halving

Our agorithm Divide-and-Conquer-Merge plays
the divide-and-conquer game by halving the
number of liststo be merged. Intuition suggests
that halving isthe best way of dividing up thelists.
Indeed, thisis so, at least in the sense we now
describe.

Call an dgorithm for merging k sorted listsa
D& CM-Algorithmiif it takes the form

if k=1 thenoutput = input
elsf k=2 then MERGE
else
partition the k lists into subsets, say, | of
them, 1<) <Kk;
recurse on each of the j subsets;
recurse on the j results;
end if;
An example of partitioning k=9 listsinto j =3
subsetsisgivenby ((L1,L2,L3),(L4,L5,L6,L7),
(L8, L9)). Wedo not insist that the number | of
subsets is the same on every call. On the non-
recursive level, what is happening is that such an
algorithmisdoing asequence of MERGE's, thelast
of which isthe MERGE of two listsL*; and L*»,
where L*; (resp., L*,) isobtained from the
merging of m (resp., k—m) of the k source lists by
some D& CM-Algorithm. The next proposition
showsthat partitioning into halvesisoptimal, when
merging lists which all have the same length.

Theorem 2: To mergek sorted listswhich all have
the same length and whose lengthssumto n, a
D& CM-Algorithm must do at least

(2) nllogk]—(n/k)2Mogkl+n—k+1
BO'sin the worst-case.

Proof: Weinduct on k. When k = 2, formula (2)
gives MERGE's familiar bound. Now assume the
desired result holds whenever 0 <m <k and m
listsall of the samelength are merged by aD& CM -
Algorithm. From the paragraph preceding the
statement of this theorem (and noting that the

common list length is n/k), what we must show is

that the cost of merging m lists, then another k—m

lists, followed by atrailing MERGE, that is, cost
mn

mn k mn
—_ 0 ollogm] 4+ 2" _
7 [logm] 2 T m+1

(k—m)n

+ KM 00 (k- m) T

2l log(k—m)]
k

(k—m)
+@‘—(k—m)+1

+n-1
is greater than or equal to formula (2). After

simplification, what we must show isthat, for any
mintheset{1, 2, 3, ..., k-1},

m[logm7 — 2[legm]
+ (k—m)[log(k—m)7—2Mogtk-m)]

> k[logk] —2/Mogk1 _k

By symmetry, it sufficesto demonstratethisfor any
m{1, 2, ..., k/2]}. Wereason asfollows.

For real numbers x> 1, define f(x) =

X[logx] —2[109x1 Function f consists of linear
pieces; for instance,

oninterval (2°7%, 2], f(x)= px - 2P,
oninterval (2P, 2P*Y], f(x) = (p+1) x — 2P*L.

Moreover, since p2P — 2P equals the limit, as x
approaches 2P from theright, of (p+1) x — 2P*3,
we aso conclude function f is continuous (in the
mathematical sense). Thus the graph of f can be
described as: astraight line segment of slope 1,
connected to a straight line segment of slope 2,
connected to a straight line segment of slope 3,
connected to ... and so on. Consequently, the
difference between the values of f at two consec-
utiveintegers, f(m) —f(m-1), can becalculated as
soon as we know which interval (2972, 24]
contains m, for then the difference f(m) — f(m-1)
must equal the slope, whichisq.

Recall the integer k of thisproposition. Let p be

theinteger that satisfies 2P <k < 2P*%. Forintegers
m{1, 2, ..., k/2]} define g(m) = f(m) + f(k-m)
and note that for such m,

m<k/2< 2P implies: f(m) - f(m-1) < p,
k-m=k/2> 2Pt implies: f(k-m+1)—f(k-m) = p.
Then g(m-1) - g(m)
= f(m-1) + f(k-m+1) — f(m) — f(k—-m)
= (f(k-m+1) — f(k-m)) - (f(m) - f(m-1))
2p-p = 0.
That is, gisadecreasing function of itsdomain{ 1,

2, ..., k/2]}. Itisstraightforward to verify that
g'sleast value g(| k/ 2]) equals

k[logk] — 2[logk] _ k

(againthere arethe three cases. k even, k odd and
of form 1 + 2P, k odd but not of form 1 + 2P). We
have shown

f(m) + f(k—m) = g(m) = k[logk] —2[1ogk1_k
foral mO{1,2,3, ..., k/2]}. Thiswasprecisely
our goal.

