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1. INTRODUCTION

In this article, we consider three related problems on dynamic directed graphs: cycle
detection, maintaining a topological order, and maintaining strong components. We
begin with a few standard definitions. A topological order of a directed graph is a
total order “<” of the vertices such that for every arc (v,w), v < w. A directed graph is
strongly connected if every vertex is reachable from every other. The strongly connected
components of a directed graph are its maximal strongly connected subgraphs. These
components partition the vertices [Harary et al. 1965]. Given a directed graph G, its
graph of strong components is the graph whose vertices are the strong components of
G and whose arcs are all pairs (X , Y ) with X �= Y such that there is an arc in the
original graph from a vertex in X to a vertex in Y . The graph of strong components is
acyclic [Harary et al. 1965].

A directed graph has a topological order (and in general more than one) if and only
if it is acyclic. The first implication is equivalent to the statement that every partial
order can be embedded in a total order, which, as Knuth [1973] noted, was proved
by Szpilrajn [1930] for infinite as well as finite sets. Szpilrajn remarked that this
result was already known to at least Banach, Kuratowski, and Tarski, though none of
them published a proof.

Given a fixed n-vertex, m-arc graph, one can find either a cycle or a topological order
in O(n + m) time by either of two methods: repeated deletion of sources (vertices of in-
degree zero) [Knuth 1973; Knuth and Szwarcfiter 1974] or depth-first search [Tarjan
1972]. The former method (but not the latter) extends to the enumeration of all possi-
ble topological orders [Knuth and Szwarcfiter 1974]. One can find strong components,
and a topological order of the strong components in the graph of strong components, in
O(n + m) time using depth-first search, either one-way [Cheriyan and Mehlhorn 1996;
Gabow 2000; Tarjan 1972] or two-way [Aho et al. 1983; Sharir 1981].

In some situations, the graph is not fixed but changes over time. An incremental
problem is one in which vertices and arcs can be added; a decremental problem is one
in which vertices and arcs can be deleted; a (fully) dynamic problem is one in which
vertices and arcs can be added or deleted. Incremental cycle detection or topological or-
dering occurs in circuit evaluation [Alpern et al. 1990], pointer analysis [Pearce et al.
2003], management of compilation dependencies [Marchetti-Spaccamela et al. 1993;
Omohundro et al. 1992], and deadlock detection [Belik 1990]. In some applications
cycles are not fatal; strong components, and possibly a topological order of them, must
be maintained. An example is speeding up pointer analysis by finding cyclic relation-
ships [Pearce and Kelly 2003].

We focus on incremental problems. We assume that the vertex set is fixed and given
initially, and that the arc set is initially empty. We denote by n the number of vertices
and by m the number of arcs added. For simplicity in stating time bounds, we assume
that m = �(n). We do not allow multiple arcs, so m ≤ (n

2

)
. One can easily extend our

algorithms to support vertex additions in O(1) time per vertex addition. (A new vertex
has no incident arcs.) Our topological ordering algorithms, as well as all others in the
literature, can handle arc deletions as well as insertions, since an arc deletion pre-
serves topological order, but our time bounds are no longer valid. Maintaining strong
components as arcs are deleted, or inserted and deleted, is a harder problem, as is
maintaining the transitive closure of a directed graph under arc insertions and/or dele-
tions. These problems are quite interesting and much is known, but they are beyond
the scope of this article. We refer the interested reader to Roditty and Zwick [2008]
and the references given there for a thorough discussion of results on these problems.

Our goal is to develop algorithms for incremental cycle detection and topological
ordering that are significantly more efficient than running an algorithm for a static
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graph from scratch after each arc addition. In Section 2, we discuss the use of graph
search to solve these problems, work begun by Shmueli [1983] and realized more
fully by Marchetti-Spaccamela et al. [1996], whose algorithm runs in O(nm) time.
In Section 3, we develop a two-way search method that we call compatible search.
Compatible search is essentially a generalization of two-way ordered search, which
was first proposed by Alpern et al. [1990]. They gave a time bound for their algo-
rithm in an incremental model of computation, but their analysis does not give a good
bound in terms of n and m. They also considered batched arc additions. Katriel and
Bodlaender [2006] gave a variant of two-way ordered search with a time bound of
O(min{m3/2 log n, m3/2 +n2 log n}). Liu and Chao [2007] improved the bound of this vari-
ant to �(m3/2 +mn1/2 log n), and Kavitha and Mathew [2007] gave another variant with
a bound of O(m3/2 + nm1/2 log n).

A two-way search need not be ordered to solve the topological ordering problem.
We apply this insight in Section 4 to develop a version of compatible search that
we call soft-threshold search. This method uses either median-finding (which can
be approximate) or random sampling in place of the heaps (priority queues) needed
in ordered search, resulting in a time bound of O(m3/2). We also show that any al-
gorithm among a natural class of algorithms takes �(nm1/2) time in the worst case.
Thus, for sparse graphs (m/n = O(1)), our bound is best possible in this class of
algorithms.

The algorithms discussed in Sections 3 and 4 have two drawbacks. First, they re-
quire a sophisticated data structure, namely a dynamic ordered list [Bender et al.
2002; Dietz and Sleator 1987], to maintain the topological order. One can address this
drawback by maintaining the topological order as an explicit numbering of the ver-
tices from 1 through n. Following Katriel [2004], we call an algorithm that does this a
topological sorting algorithm. The one-way search algorithm of Marchetti-Spaccamela
et al. [1996] is such an algorithm. Pearce and Kelly [2006] gave a two-way-search topo-
logical sorting algorithm. They claimed it is fast in practice, although they did not
give a good time bound in terms of n and m. Katriel [2004] showed that any topological
sorting algorithm that has a natural locality property takes �(n2) time in the worst
case even if m/n = �(1).

The second drawback of the algorithms discussed in Sections 3 and 4 is that us-
ing graph search to maintain a topological order becomes less and less efficient as the
graph becomes denser. Ajwani et al. [2006] addressed this drawback by giving a topo-
logical sorting algorithm with a running time of O(n11/4). In Section 5, we simplify
and improve this algorithm. Our algorithm searches the topological order instead
of the graph. We show that it runs in O(n5/2) time. This bound may be far from
tight. We obtain a lower bound of �(n2

√
2 lg n) on the running time of the algorithm

by relating its efficiency to a generalization of the k-levels problem of combinatorial
geometry.

In Section 6, we extend the algorithms of Sections 4 and 5 to the incremental main-
tenance of strong components. We conclude in Section 7 with some remarks and open
problems.

This article is an improvement and extension of a conference paper [Haeupler et al.
2008a], which itself is a combination and condensation of two on-line reports [Haeupler
et al. 2008b; Kavitha and Mathew 2007]. Our main improvement is a simpler analysis
of the algorithm presented in Section 5 and originally in Kavitha and Mathew [2007].
At about the same time as Kavitha and Mathew [2007] appeared and also building on
the work of Ajwani et al. [2006], Liu and Chao [2008] independently obtained a topo-
logical sorting algorithm that runs in O(n5/2 log2 n) or O(n5/2 log n) time, depending on
the details of the implementation. More recently, Bender et al. [2009] have presented
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Fig. 1. Implementation of limited search.

a topological ordering algorithm that uses completely different techniques and runs in
�(n2 log n) time.

2. ONE-WAY SEARCH

The simplest of the three problems we study is that of detecting a cycle when an arc
addition creates one. All the known efficient algorithms for this problem, including
ours, rely on the maintenance of a topological order. When an arc (v,w) is added, we
can test for a cycle by doing a search forward from w until either reaching v (there is
a cycle) or visiting all vertices reachable from w without finding v. This method takes
�(m) time per arc addition in the worst case, for a total of �(m2) time. By maintaining
a topological order, we can improve this method. When a new arc (v,w) is added, test
if v < w. If so, the order is still topological, and the graph is acyclic. If not, search
for v from w. If the search finishes without finding v, we need to restore topological
order, since (at least) v and w are out of order. We can make the order topological by
moving all the vertices visited by the search to positions after all the other vertices,
and ordering the visited vertices among themselves topologically.

We need a way to represent the topological order. A simple numbering scheme suf-
fices. Initially, number the vertices arbitrarily from 1 through n and initialize a global
counter c to n. When a search occurs, renumber the vertices visited by the search con-
secutively from c + 1, in a topological order with respect to the subgraph induced by
the set of visited vertices, and increment c to be the new maximum vertex number.
One way to order the visited vertices is to make the search depth-first and order the
vertices in reverse postorder [Tarjan 1972]. With this scheme, all vertex numbers are
positive integers no greater than nm.

Shmueli [1983] proposed this method as a heuristic for cycle detection, although he
used a more-complicated two-part numbering scheme and he did not mention that the
method maintains a topological order. In the worst case, every new arc can invalidate
the current topological order and trigger a search that visits a large part of the graph,
so the method does not improve the O(m2) worst-case bound for cycle detection. But it
is the starting point for asymptotic improvement.

To do better, we use the topological order to limit the searching. The search for v
from w need not visit vertices larger than v in the current order, since no such vertex,
nor any vertex reachable from such a vertex, can be v. Here is the resulting method
in detail. When a new arc (v,w) has v > w, search for v from w by calling LIMITED-
SEARCH(v,w), where the function LIMITED-SEARCH is defined in Figure 1. In this and
later functions and procedures, a minus sign denotes set subtraction.

In LIMITED-SEARCH, F is the set of vertices visited by the search, and A is the set
of arcs to be traversed by the search. An iteration of the while loop that deletes an
arc (x, y) from A does a traversal of (x, y). The choice of which arc in A to traverse is
arbitrary. If the addition of (v,w) creates a cycle, LIMITED-SEARCH(v,w) returns an
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Fig. 2. Limited search followed by vertex reordering. Initial topological order is left-to-right. Arcs are
numbered in order of traversal; the search is depth-first. Visited vertices are w, c, f , h, i, j. They are
numbered in reverse postorder with respect to the search and reordered correspondingly.

arc (x, y) �= (v,w) on such a cycle; otherwise, it returns null. If it returns null, restore
topological order by moving all vertices in F just after v (and before the first vertex
following v, if any). Order the vertices within F topologically, for example by making
the search depth-first and ordering the vertices in F in reverse postorder with respect
to the search. Figure 2 shows an example of limited search and reordering.

Before discussing how to implement the reordering, we bound the total time for the
limited searches. If we represent F and A as linked lists and mark vertices as they
are added to F, the time for a search is O(1) plus O(1) per arc traversal. Only the
last search, which does at most m arc traversals, can report a cycle. To bound the
total number of arc traversals, we introduce the notion of relatedness. We define a
vertex and an arc to be related if some path contains both the vertex and the arc, and
unrelated otherwise. This definition does not depend on whether the vertex or the arc
occurs first on the path; they are related in either case. If the graph is acyclic, only one
order is possible, but in a cyclic graph, a vertex can occur before an arc on one path
and after the arc on a different path. If either case occurs, or both, the vertex and the
arc are related.

