Parallel and Sequential Data Structures and Algorithms — Lecture 16 15-210 (Fall 2012)

Lecture 16 — Graph Contraction and Connectivity
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2012)

Lectured by Guy Blelloch — October 18, 2012

What was covered in this lecture:
- Continued randomize algorithms from last class: finished max2 and covered kthSmallest
- Introduction to graph contraction and connectivity.

1 Graph Contraction

Until recently, we have been talking mostly about techniques for solving problems on graphs that
were developed in the context of sequential algorithms. Some of them are easy to parallelize while
others are not. For example, we saw there is parallelism in BFS because each level can be explored in
parallel, assuming the number of levels is not too large. But there was no parallelism in DFS. There
was also no parallelism in the version of Dijkstra’s algorithm we discussed, which used priority first
search.! There was plenty of parallelism in the Bellman-Ford algorithm. We are now going to discuss
a technique called “graph contraction” that you can add to your toolbox for parallel algorithms. The
technique will use randomization.

Graph Connectivity. To motivate graph contraction consider the graph connectivity problem. Two
vertices are connected in an undirected graph if there is a path between them. A graph is connected
if every pair if vertices is connected. The graph connectivity problem is to partition an undirected
graph into its maximal connected subgraphs. By partition we mean that every vertex has to belong
to one of the subgraphs and by maximal we mean that no connected vertex can be added to any
partition—i.e. there are no edges between the partitions. For example for the following graph:

e

Lo |

f

graph connectivity will return the two subgraphs consisting of the vertices {a, b,c,d} and {e, f }.

How might we solve the graph connectivity problem? We could do it with a bunch of graph
searches. In particular we can start at any vertex and search all vertices reachable from it to create

TLecture notes by Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan.
!n reality, there is some parallelism in both DFS and Dijkstra when graphs are dense—in particular, although vertices
need to visited sequentially the edges can be processed in parallel. If we have time, we will get back to this when we cover
priority queues in more detail.
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the first component, then move onto the next vertex and if it has not already been searched search
from it to create the second component. We then repeat until all vertices have been checked. Either
BFS or DFS can be used for the individual searches. This is a perfectly sensible sequential algorithm.
However, it has two shortcomings from a parallelism perspective even if we use a parallel BFS. Firstly
each parallel BFS takes span proportional to the diameter of the component (the longest distance
between two vertices) and in general this could be as large as n. Secondly even if each component is
has a small diameter, we have to iterate over the components one by one.

We are therefore interested in an approach that can identify the components in parallel. Further-
more the span should be independent of the diameter, and ideally polylogarithmic in |V|. To do this
we will give up on the idea of graph search since it seems to be inherently limited by the diameter of
a graph. Instead we will borrow some ideas from our algorithm for the scan operation. In particular
we will resort to contraction—on each round of contraction we will shrink the size of the graph by a
constant fraction and then solve the connectivity problem on the contracted graph. Contracting a
graph, however, is a bit more complicated than just pairing up the odd and even positioned values as
we did in the algorithm for scan.

This approach is called graph contraction. It is a reasonably simple technique and can be applied
to a variety of problems, beyond just connectivity, including spanning trees and minimum spanning
trees. We assume the graph is undirected. Lets start by considering a function:

contract : graph — partition

which takes a undirected graph G = (V,E) and returns a partitioning of the vertices of V into
connected subgraphs, but not necessarily maximally connected subgraphs (i.e. there can still be
edges between the partitions). For example contract on the following graph:

Note that each of the three partitions is connected by edges within the partition. The contract
function would not return {{a, b, f},{c,d},{e}}, for example, since the subgraph {a, b, f } is not
connected by edges within the component.
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We will return to how to implement contract, but given that the partitions returned by
contract are not maximal (i.e. there are still edges between them), how might we use contract
to solve the graph connectivity problem. As we already suggested, we can apply it recursively. To do
this on each round we replace each partition with a single vertex and then relabel all the edges with
the new vertex name. This can be illustrated as follows:
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a d f a,b,c d e,f a,b,c d ef
c
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components contracted parallel edges
identified removed

After contracting, we are left with a triangle. Note that in the intermediate step, when we join a, b, c,
we create redundant edges to d (both b and ¢ had an original edge to d). We therefore replace these
with a single edge. However, depending on the particular use, in some algorithmes, it is convenient to
allow parallel (redundant) edges rather than going to the work of removing them. Also note that
some edge are within a partition. These become self loops, which we drop.

