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Abstract: We investigate efficient implementations of Dijkstra's shortest path algo­
rithm. We propose a new data structure, called the r<distributiv< heap, for use in this 
algorithm. On a network with n vertices, m edges, and nonnegative integer arc costs 
bounded by G, a one-level form of redistributive heap gives a time bound for Dijkstra's 
algorithm of O(m + nlogG). A two-level form of redistributive heap gives a bound of 
O(m+n log G / log log G). A combination of a redistributive heap and a previously known 
data structure called a Fibonacci heap gives a bound of O(m+ ny'logC). The best previ­
ously known bounds are O(m + n log n) using Fibonacci heaps alone and O(m log log G) 
using the priority queue structure of Van Emde Boas, Kaas, and Zijlstra. 

In YUI;,alD< A ..... d, Conlract ,451.17 JeCS, by " ... t AP'ORS· •• · OO •• fro .. Ih. Air Po .... Offie. of Sci .... line I ........ eh .• nd 



1. Introduction 

Faster Algorithms for the Shortest Path Problem 

Ravindra K. Ahuja 1,2 

Kurt M~hJhorn 3 

James B. Orlin 2 

RoMrt E. TQrjan" 

Manoh, 1988 

Let G = (V,E) be a graph with venex set V of size n and an: set E of size m. Let s be a dis· 

tinguished venex of G and let c be a function assigning a nonnegative real-valued cost to each arc 

of G. We denote the cost of (v, w) E E by c(v,w) to avoid extra parentheses. The single-source 

shortest path problem is that of computing. for each vertex \I reachable from s, the cost of a 

minimum-cost path from s to Y. (The cost of a path is the sum of the costs of its edges.) We 

assume thaI all vertices are reachable from s; if this is no1 the case, unreachable vertices can be 

deleted from s in a linear-time preprocessing step. 

The theoretically most efficient known algorithm for this problem is Dijkstra's algorithm 

(5). Our description of his algorithm is based on that in Tarjan's monograph (13). The algorithm 

maintains a leflllJliYe COSI dey) for each venex v, such that some path from s to v has total cost 

deY). As the algorithm proceeds, the tentative costs decrease, until at the tennination of the algo­

rithm, for each venex Y, dey) is the cost of a minimum-cost path from s to Y. Initially des) =0 

and dey) = - for every v ~ s. The algorithm maintains a panition of the venices into three states: 

wtlabeled venices, those with infinite tentative costs; labeled venices, those with finite tentative 

cost whose minimum cost is not yet known; and scanned vertices, those whose minimum cost is 

known. Initially s is labeled and all other venices are unlabeled. The algorithm consists of 

repeating the following step until all venices are scanned: 
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Scan. a Vatu. Select a labeled vertex v such that dey) is minimum and declare v scanned. For 

each an; (v, w), if dey) + c(v,w) < dew), replace dew) by dey) + c(v,w) and declare w labeled if it 

is currently unlabeled. 

The algorithm can easily be augmented to compute actual minimum-cost paths instead of 

just the costs of such paths. This computation requires only Oem) additional time. 

The key to efficient implementation of Dijkstra's algorithm is the use of a data structure 

called a heap (or prioriry queue). A beap consists of a set of items, each with an associated real­

valued key, on which the following operations are possible. 

insert (h,x): Insen new item x, with predefined key, into heap h. 

deleu min (h): Find an item of minimum key in heap h. delete it from h. and return it as the 

result of the operation. 

decrease (h.x, value): Replace by value the key of item x in heap h; value must be smaller than 

the old key of x. 

In a heap-based implementation of Dijkstra's algorithm, a heap h contains all the labeled 

vertices: the tentative cost of a labeled venex is its key. Initially h = Is}. The scanning step is 

implemented as follows: 

Scan a Vertex. Let v = delete min (h). Declare v scanned. For each an; (v,w), if dew) = -, let 

dew) = dey) + c(v"w) and perform insert (h,w): if dew) < - and d(v) + c(v,w) < dew»~, perform 

decrease (h, w,d(v) + c(v,w)). 

Dijkstra's algorithm runs in Oem) time plus the time required to perform the heap opera­

tions. There are n insert operations (counting one to insen • initially), n deltle min operations, 

and II most m - n + 1 decrease operations. Dijkstra's original implementation uses an array to 

represent the beap. giving a bound of 0(1) time per insert or decrease and O(n) time per delete 

min, or 0(n2) time overall. A more modem heap implementation, the Fibonacci heap [71, needs 

0(1) time per insert or decrease and only OOog n) per delete min, for an overall time bound of 

Oem + n log n). The same bound is attainable using relaxed heaps [6] or Vheaps [II}. 