LEMMA 2.1. Suppose the addition of (v,w) does not create a cycle but does trigger
a search. Let (x, y) be an arc traversed during the (unsuccessful) search for v from w.
Then, v and (x, y) are unrelated before the addition but related after it.

PROOF. Let < be the topological order before the addition of (v,w). Since x < v,
for v and (x, y) to be related before the addition there must be a path containing (x, y)
followed by v. But then there is a path from x to v. Since there is a path from w to x, the
addition of (v,w) creates a cycle, a contradiction. Thus v and (x, y) are unrelated before
the addition. After the addition, there is a path from v through (v,w) to (x, y), so v and
(x, y) are related.

The number of related vertex-arc pairs is at most nm, so the number of arc traversals
during all limited searches, including the last one, is at most nm + m. Thus the total
search time is O(nm).

Shmueli [1983] suggested this method but did not analyze it. Nor did he give an
efficient way to do the reordering; he merely hinted that one could modify his number-
ing scheme to accomplish this. According to Shmueli, “This may force us to use real
numbers (not a major problem).” In fact, it is a major problem, because the precision
required may be unrealistically high.
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Fig. 3. Alternative method of restoring topological order after a limited search of the graph in Figure 2. The
vertices are numbered in topological order. The affected vertices are w,c,d,e, f ,g,h,i,v. Arcs are numbered in
order of traversal. The affected vertices are reordered by moving the visited vertices w,c, f ,h,i after the
unvisited vertices d,e,g,v.

To do the reordering efficiently, we need a representation more complicated than
a simple numbering scheme. We use instead a solution to the dynamic ordered list
problem: represent a list of distinct elements so that order queries (does x occur before
y in the list?), deletions, and insertions (insert a given non-list element just before,
or just after, a given list element) are fast. Solving this problem is tantamount to
addressing the precision question that Shmueli overlooked. Dietz and Sleator [1987]
gave two related solutions. Each takes O(1) time worst-case for an order query or a
deletion. For an insertion, the first takes O(1) amortized time; the second, O(1) time
worst-case. Bender et al. [2002] simplified the Dietz-Sleator methods. With any of
these methods, the time for reordering after an arc addition is bounded by a constant
factor times the search time, so m arc additions take O(nm) time.

There is a simpler way to do the reordering, but it requires rearranging all affected
vertices, those between w and v in the order (inclusive): move all vertices visited by
the search after all other affected vertices, preserving the original order within each
of these two sets. Figure 3 illustrates this alternative reordering method. We call a
topological ordering algorithm local if it reorders only affected vertices. Except for
Shmueli’s unlimited search algorithm and the recent algorithm of Bender et al. [2009],
all the algorithms we discuss are local.

We can do this reordering efficiently even if the topological order is explicitly repre-
sented by a one-to-one mapping between the vertices and the integers from 1 through
n. This makes the method a topological sorting algorithm as defined in Section 1.
This method was proposed and analyzed by Marchetti-Spaccamela et al. [1996]. The
reordering time is O(n) per arc addition; the total time for m arc additions is O(nm).

3. TWO-WAY SEARCH

We can further improve cycle detection and topological ordering by making the search
two-way instead of one-way: when a new arc (v,w) has v > w, concurrently search
forward from w and backward from v until some vertex is reached from both directions
(there is a cycle), or enough arcs are traversed to guarantee that the graph remains
acyclic; if so, rearrange the visited vertices to restore topological order.

Each step of the two-way search traverses one arc (u, x) forward and one arc (y, z)
backward. To make the search efficient, we make sure that these arcs are compatible,
by which we mean that u < z (in the topological order before (v,w) is added). Here is
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Fig. 4. Implementation of compatible search.

the resulting method in detail. For ease of notation, we adopt the convention that the
minimum of an empty set is bigger than any other value and the maximum of an empty
set is smaller than any other value. Every vertex is in one of three states: unvisited,
forward (first visited by the forward search), or backward (first visited by the backward
search). Before any arcs are added, all vertices are unvisited. The search maintains
the set F of forward vertices and the set B of backward vertices: if the search does not
detect a cycle, certain vertices in B ∪ F must be reordered to restore topological order.
The search also maintains the set A F of arcs to be traversed forward and the set A B
of arcs to be traversed backward. If the search detects a cycle, it returns an arc other
than (v,w) on the cycle; if there is no cycle, the search returns null.

When a new arc (v,w) has v > w, search forward from w and backward from v
by calling COMPATIBLE-SEARCH(v,w), where the function COMPATIBLE-SEARCH is
defined in Figure 4.

In compatible search, an iteration of the while loop is a search step. The step does
a forward traversal of the arc (u, x) that it deletes from A F and a backward traversal
of the arc (y, z) that it deletes from A B. The choice of which pair of arcs to traverse is
arbitrary, as long as they are compatible. If the addition of (v,w) creates a cycle, it is
possible for a single arc (u, z) to be added to both A F (when u becomes forward) and
to A B (when z becomes backward). It is even possible for such an arc to be traversed
both forward and backward in the same search step, but if this happens it is the last
search step. Such a double traversal does not affect the correctness of the algorithm.
Unlike limited search, compatible search can visit unaffected vertices (those less than
w or greater than v in topological order), but this does not affect correctness, only
efficiency. If the search returns null, restore topological order as follows. Let t =
min({v} ∪ {u|∃(u, x) ∈ A F}). Let F< = {x ∈ F|x < t} and B> = {y ∈ B|y > t}. If
t = v, reorder as in limited search (Section 2): move all vertices in F< just after t. (In
this case B> = {}.) Otherwise, (t < v), move all vertices in F< just before t and all
vertices in B> just before all vertices in F<. In either case, order the vertices within
F< and within B> topologically. Figure 5 illustrates compatible search and reordering.

THEOREM 3.1. Compatible search correctly detects cycles and maintains a topolog-
ical order.

PROOF. The algorithm maintains the invariant that every forward vertex is reach-
able from w and v is reachable from every backward vertex. Thus, if (u, x) with x ∈ B
is traversed forward, there is a cycle consisting of a path from w to u, the arc (u, x),
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Fig. 5. Compatible search of the graph in Figure 2 and restoration of topological order. Traversed arc pairs
are numbered in order of traversal. Forward vertices are w,c, f ,h,i; backward vertices are v,d,g,e,a. After the
search, A F = {( f, i), (h, j)}; t = f ; F< = {w, c}; B> = {v, g}. Reordering moves vertices in F< just before t and
all vertices in B> just before those in F<, arranging each internally in topological order.

a path from x to v, and the arc (v,w). Symmetrically, if (y, z) with y ∈ F is traversed
backward, there is a cycle. Thus, if the algorithm reports a cycle, there is one.

Suppose the addition of (v,w) creates a cycle. Such a cycle consists of a pre-existing
path P from w to v and the arc (v,w). The existence of P implies that v > w, so the
addition of (v,w) will trigger a search. The search maintains the invariant that either
there are distinct arcs (u, x) and (y, z) on P with x ≤ y, (u, x) is in A F, and (y, z) is in
A B, or there is an arc (u, z) in both A F and A B. In either case, there is a compatible
arc pair, so the search can only stop by returning a non-null arc. Thus, if there is a
cycle, the algorithm will report one.

It remains to show that if v > w and the addition of (v,w) does not create a cycle,
then the algorithm restores topological order. This is a case analysis. First, consider
(v,w). If t = v, then w is in F<. If t < v, then v is in B> and w is in {t} ∪ F<. In either
case, v precedes w after the reordering.

Second, consider an arc (x, y) other than (v,w). Before the reordering x < y; we
must show that the reordering does not reverse this order. There are five cases.

Case 1. Neither x nor y is in F< ∪ B>. Neither x nor y is reordered.

Case 2. x is in F<. Vertex y must be forward. If y < t, then y is in F<, and the order
of x and y is preserved because the reordering within F< is topological. If y = t, then
t < v, so the reordering inserts x before t = y. If y > t, the reordering does not move y
and inserts x before y.

Case 3. y is in F< but x is not. Vertex x is not moved, and y follows x after the
reordering since vertices in F< are only moved higher in the order.

Case 4. y is in B>. Vertex x must be backward. Then, x �= t, since x = t would imply
t = v (since x is backward) and y > v, which is impossible. If x > t, then x is in B>,
and the order of x and y is preserved because the reordering within B> is topological.
If x < t, the reordering does not move x and inserts y after x.

Case 5. x is in B>, but y is not. Vertex y is not moved, and y follows x after the
reordering since vertices in B> are only moved lower in the order.

We conclude that the reordering restores topological order.

ACM Transactions on Algorithms, Vol. 8, No. 1, Article 3, Publication date: January 2012.



Incremental Cycle Detection, Topological Ordering, and Strong Component Maintenance 3:9

A number of implementation details remain to be filled in. Before doing this, we
prove the key result that bounds the efficiency of two-way compatible search: the total
number of arc traversals over m arc additions is O(m3/2). To prove this, we extend the
notion of relatedness used in Section 2 to arc pairs: two distinct arcs are related if they
are on a common path. Relatedness is symmetric: the order in which the arcs occur on
the common path is irrelevant. (In an acyclic graph, only one order is possible, but in
a graph with cycles both orders can occur, on different paths.) The following lemma is
analogous to Lemma 2.1.

LEMMA 3.2. Suppose the addition of (v,w) triggers a search but does not create a
cycle. Let (u, x) and (y, z), respectively, be compatible arcs traversed forward and back-
ward during the search, not necessarily during the same search step. Then, (u, x) and
(y, z) are unrelated before the addition of (v,w) but are related after the addition.

PROOF. Since adding (v,w) does not create a cycle, (u, x) and (y, z) must be distinct.
Suppose (u, x) and (y, z) were related before the addition of (v,w). Let P be a path
containing both. The definition of compatibility is u < z. But u < z implies that (u, x)
precedes (y, z) on P. Since u is forward and z is backward, the addition of (v,w) creates
a cycle, consisting of a path from w to u, the part of P from u to z, a path from z to v,
and the arc (v,w). This contradicts the hypothesis of the lemma. Thus, (u, x) and (y, z)
are unrelated before the addition of (v,w).

After the addition of (v,w), there is a path containing both (u, x) and (y, z), consisting
of (y, z), a path from z to v, the arc (v,w), a path from w to u, and the arc (u, x). Thus,
(u, x) and (y, z) are related after the addition.

THEOREM 3.3. Over m arc additions, two-way compatible search does at most
4m3/2 + m + 1 arc traversals.