It should be clear that if the graph actually contracts on each round (not all vertices are singleton
partitions) then eventually every maximal connected component in the graph will shrink down to a
single vertex. This leads to the following high-level algorithm for connectivity:

while there are edges left:
contract the graph

update the edges to use remaining vertices and remove self loops

Continuing with our example, after the first contraction shown earlier we might make the following
two contractions in the next two rounds, at which point we have no more edges:

0/:\—'.—._'0

a,b,c d e,f a,b,c,d e,f a,b,cd.ef

Note that if the input is not connected we would be left with multiple vertices when the algorithm
finishes, one per component.

To make this algorithm more concrete we need some representation for the partitions. One way
to do this is to use one of the original vertices of each partition as a representative and then keep a
mapping from each vertex to this representative. Therefore the partition {{a, b, c}, {d}, {e, f }} could
be represented as ({a,d,e},{a—a,b—a,c—a,d —d,e—e,f — e}). With this representation
first consider the following more concrete algorithm that counts the number of maximal connected
components.
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1 fun numComponents((V,E), i)=

2 if |[E|=0 then |V|

3 else let

4 val (V/,P)=contract((V,E), i)

5 val E' ={(P[u],P[v]): (u,v) €E|P[u] #P[v]}
6 in

7 numComponents((V’,E’), i)

8 end

The i is just the round number—as we will see it will be useful in contract. As in the high-level
description, numComponents contracts the graph on each round. Each contraction on Line 4 returns
the contracted vertices V’ and a table P mapping every v € V to a v/ € V’. Line 5 then does two
things. Firstly it updates all edges so that the two endpoints are in V' by looking them up in P: this
is what (P[u], P[v]) is. Secondly it removes all self edges: this is what the filter P[u] # P[v] does.
Once the edges are updated, the algorithm recurses on the smaller graph. The termination condition
is when there are no edges. At this point each component has shrunk down to a singleton vertex and
we just count them with |V].

To make the code return the partitioning of the connected components is not much harder, as can
be seen by the following code:

fun components((V,E), i) =
if |[E|=0 then {v—v:veV}
else let
val (V/,P)= contract((V,E), i)
val E' = {(P[u],P[v]): (u,v) €E|P[u] #P[v]}
val P’ = components((V’,E’), i+1)
in
{v—P/[Plv]]:veV}
end
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This code returns the partitioning in the same format as the partitioning returned by contract.
The only difference of this code from numComponents is that on the way back up the recursion we
update the representatives for V based on the representatives from V' returned by the recursive call.
Consider our example graph. As before lets say the first contract returns

V' = {a,d,e}
P = {a—ab—ac—ad—de—ef—e}

Since the graph is connected the recursive call to components will map all vertices in V' to the same

[P

vertex. Lets say this vertex is “a” giving:
PP = {a—ad—a,e—a}

Now what Line 7 in the code does is for each vertex v € V, it looks for v in P to find its representative
v/ € V’, and then looks for v/ in P’ to find its representative in the connected component. This is
implemented as P’[P[v]]. For example vertex f finds e from P and then looks this up in P’ to find a.
The final result returned by components is:

{a—a,b—a,c—a,d—ae—a,f—a}
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The base case of the components algorithm is to label every vertex with itself.

This leaves us with the question of how to implement contract. There are a three kinds of
contraction we will consider:

Edge Contraction: Only pairs of vertices connected by an edge are contracted. One can think of the
edges as pulling the two vertices together into one and then disappearing.

Star Contraction: One vertex of each component is identified as the center of the star and all other
vertices are directly connected to it.

Tree Contraction: Generalizing star contraction, disjoint trees within the graph are identified and
tree contraction is performed on these trees.

Keep in mind that the goal here is to do the contraction in parallel. Furthermore we want to contract
the graph size (number of vertices) by a constant factor on each round. This way we will ensure the
algorithm will run with just O(logn) rounds (contractions).

1.1 Edge Contraction

Lets consider contracting edges. How would we find a set of disjoint edges to contract? By disjoint
we mean that the no two contraction edges can share a vertex. Here is an example of a set of disjoint
edges on which to contract:

The edges to contract are {{a, b}, {d, f }}. Note that the remaining two vertices, e and c, are left on
their own.

