tal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar'

Finding Second Largest Element in an Array

The Problem

Input: An array A[l..N] of integers and N, the number of elements in the
array.

Output: The second largest number in the array.

Problem Analysis

This is an instance of the Selection problem: V(N,k): given an array of
numbers of size N find kth largest (or smallest) element.

Our goal here is to design an efficient algorithms for just the V(NV,2)
instance of this this problem. We design this algorithm in two steps.

Step 1. In a V(NV,1) algorithm (i.e., selection of the largest element), the
largest element must be compared to the second-largest.

Proof. To find the largest element, we must keep comparing elements of
the array to each other, until all but one element lose a comparison. The
second largest element must lose a comparison. But it can only lose to the
largest element.

Conclusion 1. We can find the second largest element as follows:

1. Find the largest element.

2. Collect all elements of the array that were directly compared to the
largest element.

3. Find the largest element among them.

D@6 O e @
Y

)
@ ()

Figure 1: Example of work of FindMaxRecursive() algorithm on an array of
12 elements. Four elements (1, 3, 11, 10: double-circled above) are compared
to the largest element (12, highlighted).

Step 2. To design an efficient algorithm for finding the second largest
element using the observation above, we need an algorithm for finding the
largest element, where the largest element is compared to relatively few other
elements.

The simple FindMax() algorithm that uses linear scan is not good because
in the worst case (A[1] is the largest element), the largest element partici-
pates in all N — 1 comparisons.

However, the FindMaxRecursive(), that uses the tournament approach to
finding the largest number will work. The work of this algorithm on an
array of 12 numbers! is shown on Figure 1.

The algorithm itself is repeated below.

ALGORITHM FindMaxRecursive(1,J, A[L..J])
begin
if I = J then return A[I]; //base case
max1l— FindMaxRecursive(I, I+(J-1)/2, A);
max2— FindMaxRecursive(1+1+(J-1)/2,J, A);
if max1>max2 then return maxl
else return max2;
end

Proposition. In ALGORITHM FindMaxRecursive() the largest element par-
ticipates in at most [logy(N)] comparisons.

Proof. We show that any element of the array A participates in no more
than [logy(NV)].

On each recursive step of the algorithm, the algorithm splits the range
[I..J] (i.e, J — I+ 1 element) of elements in the array A into two parts. We
observe, that the size of the first part (used in the first call) is [(‘]_7?1)1,
while the size of the second part (used in the second call) is | 2=+ |. Start-
ing with the [1..N] range of N numbers, the first call (FindMaxRecursive(I,

"'We purposefully chose the number that is not a power of 2.

ALGORITHM FindSecondMax(N, A[1..N]) returns

begin
Compared«—FindMaxTournament(1,N,A[1..N]);
Compared2—FindMaxTournament(2,Compared[0],Compared[2..Compared[0]]);
return Compared2[1]

end

FuNcTION FindMaxTournament(1,J, A[I..J],N) returns Compared[0..K]
begin
if I = J then //base case
Compared[0..N];
Compared[0]« 1;
Compared[1]«— A[I];
return Compared;
endif

Comparedl«— FindMaxTournament(I, I4+(J-1)/2, A,N);
Compared2— FindMaxTournament(1+I+(J-1)/2,J, A,N);
if Compared1[1]>Compared2[1] then
K«Compared1[0]+1;
Compared1[0]«K;
Compared1[K]«—Compared2[1];
return Comparedl;
else
K«Compared2[0]+1;
Compared2[0]«K;
Compared2[K]«—Compared1[1];
return Compared?2;
endif
end

Figure 2: Algorithm FindSecondMax() for finding the second largest element
in an array, and function FindMaxTournament() used in it.

I+(J-1)/2, A)) can be recursively repeated [logy(N)] times. Each recursive
call yields a single comparison. Therefore each element of the array can be
compared to no more than [log,(/N)| other numbers.

Efficient Algorithm for Finding the second largest element

Using the two observations from above, an efficient algorithm for finding the
second largest number will work as follows:

1. Find the largest element of the array using the tournament method.

2. Collect all elements of the array that were compared to the largest
element.

3. Find the largest element among the elements collected in step 2 (can
use any method here).

Step 2 Issues. How can we efficiently collect all elements of the input
array that were compared to the largest element of the array?

Essentially, we would like to associate with the largest element of A an
array Compared|] of elements A was compared to. This, however, needs to

be done carefully. We do not know upfront which array element is going to
be the largest, so we will carry information about all comparisons an array
element won until this element loses a comparison.

From the technical side, we will change the FindMaxRecursive() algorithm
to return an array of integers Compared|0..K]. We will establish the follow-
ing convention:

o Compared|0] = K (i.e., the Oth element of the array holds the length
of the array);

o Compared[l] = max (i.e., the first element of the array is the number
that FindMaxRecursive() would return;

o Compared[2],...,Compared[K] are all numbers with which maxz has
been compared thus far.

Using these conventions, the ALGORITHM FindSecondMax() can be written
as shown in Figure 2.

Algorithm Analysis: Running time and number of comparisons.
From our study of FindMax() and FindMaxRecursive() algorithms, we know
that both of them have running time O(N) and use N — 1 comparisons for
an array of size N.

Using the Proposition from above, we analyze the running time and the
number of comparisons for FindSecondMax() as follows:

e The first call to FindMaxTournament() uses N — 1 comparisons and has
running time O(N).

e The second call to FindMaxTournament() passes an array of size at
most [logy (V)| and therefore, it uses [logy(N)] — 1 comparisons and
runs in O(logy(NV)).

e Therefore, FindSecondMax():

— Uses N — 1+ [logy(N)] —1 = N + [logy(N)]| — 2 comparisons;
— Has running time O(N) + O(logy(N)) = O(N).

Lower Bounds

Note: In general, proving lower bounds on running time of algorithms is
very hard, and requires long proofs.

Trivial lower bounds. Time to read input. If size of input is NV, and the
problem requires all input to be read, than Q(N) is a trivial lower bound
on the running time for any algorithm solving the problem.

Lower Bound for Finding Largest Number

Theorem. Finding the largest number in an array of N numbers cannot
be done in less than N — 1 comparisons.

Proof. Each comparison eliminates one candidate for the largest number.
In an array of N numbers N — 1 numbers must be eliminated. Therefore,
at least N — 1 comparisons must take place.

Note. Compining with the known upper bound on the number of compar-
isons, we obtain:

Algorithms FindMax() and FindMaxRecursive() are optimal in
terms of number of comparisons.

Lower Bound for Finding Second Largest Number

We state the following theorem without proof.

Theorem. Finding the largest number in an array of N numbers requires
at least N + [logy(N)] — 2 comparisons.

Note. Combined with our upper bound we obtain the following:

Algorithm FindSecondMax() is optimal in the number of compar-
isons.