PROOF. Only the last arc addition can create a cycle; the corresponding search does
at most m + 1 arc traversals. (One arc may be traversed twice.) Consider any search
other than the last. Let A be the set of arcs traversed forward during the search.
Let k be the number of arcs in A. Each arc (u, x) in A has a distinct twin (y, z) that
was traversed backward during the search step that traversed (u, x). These twins are
compatible; that is, u < z. Order the arcs (u, x) in A in nondecreasing order on u. Each
arc (u, x) in A is compatible not only with its own twin but also with the twin of each
arc (q, r) following (u, x) in the order within A, because if (y, z) is the twin of (q, r),
u ≤ q < z. Thus if (u, x) is ith in the order within A, (u, x) is compatible with at least
k − i + 1 twins of arcs in A. By Lemma 3.2, each such compatible pair is unrelated
before the addition of (v,w) but is related after the addition. Summing over all arcs in
A, we find that the addition of (v,w) increases the number of related arc pairs by at
least k(k + 1)/2.

Call a search other than the last one small if it does no more than 2m1/2 arc
traversals and big otherwise. Since there are at most m small searches, together
they do at most 2m3/2 arc traversals. A big search that does 2k arc traversals is
triggered by an arc addition that increases the number of related arc pairs by at least
k(k + 1)/2 > km1/2/2. Since there are at most

(m
2

)
< m2/2 related arc pairs, the total

number of arc traversals during big searches is at most 2m3/2.

The example in Figure 5 illustrates the argument in the proof of Theorem 3.3. The
arcs traversed forward, arranged in nondecreasing order by first vertex, are (w, h) with
twin (d, v), (w, c) with twin (g, v), (c, f ) with twin (a, d), and ( f, h) with twin (e, g). Arc
(w, h) is compatible with the twins of all arcs in A, (w, c) is compatible with its own
twin and those of (c, f ) and ( f, h), (c, f ) is compatible with its own twin and that of
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( f, h), and ( f, h) is compatible with its own twin. There can be other compatible pairs,
and indeed there are in this example, but the proof does not use them.

Our goal now is to implement two-way compatible search so that the time per arc
addition is O(1) plus O(1) per arc traversal. By Theorem 3.3, this would give a time
bound of O(m3/2) for m arc additions. First, we discuss the graph representation, then
the maintenance of the topological order, and finally (in this and the next section) the
detailed implementation of the search algorithm.

We represent the graph using forward and backward incidence lists: each vertex
has a list of its outgoing arcs and a list of its incoming arcs, which we call the outgoing
list and incoming list, respectively. Singly linked lists suffice. We denote by first-out(x)
and first-in(x) the first arc on the outgoing list and the first arc on the incoming list
of vertex x, respectively. We denote by next-out((x, y)) and next-in((x, y)) the arcs after
(x, y) on the outgoing list of x and the incoming list of y, respectively. In each case, if
there is no such arc, the value is null. Adding a new arc (v,w) to this representation
takes O(1) time. If the addition of an arc (v,w) triggers a search, we can update the
graph representation either before or after the search: arc (v,w) will never be added
to either A F or A B.

We represent the topological order by a dynamic ordered list. (See Section 2.) If
adding (v,w) leaves the graph acyclic but triggers a search, we reorder the vertices
after the search as follows. Determine t. Determine the sets F< and B>. Determine the
subgraphs induced by the vertices in F< and B>. Topologically sort these subgraphs
using either of the two linear-time static methods (repeated deletion of sources or
depth-first search). Move the vertices in F< and B> to their new positions using
dynamic ordered list deletions and insertions. The number of vertices in F ∪ B is at
most two plus the number of arcs traversed by the search. Furthermore, all arcs out
of F< and all arcs into B> are traversed by the search. It follows that the time for
the topological sort and reordering is at most linear in one plus the number of arcs
traversed, not including the time to determine t. We discuss how to determine t after
presenting some of the details of the search implementation.

We want the time of a search to be O(1) plus O(1) per arc traversal. There are
three tasks that are hard to implement in O(1) time: (1) adding arcs to A F and A B
(the number of arcs added as the result of an arc traversal may not be O(1)), (2)
testing whether to continue the search, and (3) finding a compatible pair of arcs to
traverse.

By making the search vertex-guided instead of arc-guided, we simplify all of these
tasks, as well as the determination of t. We do not maintain A F and A B explicitly.
Instead we partition F and B into live and dead vertices. A vertex in F is live if it
has at least one outgoing untraversed arc; a vertex in B is live if it has at least one
incoming untraversed arc; all vertices in F ∪ B that are not live are dead. For each
vertex x in F, we maintain a forward pointer out(x) to the first untraversed arc on
its outgoing list, and for each vertex y in B we maintain a backward pointer in(y)
to the first untraversed arc on its incoming list; each such pointer is null if there
are no untraversed arcs. We also maintain the sets FL and BL of live vertices in F
and B, respectively. When choosing arcs to traverse, we always choose a forward arc
indicated by a forward pointer and a backward arc indicated by a backward pointer.
The test whether to continue the search becomes “min FL < max BL .”

When a new arc (v,w) has v > w, do the search by calling VERTEX-GUIDED-
SEARCH(v,w), where the function VERTEX-GUIDED-SEARCH is defined in Figure 6. It
uses an auxiliary macro SEARCH-STEP, defined in Figure 7, intended to be expanded
in-line; each return from SEARCH-STEP returns from VERTEX-GUIDED-SEARCH as
well. If VERTEX-GUIDED-SEARCH(v,w) returns null, let t = min({v} ∪ {x ∈ F|out(x) �=
null} and reorder the vertices in F< and B> as discussed previously.
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Fig. 6. Implementation of vertex-guided search.

Fig. 7. Implementation of a search step.

If we represent F and B by singly linked lists and FL and BL by doubly linked lists
(so that deletion takes O(1) time), plus flag bits for each vertex indicating whether it
is in F and/or B, then the time for a search step is O(1). The time to determine t and
to reorder the vertices is at most O(1) plus O(1) per arc traversal.

It remains to implement tasks (2) and (3): testing whether to continue the search
and finding a compatible pair of arcs to traverse. In vertex-guided search these tasks
are related: it suffices to test whether min FL < max BL ; and, if so, to find u ∈ FL and
z ∈ BL with u < z. The historical solution is to store FL and BL in heaps (priority
queues), FL in a min-heap and BL in a max-heap, and in each iteration of the while
loop to choose u = min FL and z = max BL . This guarantees that u < z, since otherwise
the continuation test for the search would have failed. With an appropriate heap
implementation, the test min FL < max BL takes O(1) time, as does choosing u and z.
Each insertion into a heap takes O(1) time as well, but each deletion from a heap takes
O(log n) time, resulting in an O(log n) time bound per search step and an O(m3/2 log n)
time bound for m arc additions.

This method is in essence the algorithm of Alpern et al. [1990], although their
algorithm does not strictly alternate forward and backward arc traversals, and they
did not obtain a good total time bound. Using heaps but relaxing the alternation
of forward and backward arc traversals gives methods with slightly better time
bounds [Alpern et al. 1990; Katriel and Bodlaender 2006; Kavitha and Mathew 2007],
the best bound to date being O(m3/2 + nm1/2 log n) [Kavitha and Mathew 2007]. One
can further reduce the running time by using a faster heap implementation, such
as those of van Emde Boas [1977], van Emde Boas et al. [1977], Thorup [2004],
and Han and Thorup [2002]. Our goal is more ambitious: to reduce the overall
running time to O(m3/2) by eliminating the use of heaps. This we do in the next
section.
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Fig. 8. Implementation of soft-threshold search.

4. SOFT-THRESHOLD SEARCH

To obtain a faster implementation of vertex-guided search, we exploit the flexibility
inherent in the algorithm by using a soft threshold s to help choose u and z in each
search step. Vertex s is a forward or backward vertex, initially v. We partition the
sets FL and BL into active and passive vertices. Active vertices are candidates for
the current search step, passive vertices are candidates for future search steps. We
maintain the sets FA and FP, and BA and BP, of active and passive vertices in FL and
BL , respectively. All vertices in FP are greater than s; all vertices in BP are less than
s; vertices in FA ∪ BA can be on either side of s. Searching continues while FA �= {}
and BA �= {}. The algorithm chooses u from FA and z from BA arbitrarily. If u < z,
the algorithm traverses an arc out of u and an arc into z and makes each newly live
vertex active. If u > z, the algorithm traverses no arcs. Instead, it makes u passive if
u > s and makes z passive if z < s; u > z implies that at least one of u and z becomes
passive. When FA or BA becomes empty, the algorithm updates s and the vertex
partitions, as follows. Suppose FA is empty; the updating is symmetric if BA is empty.
The algorithm makes all vertices in BP dead, makes s dead if it is live, chooses a new
s from FP, and makes active all vertices x ∈ FP such that x ≤ s.

Here are the details of this method, which we call soft-threshold search. When a
new arc (v,w) has v > w, do the search by calling SOFT-THRESHOLD-SEARCH(v,w),
where the function SOFT-THRESHOLD-SEARCH is defined in Figure 8, and procedure
SEARCH-STEP is defined as in Figure 7, but with FA and BA replacing FL and BL ,
respectively. If SOFT-THRESHOLD-SEARCH(v,w) returns null, let t = min({v} ∪ {x ∈
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Fig. 9. Soft-threshold search of the graph in Figure 2. Arc traversal order is the same as in Figure 5.
Initially s = v, FA = {w}, BA = {v}. (a) Choosing u = w, z = v twice causes traversal of compatible pair (w, h),
(d, v) followed by traversal of (w, c), (g, v). Now FA = {h, c}, BA = {d, g}. Choice of u = h, z = d moves d to BP.
Choice of u = h, z = g moves g to BP, making BA empty. (b) New s is d. Now FA = {h, c}, FP = {}, BA = {d, g},
BP = {}. Choice of u = h, z = d moves h to FP. Choice of u = c, z = d causes traversal of (c, f ), (a, d), adding f
to FA and deleting c from FA . (Vertex a has no incoming arc, so it is not added to BA .) Choice of u = f , z = d
moves f to FP, making FA empty. (c) New s is f . Now FA = { f }, FP = {h}, BA = {g}, BP = {}. Choice of u = f ,
z = g causes traversal of ( f, h), (e, g), deleting g from BA and making BA empty. Since BP is also empty, the
search ends. Reordering is the same as in Figure 5.

F|out(x) �= null} and reorder the vertices in F< and B> as discussed previously. Figure 9
illustrates soft-threshold search.

Soft-threshold search is an implementation of vertex-guided search except that it
makes additional vertices dead, not just those with no incident arcs left to traverse.
Once dead, a vertex stays dead. We need to prove that this does not affect the search
outcome. First, we prove that soft-threshold search terminates.

THEOREM 4.1. A soft-threshold search terminates after at most n2 + m+ n iterations
of the while loop.