Note: Natureiscapable of remarkable economies!
In the notation of the proposition, k/20(2PL, 2],
and m and k—-m lie on either side of k/2. If m,
k-m both fall into interval (2°7%, 2P] thenitis
easily shown that g(m) = f(m) + f(k—m) will equal
g'sleastvaueg(k/2). By thecontinuity of f, the
%mle can be said even if misthe stranded endpoint
2P

We might express these matters by saying that
halving is optimal but other partitions can achieve
equally good results. For instance: recall the algo-
rithm D& C-Merge = Divide-and-Conquer-Merge
(the halver). Let k=24 (=3timesapower of 2,
s0, halfway between two powers of 2). If 24 lists
(of equal length) are partitioned into two subsets,
the sizes of the subsets are a pair of numbers that
sumto 24. Five such pairsare

(8,16), (9,15), (10,14), (11,13), (12,12).

(D& C-Merge -- the halver -- would use the last
pair.) For any one of thesefive pairs (m, k—m),

imagine: invoking D& C-Merge to merge the
subset of m lists, invoking D& C-Merge to merge
the subset of k—m lists, then MERGE-ing the two
results. The (worst-case) number of BO's so
performed must exactly equal the number
performed when D& C-Mergeiscalled to merge 24
lists. That equality must hold follows from this
note'sfirst paragraph and from examining the prop-
osition's proof.

Thek-ary sort

Now let usreturntothek-ary sort, which dividesits
unsorted input list into k sublists of nearly equal
length and makes k recursive calls, followed by a
call of Divide-and-Conquer-Merge. If f(n) =
worst-case number of BO's performed by the k-ary
sort when sorting a list of length n, then f satisfies

(1) f(1)=0
(2) f(n) < n[logk]—(n/k)2MMogkT + n—k+1
+ (nremKk) f(n/k]) + (k= (nremK)) f(Ln/k])
When nisapower of k, inequality (2) is replaced
by equality
(2) f(n) =

n[logk | —(n/k)2Mkl + n —k + 1 + kf(n/Kk)
which has solution
f(n) = nlogn logk] — (n/k)logyn 2! 109k

+nloggn-n+1

asan induction argument (on n = powersof k) will
show.

If nisapower of k and k is a power of 2 we get
f(n) = (nlogyn) logok —n+1
= nlogon —n+ 1.

Thus, for example, octary sort (k = 8) performs
exactly the same number of BO's as binary sort
when sorting listsof length 2°™. On reflection, this
is not altogether surprising.

In general, the k-ary sort has runtime O(nlog n).

Parallelism

Heap-Merge does not improve in the presence of
paralelism (that is, amultiplicity of processing
units operating simultaneously). The recurring
expense in Heap-Merge is re-heapifying, and re-
heapifying is inherently sequential; it cannot be
parallelized.

Ontheother hand, Divide-and-Conquer-Merge and
thek-ary sort can easily be parallelized and thereby
sped up, which we now briefly investigate. Using
more elaborate algorithms, others have achieved
faster runtimes than we shall. The agorithm of
Shiloach and Vishkin in section 4.1 of [11] has
some outward similarity to our k-ary sort, but their
sorter is not recursive and uses a different merging
routine. Their runtimeis O((n/k) log n) wherek =
the number of available processors; our runtime
will be O((n/log k) logn). Cole's very compli-
cated "cascading” merge [4] achieves aruntime of
O(log n) if there areasmany processorsasthereare
list elements to be sorted.

So now let us consider the case that there are 16
lists. Ultimately, Divide-and-Conquer-Merge's
behavior isto MERGE these by pairs, MERGE the
8 results by pairs, MERGE those 4 results by pairs,
etc. Obviously the 8 incarnations of MERGE on
the lowest level can run in paralel, and similarly
for higher levels. Actualy, we can do even better
by starting the merging on level mjust onetick
after starting that on level m+1.

Suppose there are 15 processors, arranged in afull
binary tree, in the sense that output from a child
processor isinput to its parent. The processors we
havein mind are quite simple. Each comparestwo
input records from its memory and outputs the
smaller into its parent's memory; call that unit of
activity acycle. Each of the 8 leaf processors
beginswithinput consisting of two sorted lists. Let
n be the sum of thelengthsof these 16 lists. Onthe
fourth cycle the root outputs for the first time
(outputting, of course, the smallest element among
the 16 lists). On each succeeding cycle the root
outputs one more element. After n+3 cyclesthe 16
listswill have been merged. (One can conceive of

short-cuts when lists exhaust early, but the worst-
case expenseisnt+3 cycles.) A cycleishardly
different fromaBO asdefined earlier. Theexpense
n+3 on the parallel machine should be contrasted
with the theorem's expense of =nlog,16 = 4n on
auni-processor machine -- a four-fold speed-up.