A time of Oem + n log n) is best possible for Dijkstra's algorithm, if the arc costs are real 

numbers and only binary comparisons are used in the heap implementation. This is because it is 

easy to reduce the problem of sorting n numbers to a run of Dijkstra's algorithm . The question 
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arises whether the O(m + 17. log 17.) bound can be beaten in the special case that all the arc costs 

are integers of moderate size. This is the question we explore in this paper. 

Henceforth we asswn<: that all arc costs are integers bounded above by C. Under this 

assumption, a data structure of Van Emde Boas, Kus, and Zijlstra [15,16J can be used to imple­

ment the heap in Dijkstra's algorithm, giving. time bound of o (log log C) per heap operation, or 

Oem log log C) time in total. The space needed for the heap Is O(n + C), but this can be reduced 

to 0(. + C') for any positive constant £ using tries [12J, or even to O(n) if dynamic perfect hash­

ing is used [4J. (Use of dynamic perfect hashing makes the algorithm randomized instead of 

deterministic and the time bound expected instead of worst-case.) 

The existence of an Oem + • log n) bound for arbitrary real-valued costs suggests the prob­

lem of obtaining a bound for integer costs of the form Oem + n/(C» for some function I of the 

number sizes, with I growing as slowly as possible. An algorithm independently discovered by 

Dial [3J and Johnson [8J runs in Oem + nC) time. Based on the existence of the Van Emde 

Boas-Kaas-Zijlstra data structure, one might hope for a bound of Oem + n log log C). Obtaining 

such a bound is an open problem. We shall develop a data structure that results in a bound of 

Oem + • -'logC). Our data structure, the redistributive heap, exploits special properties of the 

heap operations in Dijkstra's a1gorithm. The most important of these propenies is that successive 

tkleu min operations return vertices in nondecreasing order by tentative cost. lbe simplest fonn 

of the data structure, the o.e-level redistributive heap, was originally proposed by Johnson [9J, 

who used it to obtain an Oem log log C +. log C log log C) time bound for Dijkstra's algorithm. 

By slightly changing the implementation, we reduce the time to Oem + n log C). Section 2 

describes this result. 

By adding another level to the structure, we obtain a two-level redistributive heap. The idea 

of adding a second level is borrowed from Denardo and Fox [2J. The new structure reduces the 

running time of Dijkstra's algorithm to Oem + n log C I log log C). Section 3 presents this 

result. One more change to the structure, the addition of Fibonacci heaps in the second level, 

reduces the time bound further, to Oem +. -'log C). Section 4 discusses this improvement. 

Section 5 discusses the effect of increasing the cost of doing arithmetic; all the results men­

tioned above are pJedicated on the assumption thai integers of size O(nC) can be added or com­

pared in constanl time. In the semilogarithmic model studied in Section 5, in which arithmetic on 

integers of O(log n) bits taltes 0(1) time, tho: _rm in tho: bounds given above increases to 

Oem log C 1I0g n), while the .-term remains the same. 
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2. One-Level Redistributive Heaps 

Redistributive heaps rely on the following properties of Dijkstra's algorithm: 

(i) For any vene. v, if d(v) is finite, d(v) E [O .. ne). I 

(ii) For any venex v ~s. if v is labeled. d(v) E [d(x)ood(x) + e). where x is the most recently 

scarmed venex. 

Propeny (ii) implies in panicular that successive delete min operations return vertices in 

nondecreasing order by tentative cost. 

A one-level redistributive heap is a collection of B =rlg (e + 1)1 + 2 buckets. 2 indexed 

from I through B. Each bucket has an associated size. The size of bucket i is denoted by size(i) 

and defined as follows: 

size (I) = I; 

size(i) = 2i - 2 for 2 SiS B-1; 

size(B) = ne + 1. 

Observe that the bucket sizes satisfy the following imponant ineqUality: 

)-1 
(1) L siu(i);;' min [size (}). C +1) for 2 S j S B. 

i·1 

Each bucket also has a range that is an interval of integers. Initially the ranges of the buck­

ets partition the interval [Ooone + 1]. In general the ranges partition the interval [d...,oone + I). 

where d..., is the maximum label of a scanned node. For each bucket j the upper bound u(i) of 

its interval is maintained; the range of bucket i is rangl!(i) - ["(i-I) + I..u(j)). with the conven­

tions that u(O) = d .... -l and range(j) -" if "(i-I);;' "(i). Whereas the sizes of all buckets are 

fixed throughout the computation, the ranges change; for each bucket j, "(i) is a nondecreasing 

function of time. 