Finding such a set of edges to contract is the problem of finding a vertex matching, i.e. we are
trying to match every vertex with another vertex (monogamously). It turns out this can be done in
parallel relatively easily by having every edge pick a random priority in the range [0, 1] and then
choosing an edge if it has the highest priority on both the vertices it is incident on. Before we delve
in further, however, we note that there is a problem with edge contraction. Consider the following
kind of graph:

Definition 1.1 (Star). A star graph G = (V, E) is an undirected graph with a center vertex v € V, and
aset of edges E = {{v,u}:ueV\ {vi}.
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In words, a star graph is a graph made up of a single vertex v in the middle
v (called the center) and all the other vertices hanging off of it; these vertices are
connected only to the center. Notice that a star graph is in fact a tree. If rooted

at the center, it has depth 1, which is a super shallow tree.

If we're given a star graph, will edge contraction work well on this? How many edges can contract
on each round. It is not difficult to convince ourselves that on a star graph with n + 1 vertices—1
center and n “satellites”—any edge contraction algorithm will take Q(n) rounds. We therefore move
on.

1.2 Star Contraction

We now consider a more aggressive form of contraction that can be used to contract subgraphs which
are stars in a single round. The idea is to combine the star center with all its “satellites” all at once.
To apply this form of contraction on a general graph, we have to be able to answer the question: How
can we find disjoint stars? Again, disjoint means that each vertex belongs to at most one partition, i.e.
star. As an example, in the graph below (left), we can find 2 disjoint stars (right). The centers are
colored red and the neighbors are green.

Finding Stars. One simple idea that has been fruitful so far is the use of randomization. Let’s see
what we can do with coin flips. At a high level, we will use coin flips to first decide which vertices
will be star centers and which ones will be satellites and after that, we’ll decide how to pair up each
satellite with a center.

As usual, we'll start by flipping a coin for each vertex. If it comes up heads, that vertex is a star
center. And if it comes up tails, then it will be a potential satellite—it is only a potential satellite
because quite possibly, none of its neighbors flipped a head (it has no center to hook up to).

At this point, we have determined every vertex’s potential role, but we aren’t done: for each
satellite vertex, we still need to decide which center it will join. For our purposes, we're only
interested in ensuring that the stars are disjoint, so it doesn’t matter which center a satellite joins. We
will make each satellite choose any center in its set of neighbors arbitrarily.

Before describing the code the code, we need to say a couple words about the source of random-
ness. What we will assume is for each vertex we have a potentially infinite sequence of random coin
flips and that we can access the i" one with the function heads(v,i) : vertex x int — bool that
returns true if the it" flip on vertex v is heads and false otherwise. You can think of it as having
flipped all the coins ahead of time, stored a sequence of flips for each vertex, and now you are using
headsto access the i" one. Since most machines don’t have true sources of randomness, in practice
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this can be implemented with a pseudorandom number generator or even with a good hash function.
We are now ready for the code for star contraction:

1 % requires: an undirected graph G = (V, E) and round number i
2 % returns: V' = remaining vertices after contraction,
3 % P = mapping from V to V'
4 fun starContract(G =(V,E),i)=
5 let
6 % select edges that go from a tail to a head
7 val TH = {(u,v) € E | "heads(u,i) Aheads(v,i)}
8 % make mapping from tails to heads, removing duplicates
9 Val p= U(u,V)ETH {u — V}
10 % remove vertices that have been remapped
11 val V' =V \ domain(P)
12 % Map remaining vertices to themselves
13 val P'={u—u:ueV’'}uP
14 in (V/,P’) end

mall example. Consider the following graph, where the coin flips turned up as indicated in the figure.

c d c d
T T T T
H H
e e
a a
H T H T
b e b e
coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

The function heads(v,i) on round i gives a coin flip for each vertex, which are shown on the left.
Line 7 selects the edges that go from a tail to a head, which are shown in the middle as arrows and
correspond to the set TH = {(c,a), (c, b), (e, b)}. Notice that some potential satellites (vertices that
flipped tails) are adjacent to multiple centers (vertices that flipped heads). For example, vertex c is
adjacent to vertices a and b, both of which got heads. A vertex like this will have to choose which
center to join. This is sometimes called “hooking” and is decided on Line 9, which removes duplicates
for a tail using union, giving P = {c — b, e — b}. In this example, c is hooked up with b, leaving a a
center without any satellite.

Line 11 takes the vertices V and removes from them all the vertices in the domain of P, i.e. those
that have been remapped. In our example domain(P) = {c, e} so we are left with V' = {a, b,d}. In
general, V' is the set of vertices whose coin flipped heads or whose coin flipped tails but didn’t have
a neighboring center. Finally we map all vertices in V' to themselves and union this in with the hooks
giving P’ = {a—a,b— b,c— b,d — d,e — b}.