PROOF. Each iteration either traverses one or two arcs or makes one or two ver-
tices passive. The number of times a vertex can become passive is at most the number
of times it becomes active. Vertices become active only when they are visited (once
per vertex) or when s changes. Each time s changes, the old s becomes dead if it was
not dead already. Thus s changes at most n times. The number of times vertices be-
come active is thus at most n + n2 (once per vertex visit plus once per vertex per
change in s).

To prove correctness, we need two lemmas.
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LEMMA 4.2. If x is a passive vertex, x > s if x is in FP, x < s if x is in BP.

PROOF. If x is a passive vertex, x satisfies the lemma when it becomes passive, and it
continues to satisfy the lemma until s changes. Suppose x is forward; the argument is
symmetric if x is backward. If s changes because FA is empty, x becomes active unless
it is greater than the new s. If s changes because BA is empty, x becomes dead. The
lemma follows by induction on the number of search steps.

LEMMA 4.3. Let A F be the set of untraversed arcs out of vertices in F, let A B be
the set of untraversed arcs into vertices in B, let q = min{u|∃(u, x) ∈ A F}, and let r =
max{z|∃(y, z) ∈ A B}. Then, q and r remain live vertices until q > r.

PROOF. If q and r remain live vertices until q = ∞ or r = −∞, the lemma holds.
Thus, suppose q dies before r and before either q = ∞ or r = −∞. When q dies, q = s or
q is passive, and BA = {}. Since r is still live, r is passive. By Lemma 4.2, q ≥ s > r. The
argument is symmetric if r dies before q and before either q = ∞ or r = −∞.

THEOREM 4.4. Soft-threshold search is correct.

PROOF. Let q and r be defined as in Lemma 4.3. By that lemma, the search will
continue until a cycle is detected or q > r. While the search continues, it traverses arcs
in exactly the same way as vertex-guided search. Once q > r, the continuation test for
vertex-guided search fails. If the graph is still acyclic, the continuation test for soft-
threshold search may not fail immediately, but no additional arcs can be traversed; any
additional iterations of the while loop merely change the state (active, passive, or dead)
of various vertices. Such changes do not affect the outcome of the search.

To implement soft-threshold search, we maintain FA , FP, BA , and BP as doubly-
linked lists. The time per search step is O(1), not counting the computations associated
with a change in s (the two code blocks at the end of the while loop that are executed if
FA or BA is empty, respectively).

The remaining freedom in the algorithm is the choice of s. The following observation
guides this choice. Suppose s changes because FA is empty. The algorithm chooses a
new s from FP and makes active all vertices in FP that are no greater than s. Consider
the next change in s. If this change occurs because FA is again empty, then all the
vertices that were made active by the first change of s, including s, are dead, and hence
can never become active again. If, on the other hand, this change occurs because BA
is empty, then all the forward vertices that remained passive after the first change in
s become dead, and s becomes dead if it is not dead already. That is, either the vertices
in FP no greater than the new s, or the vertices in FP no less than the new s, are dead
after the next change in s. Symmetrically, if s changes because BA is empty, then either
all the vertices in BP no less than the new s, or all the vertices in BP no greater than
the new s, are dead after the next change in s. To minimize the worst case, we always
select s to be the median of the set of choices. This takes time linear in the number of
choices [Blum et al. 1973; Dor and Zwick 1999; Schönhage et al. 1976].

THEOREM 4.5. If each new s is selected to be the median of the set of choices, soft-
threshold search takes O(m3/2) time over m arc additions.

PROOF. Consider a soft-threshold search. For each increase in s, we charge an
amount equal to the number of vertices in FP when the change occurs; for each de-
crease in s we charge an amount equal to the number of vertices in BP when the
change occurs. The charge covers the time spent in the code block associated with the
change, including the time to find the new s (the median) and the time to make vertices
passive or dead, all of which is linear in the charge. The charge also covers any time
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spent later to make passive any vertices that became active as a result of the change;
this time is O(1) for each such vertex. The remainder of the search time is O(1) for
initialization plus O(1) per arc traversal. We claim that the total charge is O(1) per arc
traversal. The theorem follows from the claim and Theorem 3.3.

The number of vertices in F ∪ B is at most the number of arc traversals. We divide
the total charge among these vertices, at most two units per vertex. The claim follows.

Consider a change in s other than the last. Suppose this is an increase. Let k be the
number of vertices in FP when this change occurs; k is also the charge for the change.
Since s is selected to be the median of FP, at least 
k/2� vertices in FP are no greater
than s, and at least 
k/2� vertices in FP are no less than s. If the next change in s is an
increase, all the vertices in FP no greater than s must be dead by the time of the next
change. If the next change in s is a decrease, all the vertices in FP no less than s will
be made dead by the next change, including s if it is not dead already. In either case,
we associate the charge of k with the at least 
k/2� vertices that become dead after the
change in s but before or during the next change in s.

A symmetric argument applies if s decreases. The charge for the last change in s we
associate with the remaining live vertices, at most one unit per vertex.

Theorem 4.5 holds (with a bigger constant factor) if each new s is an approximate
median of the set of choices; that is, if s is larger than εk and smaller than εk of the k
choices, for some fixed ε > 0. An alternative randomized method is to select each new
s uniformly at random from among the choices.

THEOREM 4.6. If each new s is chosen uniformly at random from among the set of
choices, soft-threshold search takes O(m3/2) expected time over m arc additions.

PROOF. Each selection of s takes time linear in the number of choices. We charge
for the changes in s exactly as in the proof of Theorem 4.5. The search time is then
O(1) plus O(1) per arc traversal plus O(1) per unit of charge. We shall show that the
expected total charge for a search is at most linear in the number of vertices in F ∪ B,
which in turn is at most the number of arc traversals. The theorem follows from the
bound on expected total charge and Theorem 3.3.

The analysis of the expected total charge is much like the analysis [Knuth 1972] of
Hoare’s “quick select” algorithm [Hoare 1961]. We construct an appropriate recurrence
and prove a linear bound by induction. Consider the situation just before some search
step. Let E(k) be the maximum expected total future charge, given that at most k
distinct vertices are candidates for s during future changes of s. (A vertex can be
a candidate more than once, but we only count it once.) The maximum is over the
possible current states of all the data structures; the expectation is over future choices
of s. We prove by induction on k that E(k) ≤ 4k.

If s does not change in the future, or if the next change in s is the last one, then the
total future charge is at most k. Suppose the next change of s is not the last, and the
next choice of s is from among j candidates. Each of these j candidates is selected with
probability 1/j. If the new s is the ith smallest among the candidates, then at least
min{i, j − i + 1} of these candidates cannot be future candidates. The charge for this
change in s is j. The maximum expected future charge, including that for this change in
s, is at most j+

∑ j/2
i=1(2E(k− i)/j) if j is even, at most j+E(k−
 j/2�)/j+

∑� j/2

i=1 (2E(k− i)/j)

if j is odd. Using the induction hypothesis E(k′) ≤ 4k′ for k′ < k, we find that the
maximum expected future charge is at most j +

∑ j/2
i=1(8(k − i)/j) = 4k + j − ∑ j/2

i=1(8i/j) =
4k+ j−(4/j)( j/2)( j/2+1) = 4k−2 if j is even, at most j+4(k−
 j/2�)/j+

∑� j/2

i=1 (8(k−i)/j) =

4k + j − 4
 j/2�/j − ∑� j/2

i=1 (8i/j) = 4k + j − (4/j)( j/2 + 1/2 + ( j/2 − 1/2)( j/2 + 1/2)) <

4k + j− (4/j)( j/2)2 = 4k if j is odd. By induction, E(k) ≤ 4k for all k.
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Over the entire search, there are at most |F ∪ B| candidates for s. It follows that
the expected total charge over the entire search is at most 4|F ∪ B|, which is at most
four times the number of arcs traversed during the search.

Soft-threshold search with either method of choosing s uses O(n+ m) space, as do all
the algorithms we have discussed so far. Katriel and Bodlaender [2006] give a set of
examples on which soft-threshold search takes �(m3/2) time no matter how s is chosen,
so the bounds in Theorems 4.5 and 4.6 are tight.

It is natural to ask whether there is a faster algorithm. To address this question, we
consider algorithms that maintain (at least) an explicit list of the vertices in topological
order and that do any needed reordering by moving one vertex at a time to a new
position in this list. All known algorithms do this or can be modified to do so with at
most a constant-factor increase in running time. We further restrict our attention to
local algorithms, those that update the order after an arc (v,w) with v > w is added
by reordering only affected vertices (defined in Section 2: those vertices between w
and v, inclusive). These vertices form an interval in the old order and must form an
interval in the new order; within the interval, any permutation is allowed as long as it
restores topological order. Our algorithms, as well as all previous ones except for those
of Shmueli [1983] and Bender et al. [2009], are local. The following theorem gives a
lower bound of �(n

√
m) on the worst-case number of vertices that must be moved by

any local algorithm. Thus, for sparse graphs (m/n = O(1)), soft-threshold search is as
fast as possible among local algorithms.

THEOREM 4.7. Any local algorithm must reorder �(n
√

m) vertices, and hence must
take �(n

√
m) time.

PROOF. Let p and k be arbitrary positive integers such that p ≤ k. We shall give an
example with n = p(k + 1) vertices and m = n − k − 1 + k(k + 1)/2 arcs that requires at
least pk(k + 1)/2 = nk/2 vertex movements. Since p ≤ k, k(k + 1)/2 ≤ m ≤ 3k(k + 1)/2,
so

√
m = �(k). The example is such that, after n − k − 1 initial arc additions, each

subsequent arc addition forces at least p vertices to be moved in the topological order,
assuming the algorithm is local. The total number of vertex movements is thus at least
pk(k+1)/2 = �(n

√
m). Given any target number of vertices n′ and target number of arcs

m′, we can choose p and k so that n = �(n′) and m = �(m′), which gives the theorem.
The construction is quite simple. Let the n vertices be numbered 1 through n in

their original topological order. Add n−k−1 arcs so that each interval of p consecutive
vertices ending in an integer multiple of p forms a path of the vertices in increasing
order (so that vertices 1 through p form a path from 1 to p, p + 1 through 2p form a
path from p+1 to 2p, and so on). Now there are k+1 paths, each containing p vertices.
Call these paths P1, P2, . . . , Pk+1, in increasing order by first (and last) vertex. Add an
arc from the last vertex of P2 (vertex 2p) to the first vertex of P1 (vertex 1). This forms
a path from p+ 1 through p+ 2, p+ 3, . . . to 2p, then through 1, 2, . . . to p. The affected
vertices are the vertices 1 through 2p, and the only way to rearrange them to restore
topological order is to move p + 1 through 2p before 1 through p, which takes at least
p individual vertex moves. The effect is to swap P1 and P2 in the topological order.
Now add an arc from the last vertex of P3 to the first vertex of P1. This forces P1 to
swap places with P3, again requiring at least p vertex moves. Continue adding one
arc at a time in this way, forcing P1 to swap places with P4, P5, . . . , Pk+1. After k arcs
additions of arcs from the last vertex of P2, P3, . . . , Pk+1 to the first vertex of P1, path
P1 has been forced all the way to the top end of the topological order. Now ignore P1
and repeat the construction with P2, forcing it to move past P3, P4, . . . , Pk+1 by adding
arcs (3p, p + 1), (4p, p + 1), . . . , ((k + 1)p, p + 1). Do the same with P3, P4, . . . , Pk. The
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Fig. 10. The �(nm1/2) vertex reordering construction for p = 3 and k = 3, yielding an example with n = 12
vertices and m = 14 arcs. (a) Insertion of arc (6, 1) moves 1, 2, 3 past 4, 5, 6. Insertion of (9, 1) moves 1, 2,
3 past 7, 8, 9. Insertion of (12, 1) moves 1, 2, 3 past 10, 11, 12. (b) Insertion of (9, 4) moves 4, 5, 6 past 7, 8,
9. Insertion of (12, 4) moves 4, 5, 6 past 10, 11, 12. (c) Insertion of (12, 7) moves 7, 8, 9 past 10, 11, 12. (d)
Final order.

total number of arcs added that force vertex moves is k(k + 1)/2. Each of these added
arcs forces at least k vertex moves. Figure 10 gives an example of the construction.