1 We denote the interval of inte,ers Ix I L S X :s "I by [/ .. u]. 
2We denole 10, 2 by I,. 
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Initially u(;) = 2'-1 -I for I $ i $B-I, u(B)= nC + I, Observe that this implies I range(i) I 

$ siu(i). This inequality is maintained throughout the computation for each bucket. The labeled 

vertices are stored in the buckets. with venex v stored in bucket i if dey) E range(i). Initially. ver­

tex s is insened illlo bucket I. The range of bucket I is maintained so that every venex v in 

bucket I has d(v) = u(l); thus the effective range of bucket I contains only u(l). 

Each bucket is represented by a doubly-linked list of its venices. to make insenion and 

deletion possible in constant time. In addition. stored with each vertex is the index of the bucket 

containing it. 

The three heap operations are implemented as follows. To insen a newly labeled venex v . 

examine values of i in decreasing order. starting with i = B. until finding the largest i such that 

u(i) < dey); then insen v into bucket i + I. To decrease the key of a venex v. remove y from its 

current bucket, say bucket j. Reduce the key of v. Proceed as in an insertion to reinsen v into the 

correct bucket. but begin with bucket i = j. 
For a single vertex v, the time spent on insertion and all decrease operations is OOog C) 

plus 0(1) per decrease. because the index of the bucket containing y can never increase. Thus 

the total time for all such operations during a run of Dijkstra's algorithm is Oem + n 10gC). 

The most complicated operation is de/ere min. which is perfonned as follows. If bucket I is 

nonempty. return any venex in bucket I. Otherwise. find the nonempty bucket of smallest index. 

say bucket j. By scanning through the items in bucket j. find a venex of smallest tentative cost. 

say v. Save v to return as the result of the delete min and distribute the remaining vertices in 

bucket i among buckets of smaller index. as follows. Replace u(O) by d(y)--I. u(l) by dey). and 

for i rwming from 2 through j-I. replace u(i) by min (u(i-I) + size(i). uU)). Remove each ver­

tex from bucket j and reinsert it as in decrease; do not reinsert v. 

Inequality (I) guarantees that. if j '" 2 in a de/ere min. every venex in bucket j will move to 

a bucket of strictly smaller index. It follows that the time spetll on delete min operations is 

O(log C) per delete min plus O(log C) per venex. for a toIaI of O(n log C) during a run of 

Dijkstra·s algoritlm. We conclude that the total rwming time of Dijkstra's algorithm with this 

implementation is Oem +. log C). The space required is Oem + log C). Johnson. using the 

same data structure. obtained a bound worse by a factor of log log C. because he used binary 

search instead of sequential scan to reinsen vertices into buckets. 

3. Two-Level RedistrIbutive Heaps 

Reducing the running time of the algorithm of Section 2 requires reducing the number of 

reinsertions of venices into buckets. This can be done by increasing the bucket sizes. but then 

inequality (I) no longer holds. We overcome this problem by dividing each bucket into 
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stg_nlS. All segments within a bucket have the same size. 

A two-level redistribwive heap is defined by a parameter K, determining the number of seg­

ments within a bucket. 1be number of buckets is B = rlogK(C + 1)1 + L 1be sizes of the buck­

ets are as follows: 

size(i)=K; for I";i ";8-1; 

size(B) = nC + L 

As in the one-level scheme, bucket i has range(i) = [u(i-I) + Lu(i)J, with u(O) =d..,,-I 

and u(B) = nC + I. 1be remaining upper bounds on ranges have the following initial values: 

j . 
uU)= L K'-I forl";j";B-L 

i ... 1 

For I$; j S 8-1, bucket i is panitioned into K segments. each of size K i
- 1. Segments arc 

indexed by ordered pairs; segment (i,k) is segment k of bucket i. Bucket 8 consists of a single 

segment. 

Each segment has an associated range, which is a function of the range of its bucket. 1be 

range of segment (i,k) is rangt(i,k) = [u(i ,k-I) + 1 .. u(i,k)J where u(i,k) is defined as follows: 

u(i,k) = max [u(i-I), uri) - (K-k)K;-t J. 

Observe that I rangt(i,k) I"; K;-I = sizt(i,k) for I ,,; i ,,; B-1 and I ,,; k ,,; K. 1be algorithm 

maintains the invariant that for I ,,; i ,,; B-1, I rangt(i) I"; K;. 

1be algorithm maintains the ranges of buckets (i.e. the u(i)'s) explicitly, but computes the 

ranges of segments as needed. Observe Utat, given an integer x e rangt(i), the value of k such 

that x E rangt(i,k) can be computed in constant lime using the formula 

k =K-L(u(i)--x) I K;-~. 

Choosing K to be a power of two Simplifies this computation on a computer whose number 

representation is binary, but this is not necessary for our theoretical results. 