7 Version .8 — ¢



Parallel and Sequential Data Structures and Algorithms — Lecture 16 15-210 (Fall 2012)

Analysis of Star Contraction. When we contract these stars found by starContract, each star
becomes one vertex, so the number of vertices removed is the size of P. In expectation, how big is
P? The following lemma shows that on a graph with n non-isolated vertices, the size of P—or the
number of vertices removed in one round of star contraction—is at least n/4.

Lemma 1.2. For a graph G with n non-isolated vertices, let X, be the random variable indicating the
number of vertices removed by starContract(G,r). Then, E [X,] > n/4.

Proof. Consider any non-isolated vertex v € V(G). Let H, be the event that a vertex v comes up
heads, T, that it comes up tails, and R, that v € domain(P) (i.e, it is removed). By definition, we
know that a non-isolated vertex v has at least one neighbor u. So, we have that T, A H, implies
R, since if v is a tail and u is a head v must either join u’s star or some other star. Therefore,
Pr[R,] > Pr[T,]Pr[H,] = 1/4. By the linearity of expectation, we have that the number of
removed vertices is

E > IR} = > E[{R}]=n/4

v:v non-isolated v:v non-isolated

since we have n vertices that are non-isolated. O

Exercise 1. What is the probability that a vertex with degree d is removed.

Using ArraySequence and STArraySequence, we can implement starContract reasonably
efficiently in O(n + m) work and O(logn) span for a graph with n vertices and m edges.

1.3 Returning to Connectivity

Now lets analyze the cost of the algorithm for counting the number of connected components we
described earlier when using star contraction for contract. Let n be the number of non-isolated
vertices. Notice that once a vertex becomes isolated (due to contraction), it stays isolated until the
final round (contraction only removes edges). Therefore, we have the following span recurrence
(we’ll look at work later):

S(n) =S(n") + 0(logn)

where n’ = n — X,, and X,, is the number of vertices removed (as defined earlier in the lemma about
starContract). But E [X, ] =n/4 so E [n’] = 3n/4. This is a familiar recurrence, which we know
solves to O(log? n).

As for work, ideally, we would like to show that the overall work is linear since we might hope
that the size is going down by a constant fraction on each round. Unfortunately, this is not the case.
Although we have shown that we can remove a constant fraction of the non-isolated vertices on one
star contract round, we have not shown anything about the number of edges. We can argue that the
number of edges removed is at least equal to the number of vertices since removing a vertex also
removes the edge that attaches it to its star’s center. But this does not help asymptotically bound the
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number of edges removed. Consider the following sequence of rounds:

round vertices edges

1 n m

2 n/2 m-—n/2
3 n/4 m—3n/4
4 n/8 m—7n/8

In this example, it is clear that the number of edges does not drop below m —n, so if there are m > 2n
edges to start with, the overall work will be O(mlogn). Indeed, this is the best bound we can show
asymptotically. Hence, we have the following work recurrence:

W(n,m)<W(n',m)+0(n+m),

where n’ is the remaining number of non-isolated vertices as defined in the span recurrence. This
solves to E [W(n,m)] = O(n+ mlogn). Altogether, this gives us the following theorem:

Theorem 1.3. For a graph G = (V, E), numComponents using starContract graph contraction with
an array sequence works in O(|V| + |E|1log|V|) work and O(log?|V|) span.

1.4 Tree Contraction

Tree contraction takes a set of disjoint trees and contracts them. One way to do this is by repeated star
contraction. The advantage of tree contraction over general graph contraction is that the number of
edges on each step is at most one less than the number of remaining vertices. Therefore the number
of edges must go down geometrically from step to step, and the overall cost of tree contraction is
0(m) work and O(log? n) span using an array sequence.

2 Spanning Trees and Forests

Recall that an undirected graph is a forest if it has no cycles and is a tree if it has no cycles and is
connected. A tree on n vertices always has exactly n — 1 edges, and a forest has at most n — 1 edges.
A spanning tree of an undirected connected graph G = (V,E) isa tree T = (V,E’) where E' CE. A
spanning forest of a graph G = (V, E) is the union of spanning trees on its connected components.
We are interested in the spanning forest problem, which is to find a spanning forest for a given
undirected graph (the spanning tree is just the special case when the input graph is connected).

It turns out that a spanning forest of a graph G can be generated from our connectivity algorithm.
In particular all we need to do is keep track of all the edges that we use to hook, and return the union
of these edges. We will see this in more detail as we cover minimum spanning trees, our next topic.
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