The �(n
√

m) bound on vertex reorderings is tight. An algorithm that achieves this
bound is a two-way search that does not alternate forward and backward arc traversals
but instead does forward arc traversals until visiting an unvisited vertex less than
v, then does backward arc traversals until visiting an unvisited vertex greater than
w, and repeats. Each forward traversal is along an arc (u, x) with u minimum; each
backward traversal is along an arc (y, z) with z maximum. Searching continues until a
cycle is detected or there is no compatible pair of untraversed arcs. If the search stops
without detecting a cycle, the algorithm reorders the vertices in the same way as in
two-way compatible search. One can prove that this method reorders O(n

√
m) vertices

over m arc additions by counting related vertex pairs (as defined in the next section:
two vertices are related if one path contains both). Unfortunately, we do not know an
implementation of this algorithm with an overall time bound approaching the bound
on vertex reorderings.

For algorithms that reorder one vertex at a time but are allowed to move unaffected
vertices, the only lower bound known is the much weaker one of Ramalingam and Reps
[1994]. They showed that n − 1 arc additions can force any algorithm, local or not, to
do �(n log n) vertex moves.

5. TOPOLOGICAL SEARCH

Soft-threshold search is efficient on sparse graphs but becomes less and less efficient
as the graph becomes denser; indeed, if m = �(n2) the time bound is O(n3), the same as
that of one-way limited search (Section 2). In this section, we give an alternative algo-
rithm that is efficient for dense graphs. The algorithm uses two-way search, but differs
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Fig. 11. Implementation of topological search.

in three ways from the methods discussed in Sections 3 and 4: it balances vertices vis-
ited instead of arcs traversed (as in the method sketched at the end of Section 4); it
searches the topological order instead of the graph; and it uses a different reordering
method, which has the side benefit of making it a topological sorting algorithm. We
call the algorithm topological search.

We represent the topological order by an explicit mapping between the vertices and
the integers from 1 to n. We denote by position(v) the number of vertex v and by
vertex(i) the vertex with number i. We implement vertex as an array. The initial num-
bering is arbitrary; it is topological since there are no arcs initially. If v and w are
vertices, we test v < w by comparing position(v) to position(w). We represent the graph
by an adjacency matrix A : A(v,w) = 1 if (v,w) is an arc, A(v,w) = 0 if not. Testing
whether (v,w) is an arc takes O(1) time, as does adding an arc. Direct representation
of A uses O(n2) bits of space; representation of A by a hash table reduces the space to
O(n + m) but makes the algorithm randomized.

To simplify the running-time analysis and the extension to strong component main-
tenance (Section 6), we test for cycles after the search. Thus, the algorithm consists of
three parts: the search, the cycle test, and the vertex reordering. Let (v,w) be a new
arc with v > w. The search examines every affected vertex (those between w and v
in the order, inclusive). It builds a queue F of vertices reachable from w by searching
forward from w, using a current position i, initially position(w). Concurrently, it builds
a queue B of vertices from which v is reachable by searching backward from v, using a
current position j, initially position(v). It alternates between adding a vertex to F and
adding a vertex to B until the forward and backward searches meet. When adding a
vertex z to F or B, the method sets vertex(position(z)) = null.

In giving the details of this method, we use the following notation for queue oper-
ations: [ ] denotes an empty queue; inject(x, Q) adds element x to the back of queue
Q; pop(Q) deletes the front element x from queue Q and returns x; if Q is empty,
pop(Q) leaves Q empty and returns null. Do the search by calling TOPOLOGICAL-
SEARCH(v,w), where procedure TOPOLOGICAL-SEARCH is defined in Figure 11.

Once the search finishes, test for a cycle by checking whether there is an arc (u, z)
with u in F and z in B. If there is no such arc, reorder the vertices as follows. Let F and
B be the queues at the end of the search, and let k be the common value of i and j at
the end of the search. Then vertex(k) = null. If the search stopped after incrementing
i, then vertex(k) was added to B, and F and B contain the same number of vertices.
Otherwise, the search stopped after decrementing j, vertex(k) was added to F, and F
contains one more vertex than B. In either case, the number of positions g ≥ k such

ACM Transactions on Algorithms, Vol. 8, No. 1, Article 3, Publication date: January 2012.



Incremental Cycle Detection, Topological Ordering, and Strong Component Maintenance 3:19

Fig. 12. Implementation of reordering.

that vertex(g) = null is |F|, and the number of positions g < k such that vertex(g) = null
is |B|. Reinsert the vertices in F ∪ B into the vertex array, moving additional vertices
as necessary, by calling REORDER, using as the initial values of F, B, i, j their values
at the end of the search, where procedure REORDER is defined in Figure 12.

The reordering process consists of two almost-symmetric while loops. The first loop
reinserts the vertices in F into positions k and higher. Variable i is the current position.
If vertex(i) is a vertex q with an arc from a vertex currently in F, vertex q is added to
the back of F and vertex(i) becomes null: vertex q must be moved to a higher position.
If vertex(i) becomes null, or if vertex(i) was already null, the front vertex in F is deleted
from F and becomes vertex(i). The second loop reinserts the vertices in B into positions
k−1 and lower in symmetric fashion. The only difference between the loops is that the
forward loop increments i last, whereas the backward loop decrements j first, to avoid
examining vertex(k). The forward and backward loops are completely independent and
can be executed in parallel. (This is not true of the forward and backward searches.)
Figure 13 gives an example of topological search and reordering.

THEOREM 5.1. Topological search is correct.

PROOF. Let (v,w) be a new arc such that v > w. The search maintains the invariant
that every vertex in F is reachable from w and v is reachable from every vertex in
B. Thus, if there is an arc (u, z) with u in F and z in B, there is a cycle. Suppose the
addition of (v,w) creates a cycle. The cycle consists of (v,w) and a path P from w to
v of vertices in increasing order. Let u be the largest vertex on P that is in F at the
end of the search. Since u �= v, there is an arc (u, z) on P. Vertex z must be in B, or the
search would not have stopped. We conclude that the algorithm reports a cycle if and
only if the addition of (v,w) creates one.

Suppose the addition of (v,w) does not create a cycle. When the search stops, the
number of positions g ≥ i such that vertex(g) = null is |F|. The forward reordering
loop maintains this invariant as it updates F. It also maintains the invariant that
once position i is processed, every position from k to i, inclusive, is nonnull. Thus, if
i = n + 1, F must be empty, and the loop terminates. Symmetrically, the backward
reordering loop terminates before j can become 0. Thus all vertices in F ∪ B at the end
of the search are successfully reordered; some other vertices may also be reordered.
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Fig. 13. Topological search and reordering of the graph in Figure 2. (a) Initially positions 3 and 11, of w

and v, respectively, become empty, F = [w], B = [v]. The search adds c to F, g to B, f to F, and stops with
i = j = 7. (b) Forward reordering begins from position 7. Vertex w drops into position 7, c drops into position
8. Vertex h in position 9 has an arc from f , still in F: h is added to F, f drops into position 9. Vertex i in
position 10 has no arc from any vertex still in F. Vertex h drops into position 11. (c) Backward reordering
begins from position 6. Vertex e has an arc to g; e is added to B and replaced by v. Vertices g and e drop into
positions 4 and 3, respectively. (d) Final order. Forward and backward reordering are independent and can
be done in either order or concurrently.

Let F and B be the sets of vertices added to F and to B, respectively, during the search
and reordering. Vertices in F move to higher positions, vertices in B move to lower
positions, and no other vertices move.

All vertices in F are reachable from w, and v is reachable from all vertices in B. We
show by case analysis that after the reordering every arc (x, y) has x < y. There are
five cases, of which two pairs are symmetric. Suppose x and y are both in F ∪ B. Since
there is no cycle, it cannot be the case that x is in F and y is in B. The reordering
moves all vertices in F after all vertices in B without changing the order of vertices in
F and without changing the order of vertices in B. It follows that x < y after the re-
ordering. This includes the case (x, y) = (v,w), since w is in F and v is in B. Suppose y
is in F and x is not in F∪ B. The reordering does not move x and moves y higher in the
order, so x < y after the reordering. The case of x in B and y not in F ∪ B is symmetric.
Suppose x is in F and y is not in F ∪ B. Since x < y before the reordering, the first

ACM Transactions on Algorithms, Vol. 8, No. 1, Article 3, Publication date: January 2012.



Incremental Cycle Detection, Topological Ordering, and Strong Component Maintenance 3:21

loop of the reordering must reinsert x before it reaches the position of y; otherwise, y
would be in F. Thus, x < y after the reordering. The case y in B and x not in F ∪ B
is symmetric.

To bound the running time of topological search, we extend the concept of related-
ness to vertex pairs. We say two vertices are related if they are on a common path.
Relatedness is symmetric; order on the path does not matter.

LEMMA 5.2. Over m arc additions, topological search spends O(n2) time testing for
cycles.

PROOF. Suppose addition of an arc (v,w) triggers a search. Let F and B be the
values of the corresponding variables at the end of the search. The test for cycles takes
O(|F||B|) time. If this is the last arc addition, the test takes O(n2) time. Each earlier
addition does not create a cycle; for such an addition, each pair x in F and y in B is
related after the addition but not before: before the reordering x < y, so if x and y were
related there would be a path from x to y, and the addition of (v,w) would create a cycle,
consisting of a path from w to x, the path from x to y, a path from y to v, and arc (v,w).
Since there are at most

(n
2

)
related vertex pairs, the time for all cycle tests other than

the last is O(n2).