Now suppose on our 15-processor machine we
haveto sortalist L of length n. We do so with a 16-
ary sort:

divide theligt into sixteenths;
make sixteen recursive calls, one for
each sixteenth;
merge, using the parallel merge algorithm,

Each recursive call will also perform a 16-way
merge, so will occupy al 15 processors, therefore
the 16 recursive calls are to be done sequentially.
Let f(n) = (worst-case) number of cycles required
tosort L. For n'sthat are powers of 16,

f(1) =0,

f(n) =n+ 3+ 16 f(n/16)

which has solution

f(n) =nloggn + (N—-1)/5
=(1/4) nlogyn + (n—1)/5

or 4 timesfaster than binary sort on auni-processor
machine. For a parallel machine with 2°P-1 proces-
sors, the measurements are: parallel merge
completes after n+p—1 cycles; sortingisp times
faster than on a uni-processor machine.

If there are as many processors as there are list
elements to be sorted, then sorting can become
merging where leaf processors start with apair of
singleton lists; then sorting compl etes after n+log n
cycles. Thisscenarioisoverly generousinitsuse
of processors; for instance, after one cycle the leaf-
level processors (half of the total) have no more
work to do and could bereallocated to elsewherein
the tree.

Summary and Conclusion

Our original interest wasin thek-ary sort, whichis
the generalization of the binary sort to the case of
dividing asourcelist into (not 2 but) k sublists. All
the essential expense of the k-ary sort comes from
the merging operation. Thus arose our curiosity
about waysto do ak-way merging of k sorted lists.

A strategy we named Divide-and-Conquer-Merge
was presented, a tight bound was found for its
expense, and it was shown less costly than two
other strategies for k-way merging (Linear-Search-
Merge, Heap-Merge). Our algorithm Divide-and-
Conquer-Merge, whose scheme is to recurse on
halves of the numbers of sourcelistsbeing merged,
was additionally shown optimal among a class of
similar approachesthat recurse on subgroups of the
source lists. The expense of the k-ary sort was
analyzed to be O(n logn); sometimes its expense
exactly equalsthat of the binary sort. We briefly
explored parallel implementations of our merging
and sorting approaches, and their costs.

We do not expect to see actual use of thek-ary sort,
sincesimpler approachessuch asthebinary sort are
no costlier. K-way merging may see application.
The mathematical techniques used in our cost anal-
yses are, to our knowledge, entirely novel and, in
our opinion, intellectually stimulating and estheti-
cally appealing. Aswith certain other instanceswe
might citein complexity analysis, the proofs are as
intriguing as the statements of the theorems.

Bibliography

1. Aho, Alfred A., Hopcroft, John E., and UlIman,
Jeffrey D., Data Sructures and Algorithms,
Addison-Wesley, Reading, Mass., 1983.

2. Brown, Mark R., and Tarjan, Robert E., "A fast
merging algorithm"”, J. Assoc. Comput. Mach. 26
(1979), 211-226.

3. Carlsson, Svante, " Splitmerge - afast stable
merging algorithm", Information Proc. Lett. 22
(1986), 189-192.

4. Cole, Richard, "Parallel merge sort", SAM J.
Computing 17 (1988), 770-785.

5. Dudzinski, Krzysztof, and Dydek, Andrzej, "On
a stable minimum storage merging algorithm",
Information Proc. Lett. 12 (1981), 5-8.

6. Even, Shimon, "Parallelism in tape-sorting”,
Communications Assoc. Comput. Mach. 17 (1974),
202-204.

7. Gavril, Fanica, "Merging with parallel proces-
sors', Communications Assoc. Comput. Mach. 18
(1975), 588-591.

8. Hirschberg, D. S., "Fast paralel sorting algo-
rithms*, Communications Assoc. Comput. Mach.
21 (1978), 657-661.

9. Hwang, F. K., and Lin, S.,"A simple algorithm
for merging two digoint linearly ordered sets’,
S AM J. Computing 1 (1972), 31-39.

10. Knuth, Donald E., The Art of Computer
Programming, Vol. 3: Sorting and Searching,
Addison-Wedley, Reading, Mass. 1973.

11. Shiloach, Yossi, and Vishkin, Uzi, "Finding the
maximum, merging, and sorting in a parallel
computation model”, J. Algorithms 2 (1981), 88-
102.

12. Sprugnoli, Renzo, "Theanalysisof asimplein-
place merging algorithm", J. Algorithms 10 (1989),
366-380.

13. Thanh, Mai; Alagar, V. S.; and Bui, T. D.,

"Optimal expected timea gorithmsfor merging", J.
Algorithms 7 (1986), 341-357.

14. Trabb Pardo, L uis, "Stable sorting and merging
with optimal space and time", SAM J. Computing
6 (1977), 351-372.

	Introduction
	k-way merging
	Optimality of Halving
	The k-ary sort
	Parallelism
	Summary and Conclusion
	Bibliography