For each move of a vertex during reordering, we define the distance of the move to
be the absolute value of the difference between the positions of the vertex in the old
and new orders.

LEMMA 5.3. Over all arc additions, except the last one if it creates a cycle, the time
spent by topological search doing search and reordering is at most a constant times the
sum of the distances of all the vertex moves.

PROOF. Consider an arc addition that triggers a search and reordering. Consider a
vertex q that is moved to a higher position; that is, it is added to F during either the
search or the reordering and eventually placed in a new position during the reordering.
Let i1 be its position before the reordering and i2 its position after the reordering.
When q is added to F, i = i1; when q is removed from F, i = i2. For each value of i
greater than i1 and no greater than i2, there may be a test for the existence of an arc
(q, vertex(i)): such a test can occur during forward search or forward reordering but not
both. The number of such tests is thus at most i2 − i1, which is the distance q moves.
A symmetric argument applies to a vertex moved to a lower position. Every test for an
arc is covered by one of these two cases. Thus, the number of arc tests is at most the
sum of the distances of vertex moves. The total time spent in search and reordering
is O(1) per increment of i, per decrement of j, and per arc test. For each increment of
i or decrement of j, there is either an arc test or an insertion of a vertex into its final
position. The number of such insertions is at most one per vertex moved. The lemma
follows.

It remains to analyze the sum of the distances of the vertex moves. To simplify the
analysis, we decompose the moves into pairwise swaps of vertices. Consider sorting
a permutation of 1 through n by doing a sequence of pairwise swaps of out-of-order
elements. The distance of a swap is twice the absolute value of the difference between
the positions of the swapped elements; the factor of two accounts for the two elements
that move. The sequence of swaps is proper if, once a pair is swapped, no later swap
reverses its order.
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Consider the behavior of topological search over a sequence of arc additions, exclud-
ing the last one if it creates a cycle. Identify the vertices with their final positions.
Then, the topological order is a permutation, and the final permutation is sorted.

LEMMA 5.4. There is a proper sequence of vertex swaps whose total distance equals
the sum of the distances of all the reordering moves.

PROOF. Consider an arc addition that triggers a search and reordering. As in the
proof of Theorem 5.1, let F and B be the sets of vertices added to F and to B, respec-
tively, during the search and reordering. Consider the positions of the vertices in F∪ B
before and after the reordering. After the reordering, these positions from lowest to
highest are occupied by the vertices in B in their original order, followed by the vertices
in F in their original order. We describe a sequence of swaps that moves the vertices in
F ∪ B from their positions before the reordering to their positions after the reordering.
Given the outcome of the swaps so far, the next swap is of any two vertices x in F and
y in B such that x is in a smaller position than y and no vertex in F ∪ B is in a position
between that of x and that of y. The swap of x and y moves x higher, moves y lower,
and preserves the order of the vertices in F as well as the order of the vertices in B. If
no swap is possible, all vertices in F must follow all vertices in B, and since swaps pre-
serve the order within F and within B the vertices are now in their positions after the
reordering. Only a finite number of swaps can occur, since each vertex can only move a
finite distance (higher for a vertex in F, lower for a vertex in B). The total distance of
the moves of the vertices in F is exactly half the distance of the swaps, as is the total
distance of the moves of the vertices in B. Any particular pair of vertices is swapped
at most once. Repeat this construction for each arc addition. If an arc addition causes
a swap of x and y, with x moving higher and y moving lower, then the arc addition
creates a path from y to x, and no later arc addition can cause a swap of x and y. Thus,
the swap sequence is proper.

The following lemma was proved by Ajwani et al. [2006] as part of the analysis of
their O(n11/4)-time algorithm. Their proof uses a linear program. We give a combina-
torial argument.

LEMMA 5.5 [AJWANI ET AL. 2006]. Given an initial permutation of 1 through n,
any proper sequence of swaps has total distance O(n5/2).

PROOF. If � is a permutation of 1 to n, we denote by �(i) the ith element of �. We de-
fine the potential of � to be

∑
i< j(�(i)−�( j)). The potential is always between −n3 and

n3. We compute the change in potential caused by a swap in a proper swap sequence.
Let � be the permutation before the swap, and let i < j be the positions in � of the
pair of elements (�(i) and �( j)) that are swapped. The distance d of the swap is 2( j− i).
Since the swap sequence is proper, �(i) > �( j). Swapping �(i) and �( j) reduces the
contribution to the potential of the pair i, j by 2(�(i)−�( j)). The swap also changes the
contributions to the potential of pairs other than i, j, specifically those pairs exactly one
of whose elements is i or j. We consider three cases for the other element of the pair, say
k. If k < i, the swap increases the contribution of k, i by �(i) − �( j) and decreases the
contribution of k, j by �(i) − �( j), for a net change of zero. Similarly, if j < k, the swap
decreases the contribution of i, k by �(i) −�( j) and increases the contribution of j, k by
�(i) − �( j), for a net change of zero. More interesting is what happens if i < k < j. In
this case the swap decreases the contribution of both i, k and k, j by �(i) − �( j). There
are j− i − 1 such values of k. Summing over all pairs, we find that the swap decreases
the potential of the permutation by 2(�(i) − �( j))(1 + j− i − 1) = d(�(i) − �( j)).
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Call a swap of �(i) and �( j) small if �(i) − �( j) <
√

n and big otherwise. Because
the swap sequence is proper, a given pair can be swapped at most once. Thus there are
O(n3/2) small swaps. Each has distance at most 2(n − 1), so the sum of the distances
of all small swaps is O(n5/2). A big swap of distance d reduces the potential by at least
d
√

n. Since the sum of the potential decreases over all swaps is O(n3), the sum of the
distances of all big swaps is O(n5/2).

The proof of Lemma 5.5 does not require that the swap sequence be proper; it suf-
fices that every swap is of an out-of-order pair and no pair of elements is swapped more
than once. The lemma may even be true if all swaps are of out-of-order pairs with some
pairs swapped repeatedly, but our proof fails in this case, because our bound on the dis-
tance of the small swaps requires that there be O(n3/2) of them.

THEOREM 5.6. Over m arc additions, topological search spends O(n5/2) time.

PROOF. Topological search spends O(n2) time on the last arc addition. By
Lemmas 5.2–5.5, it spends O(n5/2) on all the rest.

The bound of Theorem 5.6 may be far from tight. In the remainder of this section,
we discuss lower bounds on the running time of topological search, and we speculate
on improving the upper bound.

Katriel [2004] showed that any topological sorting algorithm that is local (as de-
fined in Section 2: the algorithm reorders only affected vertices) must do �(n2) vertex
renumberings on a sequence of arc additions that form a path. This bound is �(n)
amortized per arc on a graph of O(n) arcs. She also proved that the topological sorting
algorithm of Pearce and Kelly [2006] does O(n2) vertex renumberings. Since topolog-
ical search is a local topological sorting algorithm, her lower bound applies to this
algorithm. Her lower bound on vertex reorderings is tight for topological search, since
a proper sequence of swaps contains at most

(n
2

)
swaps, and each pair of reorderings

corresponds to at least one swap.
To get a bigger lower bound, we must bound the total distance of vertex moves, not

their number. Ajwani [2008] gave a result for a related problem that implies the follow-
ing: On a sequence of O(n log n) arc additions, topological search can take �(n2 log n)
time. We proved a slightly stronger result independently in a preliminary version of
this article: On a sequence of n − 1 arc additions that form a path, topological search
can take �(n2 log n) time. Our proof uses the same construction as Ajwani’s proof.

We do not know if Ajwani’s bound is tight for graphs with O(n) arcs, but it is not
tight for denser graphs. There is an interesting connection between the running time
of topological search and the notorious k-levels problem of computational geometry.
Uri Zwick (private communication, 2009) pointed this out to us. The k-levels problem
is the following: Consider the intersections of n lines in the plane in general position:
each intersection is of only two lines, and the intersections have distinct x-coordinates.
An intersection is a k-intersection if there are exactly k lines below it (and n−k−2 lines
above it). What is the maximum number of k-intersections as a function of n and k?
For our purposes it suffices to consider n even and k = n/2 − 1. We call an intersection
with n/2 − 1 lines below it a halving intersection. The current best upper and lower
bounds on the maximum number of halving intersections are O(n4/3) [Dey 1998] and
�(n2

√
2 lg n/

√
lg n) [Nivasch 2008]; see also Tóth [2001].

The relationship between the k-levels problem and our problem does not require
that the lines be straight; it only requires that each pair intersect only once. Thus
instead of a set of lines we consider a set of pseudolines, arbitrary continuous functions
from the real numbers to the real numbers, each pair of which intersect at most once.
Such a set is in general position if no point is common to three or more pseudolines, no
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two intersections of pseudolines have the same x-coordinate, and each intersection is
a crossing intersection: if pseudolines P and Q intersect and P is above Q to the left of
the intersection, then Q is above P to the right of the intersection. The best bounds on
the number of halving intersections of 2n pseudolines in general position are O(n4/3)
([Tamaki and Tokuyama 2003]; see also Sharir and Smorodinsky [2003]) (the same as
for lines) and �(n2

√
2 lg n) [Zwick 1986]. The latter gives a lower bound of �(n22

√
2 lg n)

on the worst-case running time of topological search, as we now show.

THEOREM 5.7. Let n be even. On a graph of 3n/2 vertices, topological search can
spend �(n) time per arc addition for at least H(n) arc additions, where H(n) is the
maximum number of halving intersections of n pseudolines in the plane in general
position.

PROOF. Given a set of n pseudolines with H(n) halving intersections, we construct a
sequence of H(n) arc additions on a graph of 3n/2 vertices on which topological search
spends �(n) time on each arc addition. Given such a set of pseudolines, choose a
value x0 of the x-coordinate sufficiently small that all the halving intersections have x-
coordinates larger than x0. Number the pseudolines from 1 to n from highest to lowest
y-coordinate at x0, so that the pseudoline with the highest y-coordinate gets number
1 and the one with the lowest gets number n. Construct a graph with 3n/2 vertices
and an initial (arbitrary) topological order. Number the first n/2 vertices in order from
n down to n/2 + 1, and number the last n/2 vertices in order from n/2 down to 1, so
that the first vertex gets number n, the (n/2)th gets number n/2 + 1, the middle n/2 get
no number, the (n + 1)st gets number n/2, and the last gets number 1. These numbers
are permanent and are a function only of the initial order. Identify vertices by their
number. Process the halving intersections in order by x-coordinate. If the kth halving
intersection is of pseudolines i and j with i < j, add an arc (i, j) to the graph. To the left
of the intersection, pseudoline i is above pseudoline j; to the right of the intersection,
pseudoline j is above pseudoline i. Figure 14 illustrates this construction.

Since each arc (i, j) has i < j, the graph remains acyclic. Since two pseudolines have
only one intersection, a given arc is added only once. Consider running topological
search on this set of arc additions. We claim that each arc addition moves exactly one
vertex from the last third of the topological order to the first third and vice-versa; the
vertices in the middle third are never reordered. Each such arc addition takes �(n)
time, giving the theorem.

To verify the claim, we prove the following invariant on the number of arc additions:
the set of vertices in the first or last third, respectively, of the topological order have the
same numbers as the bottom or top half of the pseudolines, respectively. In particular,
a halving intersection of two pseudolines i, j with i < j corresponds to a swap of vertices
i in the top third and j in the bottom third, giving the claim.

Intersections that are not halving intersections preserve the invariant. Suppose
the invariant is true just to the left of a halving intersection of pseudolines i and j
with i < j. Just to the left of the intersection, pseudolines i and j are the n/2 and
n/2 + 1 highest pseudolines, respectively. By the induction hypothesis, just before the
addition of (i, j) vertex i is in the last third of the topological order and vertex j is
in the first third. Suppose that just before the addition of (i, j) there is an arc ( j, k)
with k in the first third. Then j < k, but pseudoline k is in the bottom half and
hence must be below pseudoline j. This is impossible, since the existence of the arc
( j, k) implies that pseudoline k crossed above pseudoline j to the left of the intersec-
tion of i and j. Thus there can be no such arc ( j, k). Symmetrically, there can be
no arc (k, i) with k in the last third. It follows that the topological search triggered
by the addition of (i, j) will compute a set F all of whose vertices except j are in the
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Fig. 14. (a) A set of n = 8 pseudolines with H(n) = 7 halving intersections. Although the pseudolines are
straight in this example, in general they need not be. (b) The corresponding sequence of arc additions on a
graph of 3n/2 = 12 vertices on which topological search takes �(nH(n)) time. The arc additions correspond
to the halving intersections processed in increasing order by x-coordinate; only the first four arc additions
are shown.

last third and a set B all of whose vertices except i are in the first third. The subse-
quent reordering will move i to the first third, move j to the last third, and possibly
reorder other vertices within the first and last thirds. Thus, the invariant remains
true after the addition of (i, j). By induction, the invariant holds, giving the claim,
and the theorem.

COROLLARY 5.8. There is a constant c > 0 such that, for all n, there is a sequence of
arc additions on which topological search takes cn22

√
2 lg n time.

Unfortunately, the reduction in the proof of Theorem 5.7 goes only one way. We have
been unable to construct a reduction in the other direction, nor are we able to derive a
better upper bound for topological search via the methods used to derive upper bounds
on the number of halving intersections.
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6. STRONG COMPONENTS

All the known topological ordering algorithms can be extended to the maintenance of
strong components with at most a constant-factor increase in running time. Pearce
[2005] and Pearce and Kelly [2003] sketch how to extend their algorithm and that
of Marchetti-Spaccamela et al. [1996] to strong component maintenance. Here we
describe how to extend soft-threshold search and topological search. The techniques
differ slightly for the two algorithms, since one algorithm is designed for the sparse
case and the other for the dense case.

We formulate the problem as follows: Maintain the partition of the vertices defined
by the strong components. For each strong component, maintain a canonical vertex.
The canonical vertex represents the component; the algorithm is free to choose any
vertex in the component to be the canonical vertex. Support the query find(v), which
returns the canonical vertex of the component containing vertex v. Maintain a list of
the canonical vertices in a topological order of the corresponding components.

To represent the vertex partition, we use a disjoint set data structure [Tarjan 1975;
Tarjan and van Leeuwen 1984]. This structure begins with the partition consisting of
singletons and supports find queries and the operation unite(x, y), which, given canon-
ical vertices x and y, forms the union of the sets containing x and y and makes x the
canonical vertex of the new set. If the sets are represented by trees, the finds are done
using path compression, and the unites are done using union by rank, the amortized
time per find is O(1) if the total time charged for the unites is O(n log n) [Tarjan and van
Leeuwen 1984]. (In fact, the time charged to the unites can be made much smaller, but
this weak bound suffices for us.) Since searching and reordering take much more than
�(n log n) time, we can treat the set operations as taking O(1) amortized time each.

To maintain strong components using soft-threshold search, we represent the graph
by storing, for each canonical vertex x, a list of arcs out of its component, namely those
arcs (y, z) with find(y) = x, and a list of arcs into its component, namely those arcs
(y, z) with f ind(z) = x. This represents the graph of strong components, except that
there may be multiple arcs between the same pair of strong components, and there
may be loops, arcs whose ends are in the same component. When doing a search, we
delete loops instead of traversing them. When the addition of an arc (v,w) combines
several components into one, we form the incoming list and the outgoing list of the
new component by combining the incoming lists and outgoing lists, respectively, of the
old components. This takes O(1) time per old component, if the incoming and outgoing
lists are circular. Deletion of a loop takes O(1) time if the arc lists are doubly linked.

Henceforth, we identify each strong component with its canonical vertex, and we ab-
breviate find(x) by f (x). If a new arc (v,w) has f (v) > f (w), do a soft-threshold search
forward from f (w) and backward from f (v). During the search, do not stop when a for-
ward arc traversal reaches a component in B or when a backward arc traversal reaches
a component in F. Instead, allow components to be in both F and B. Once the search
stops, form the new component, if any. Then, reorder the canonical vertices and delete
from the order those that are no longer canonical. Here are the details. When a new arc
(v,w) has f (v) > f (w), do the search by calling SOFT-THRESHOLD-SEARCH( f (v), f (w)),
where SOFT-THRESHOLD-SEARCH is defined as in Section 4 but with the macro
SEARCH-STEP redefined as in Figure 15. The new version of SEARCH-STEP is just like
the old one except that it visits canonical vertices instead of all vertices, it uses circu-
lar instead of linear arc lists, and it does not do cycle detection: SOFT-THRESHOLD-
SEARCH terminates only when FA or BA is empty, and it always returns null.

Once the search finishes, let t = min({ f (v)}∪{x ∈ F|out(x) �= null}). Compute the sets
F< and B>. Find the new component, if any, by running a static linear-time strong com-
ponents algorithm on the subgraph of the graph of strong components whose vertex set
is X = F< ∪ {t} ∪ B> and whose arc set is Y = {( f (u), f (x))|(u, x) is an arc with f (u) in
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Fig. 15. Redefinition of SEARCH-STEP to find strong components using soft-threshold search.

F< and f (u) �= f (x)} ∪ {( f (y), f (z))|(y, z) is an arc with f (z) ∈ B> and f (y) �= f (z)}. If a
new component is found, combine the old components it contains into a new component
with canonical vertex v.

Reorder the list of vertices in topological order by moving the vertices in X − {t}
as in Section 3. Then delete from the list all vertices that are no longer canonical,
namely the canonical vertices other than f (v) of the old components contained in the
new component.

Remark. Since the addition of (v,w) can only form a single new component, running
a strong components algorithm to find this component is overkill. A simpler alter-
native is to unmark all vertices in X and then run a forward depth-first search from
f (w), traversing arcs in Y . During the search, mark vertices as follows: Mark f (v) if
it is reached. When retreating along an arc ( f (u), f (x)), mark f (u) if f (x) is marked.
At the end of the search, the marked vertices are the canonical vertices contained in
the new component.

THEOREM 6.1. Maintaining strong components via soft-threshold search is correct.

PROOF. By induction on the number of arc additions. Consider the graph of strong
components just before an arc (v,w) is added. This addition forms a new component
if and only if f (v) > f (w) and there is a path from f (w) to f (v). Furthermore, the
old components contained in the new component are exactly the components on paths
from f (w) to f (v). The components on such a path are in increasing order, so the path
consists of a sequence of one or more components in F<, possibly t, and a sequence
of one or more components in B>. Each arc on such a path is in Y . It follows that
the algorithm correctly forms the new component. If there is no new component, the
reordering is exactly the same as in Section 3, so it correctly restores topological order.
Suppose there is a new component. Then, certain old components are combined into
one, and their canonical vertices other than f (v) are deleted from the list of canonical
vertices in topological order. We must show that the new order is topological. The argu-
ment in the proof of Theorem 3.1 applies, except that there are some new possibilities.
Consider an arc (x, y) other than (v,w). One of the cases in the proof of Theorem 3.1
applies unless at least one of x and y is in the new component. If both are in the new
component, then (x, y) becomes a loop. Suppose just one, say y, is in the new compo-
nent. Then f (x) cannot be forward, or it would be in the new component. Either f (x)
is in B> or f (x) is not in X ; in either case, f (x) precedes f (v) after the reordering. The
argument is symmetric if x but not y is in the new component.
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To bound the running time of the strong components algorithm, we need to extend
Lemma 3.2 and Theorem 3.3.

LEMMA 6.2. Suppose the addition of (v,w) triggers a search. Let (u, x) and (y, z),
respectively, be arcs traversed forward and backward during the search, not necessarily
during the same search step, such that f (u) < f (z). Then, either (u, x) and (y, z) are
unrelated before the addition of (v,w) but related afterward, or they are related before
the addition and the addition makes them into loops.

PROOF. After (v,w) is added, there is a path containing both of them, so they are re-
lated after the addition. If they were related before the addition, then there must
be a path containing (u, x) followed by (y, z). After the addition, there is a path
from z to u, so u, x, y, and z are in the new component, and both (u, x) and (y, z)
become loops.

THEOREM 6.3. Over m arc additions, the strong components algorithm does O(m3/2)
arc traversals.

PROOF. Divide the arc traversals during a search into those of arcs that become
loops as a result of the arc addition that triggered the search, and those that do
not. Over all searches, there are at most 2m traversals of arcs that become loops:
each such arc can be traversed both forward and backward. By Lemma 6.2 and
the proof of Theorem 3.3, there are at most 4m3/2 traversals of arcs that do not
become loops.

THEOREM 6.4. Maintaining strong components via soft-threshold search takes
O(m3/2) time over m arc additions, worst-case if s is always a median or approximate
median of the set of choices, expected if s is always chosen uniformly at random.

PROOF. Consider the addition of an arc (v,w) such that f (v) > f (w). Each search
step either traverses two arcs or deletes one or two loops. An arc can only become a
loop once and be deleted once, so the extra time for such events is O(m) over all arc
additions. The arcs in Y were traversed by the search, so the time to form the new
component and to reorder the vertices is O(1) per arc traversal. The theorem follows
from Theorem 6.3 and the proofs of Theorems 4.5 and 4.6.

To maintain strong components via topological search, we represent the graph of
strong components by an adjacency matrix A with one row and one column per canon-
ical vertex. If x and y are canonical vertices, A(x, y) = 1 if x �= y and there is an arc
(q, r) with f (q) = x and f (r) = y; otherwise, A(x, y) = 0. We represent the topological
order of components by an explicit numbering of the canonical vertices using consec-
utive integers starting from one. We also store the inverse of the numbering. If x is
a canonical vertex, position(x) is its number; if i is a vertex number, vertex(i) is the
canonical vertex with number i. Note that the matrix A is indexed by vertex, not by
vertex number; the numbers change too often to allow indexing by number.

To maintain strong components via topological search, initialize all entries of
A to zero. Add a new arc (v,w) by setting A( f (v), f (w)) = 1. If f (v) > f (w),
search forward from f (w) and backward from f (v) by executing TOPOLOGICAL-
SEARCH( f (v), f (w)) where TOPOLOGICAL-SEARCH is defined as in Section 5. Let
k be the common value of i and j when the search stops. After the search, find
the vertex set of the new component, if any, by running a linear-time static strong
components algorithm on the graph whose vertex set is X = F ∪ B and whose arc
set is Y = {(x, y)|x and y are in F ∪ B and A(x, y) = 1}. Whether or not there is a new
component, reorder the old canonical vertices exactly as in Section 5. Finally, if there
is a new component, do the following: form its vertex set by combining the vertex sets
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of the old components contained in it. Let the canonical vertex of the new component
be vertex(k). Form a row and column of A representing the arcs out of and into the
new component by combining those of the old components contained in it. Delete
from the topological order all the vertices that are no longer canonical. Number the
remaining canonical vertices consecutively from 1.

Remark. As in soft-threshold search, using a static strong components algorithm to
find the new component is overkill; a better method is the one described in the remark
before Theorem 6.1: run a forward depth-first search from f (w), marking vertices when
they are found to be in the new component.

THEOREM 6.5. Maintaining strong components via topological search is correct.

PROOF. By induction on the number of arc additions. Consider the addition of an
arc (v,w). Let f and f ′ be the canonical vertex function just before and just after this
addition, respectively. The addition creates a new component if and only if f (v) > f (w)
and there is a path from f (w) to f (v). Suppose f (v) > f (w) and let F and B be the
values of the corresponding variables just after the search stops. Any path from f (w)
to f (v) consists of a sequence of one or more vertices in F followed by a sequence of one
or more vertices in B. Each arc on such a path is in Y . It follows that the algorithm cor-
rectly finds the new component. If there is no new component, the algorithm reorders
the vertices exactly as in Section 5 and thus restores topological order. Suppose there
is a new component. Let k be the common value of i and j when the search stops. The
reordering sets vertex(k) = f (w). This vertex is the canonical vertex of the new com-
ponent. Let (x, y) be an arc. The same argument as in the proof of Theorem 5.1 shows
that f ′(x) = f (x) < f (y) = f ′(y) after the reordering unless f (x) or f (y) or both are in
the new component. If both are in the new component, then (x, y) is a loop after the ad-
dition of (v,w). Suppose f (x) but not f (y) is in the new component. Then, f (x) ∈ F ∪ B.
If f (x) ∈ F, then position( f (y)) > k after the reordering but before the renumbering,
so f ′(x) < f ′(y) after the reordering and renumbering. If f (x) ∈ B, then f (y) /∈ B, since
otherwise f (y) is in the component. It follows that position( f (y)) > k before the re-
ordering, and also after the reordering but before the renumbering, so f ′(x) < f ′(y) af-
ter the reordering and renumbering. A symmetric argument applies if f (y) but not f (x)
is in the new component.

THEOREM 6.6. Maintaining strong components via topological search takes O(n5/2)
time over all arc additions.

PROOF. The time spent combining rows and columns of A and renumbering vertices
after deletion of noncanonical vertices is O(n) per deleted vertex, totaling O(n2) time
over all arc additions. The time spent to find the new component after a search is
O(|F| + |B|)2 = O(|F||B|) since |B| ≤ |F| ≤ |B| + 1, where F and B are the values of the
respective variables at the end of the search. If x is in F and y is in B, then either x and
y are unrelated before the arc addition that triggered the search but related after it
(and possibly in the same component), or they are related and in different components
before the arc addition but in the same component after it. A given pair of vertices can
become related at most once and can be combined into one component at most once.
There are

(n
2

)
vertex pairs. Combining these facts, we find that the total time spent to

find new components is O(n2).
To bound the rest of the computation time, we apply Theorem 5.6. To do this,

we modify the strong components algorithm so that it does not delete non-canonical
vertices from the topological order but leaves them in place. Such vertices have
no incident arcs and are never moved again. This only makes the search and
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reordering time longer, since the revised algorithm examines non-canonical vertices
during search and reordering, whereas the original algorithm does not. The proof of
Theorem 5.6 applies to the revised algorithm, giving a bound of O(n5/2) on the time for
search and reordering.

7. REMARKS

We are far from a complete understanding of the incremental topological ordering
problem. Indeed, we do not even have a tight bound on the running time of topological
search. Given the connection between this running time and the k-levels problem (see
Section 5), getting a tighter bound seems a challenging problem. As mentioned in the
introduction, Bender et al. [2009] have proposed a completely different algorithm with
a running time of �(n2 log n).

A more general problem is to find an algorithm that is efficient for any graph den-
sity. Our lower bound on the number of vertex reorderings is �(nm1/2) for any local
algorithm (see the end of Section 4); we conjecture that there is an algorithm with
a matching running time, to within a polylogarithmic factor. For sparse graphs, soft-
threshold search achieves this bound to within a constant factor. For dense graphs, the
algorithm of Bender, Fineman, and Gilbert achieves it to within a logarithmic factor.
For graphs of intermediate density, nothing interesting is known.

We have used total running time to measure efficiency. An alternative is to use an
incremental competitive model [Ramalingam and Reps 1991], in which the time spent
to handle an arc addition is compared to the minimum work that must be done by any
algorithm, given the same topological order and the same arc addition. The minimum
work that must be done is the minimum number of vertices that must be reordered,
which is the measure that Ramalingam and Reps used in their lower bound. (See the
end of Section 4.) But no existing algorithm handles an arc addition in time polynomial
in the minimum number of vertices that must be reordered. To obtain positive results,
researchers have compared the performance of their algorithms to the minimum sum
of degrees of reordered vertices [Alpern et al. 1990], or to a more-refined measure that
counts out-degrees of forward vertices and in-degrees of backward vertices [Pearce
and Kelly 2006]. For these models, appropriately balanced forms of ordered search
are competitive to within a logarithmic factor [Alpern et al. 1990; Pearce and Kelly
2006]. In such a model, semi-ordered search is competitive to within a constant factor.
We think, though, that these models are misleading: they ignore the possibility that
different algorithms may maintain different topological orders, they do not account
for the correlated effects of multiple arc additions, and good bounds have only been
obtained for models that overcharge the adversary.

Alpern et al. [1990] and Pearce and Kelly [2007] studied batched arc additions as
well as single ones. Pearce and Kelly give an algorithm that handles an addition of
a batch of arcs in O(m′) time, where m′ is the total number of arcs after the addition,
and such that the total time for all arc additions is O(nm). Thus, on each batch, the
algorithm has the same time bound as a static algorithm, and the overall time bound
is that of the incremental algorithm of Marchetti-Spaccamela et al. [1996].

This result is not surprising, because any incremental topological ordering algo-
rithm can be modified so that each batch of arc additions takes O(m′) time but the
overall running time increases by at most a constant factor. The idea is to run a
static algorithm concurrently with the incremental algorithm, each maintaining its
own topological order. Here are the details. The incremental algorithm maintains a
set of added arcs that have not yet been processed. Initially this set is empty. To
handle a new batch of arcs, add them to the graph and to the set of arcs to be pro-
cessed. Then start running a static algorithm; concurrently, resume the incremental
algorithm on the expanded set of new arcs. The incremental algorithm deletes an arc
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at a time from this set and does the appropriate processing. Allocate time in equal
amounts to the two algorithms. If the static algorithm stops before the incremental
algorithm processes all the arcs, suspend the incremental algorithm and use the topo-
logical order computed by the static algorithm as the current order. If the incremental
algorithm processes all the arcs, stop the static algorithm and use the topological order
computed by the incremental algorithm as the current order. This algorithm runs a
constant factor slower than the incremental algorithm and spends O(m′) time on each
batch of arcs.

For the special case of soft-threshold search, this method can be improved to main-
tain a single topological order, and to restart the incremental algorithm each time
the static algorithm completes first. The time bound remains the same. If the static
algorithm stops first, replace the topological order maintained by the incremental al-
gorithm by the new one computed by the static algorithm, and empty the set of new
arcs. These arcs do not need to be processed by the incremental algorithm. This works
because the running time analysis of soft-threshold search does not use the current
topological order, only the current graph, specifically the number of related arc pairs.
Whether something similar works for topological search is open. Much more interest-
ing would be an overall time bound based on the size and number of batches that is an
improvement for cases other than one batch of m arcs and m batches of single arcs.

Alpern et al. [1990] also allowed unrelated vertices to share a position in the order.
More precisely, their algorithm maintains a numbering of the vertices such that if
(v,w) is an arc, v has a lower number than w, but unrelated vertices may have the
same number. This idea is exploited by Bender, Fineman, and Gilbert in their new
algorithm.
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SCHÖNHAGE, A., PATERSON, M., AND PIPPENGER, N. 1976. Finding the median. J. Comput. Syst. Sci.
13, 2, 184–199.

ACM Transactions on Algorithms, Vol. 8, No. 1, Article 3, Publication date: January 2012.



Incremental Cycle Detection, Topological Ordering, and Strong Component Maintenance 3:33

SHARIR, M. 1981. A strong-connectivity algorithm and its applications in data flow analysis. Comput.
Math. App. 7, 1, 67–72.

SHARIR, M. AND SMORODINSKY, S. 2003. Extremal configurations and levels in pseudoline arrangements.
In Proceedings of the 8th International Workshop on Algorithms and Data Structures (WADS). 127–139.

SHMUELI, O. 1983. Dynamic cycle detection. Inf. Proc. Lett. 17, 4, 185–188.
SZPILRAJN, E. 1930. Sur l’extension de l’ordre partiel. Fund. Math. 16, 386–389.
TAMAKI, H. AND TOKUYAMA, T. 2003. A characterization of planar graphs by pseudo-line arrangements.

Algorithmica 35, 3, 269–285.
TARJAN, R. E. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 2, 146–160.
TARJAN, R. E. 1975. Efficiency of a good but not linear set union algorithm. J. ACM 22, 2, 215–225.
TARJAN, R. E. AND VAN LEEUWEN, J. 1984. Worst-case analysis of set union algorithms. J. ACM 31, 2,

245–281.
THORUP, M. 2004. Integer priority queues with decrease key in constant time and the single source shortest

paths problem. J. Comput. Syst. Sci. 69, 3, 330–353.
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