1be labeled vertices are stored in the segments, with vertex. stored in segment (i,k) if 

d(.) E rangt(i,k). Each segment is represented by a doubly-linked list. 1be three heap 
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operations are implemented as follows. An insert or decrease operation on a venex v is per· 

fonned as in a one-level heap. except that once the bucket i such that d(v) e range(i) is located. 

the k such that d(y) e rangt!(i.k) is computed (in constant time). and v is insened into segment 

(i.k). 'The toW time for all in ... n and decr<a ... operations during a run of Dijl<stra's algorithm is 

O(m + Bn); O(m + n 10"" e). 

TIle delete min operation is implemented much as in a one·level heap. except that only the 

contents 'of a single segment are distributed. not the contents of an entire bucket. To perfonn 

thief< min. find the first non-empty bucket. say j. Find the first nonempty segment within bucket 

j. say U.k). (If j; B. k; I. since bucket B consists of only I single segment.) If j; I, remove 

and return any venex in segment U.k). Otherwise. scan the vertices in segment U.k) to find one. 

say v. with minimum tentative cost. Redefine u(i) for 0,; i'; j-I as in a one-level heap. Distri­

bute all vertices in segment U.k) (except v) into their new correct segments. which lie in buckets 

I through j-l. 

A few details of the data structure deseNe comment. To facilitate locating the first 

nonempty bucket. a bit for each bucket is maintained that indicates whether or not the bucket is 

empty. Determining j in a thlere min then takes O(B) time. 'The segments are represented as an 

amy of doubly-linked lists. with the index of segment (j.k) being K(i-I) + k. Since each vertex 

in a segment thai is distributed moves to a lower bucket. the total number of such movements is 

O(Bn). 'The toW time for all the delete min operations is O(Bn) plus the time for n steps of the 

fonn. "find the first nonempty segment in a given bucket." 

If each such segment is found merely by scanning all the segments in the bucket. the time 

for one such step is O(K). and the tow ruruting time of Dijl<stra's algorithm is O(m + (B + K)n). 

Choosing K proportional to log e I log log e gives 

B ~[logK<e + 1)1 + I ; o (log e lIog log e). and the total ruruting time is 

O(m + n log e I log log e). 'The space required is O(m + (log e I log log e)2). reducible to 

O(m + (log e I log log e)' ) for any constant E> 0 using. trie [12J or even to O(m) using ran­

domization and dynamic perfect hashing [4J. 

If e < n. the running time of the algorithm can be reduced to O(m + n log e I log log n) by 

using table lookup to find nonempty segments. Specifically. choose K ;[Ig n1. For each bucket 

(Oiher than bucket B). maintain an integer of [ Ig Ii! bits whose k" bit is one if segment k of the 

bucket is nonempty and zero Oiherwise. Duting I preprocessing step. construct an array of n 

positions. iodcllCd from I to n. such thai posilion i contains k If and only if the k'- bit of i 

(expressed in binary) is the first nonzero bit. Construction of this amy takes O(n) time. and once 

the amy is constructed. the first nonempty segment of a nonempty bucket can be found in 0(1) 

time by aeoessing the array position indexed by the integer encoding the nonempty segments. 
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By choosing the appropriate one of the two methods above for finding the first nonempty 

segment in a bucket. we obtain a time bound of Oem + n log C I log log (nC» for Dijkstra's algo­

rillun. 

4. Use of Fibonatti Heaps 

Our final improvement reduces the nmning time of Dijkstra's algorithm to 

Oem + n v10g C) by using a variant of Fibonacci heaps 10 find nonemply segments. 'Throughout 

this section we shall refer 10 each segmenl by its index; as in Section 3, the index of segment (i,k) 

is K (i-I) + k, which is an inleger in the interval [I..KB-K + I). We associale with each labeled 

vertex the index of the segment containing it. We need to be able to maintain the collection of 

labeled vertices under the following three kinds of operations: 

deleu min: Find a labeled venex of minimum index, mark it scanned, and return it. 

ins"t(x): Declare x 10 be a newly labeled venex, with predefined index. 

deerease(x. value): Replace the index of labeled venex x by value; value must be smaller than the 

old index of x. 

In other words, we must maintain the set of labeled vertices as a heap. with the key of each 

venex equal 10 its index. A run of Dijkslra's algorillun requires n insert operations. n delete min 

operations. and at most m tkcreau operations. in addition to the time for maintaining bucket 

boundaries and recompuling segments. 'The lotal lime for all the laner bookkeeping is 

Oem +Bn). 

Fibonacci heaps (abbreviated F-heaps) suppon de~te mi. in OOog n) amortized time J and 

ins"t and decrease in 0(1) amortized time [71, wbere • is the maximum heap size. Bul in our 

application, the number of possible index values is much smaller than the number of vertices. 

We shall describe how 10 extend Fibonacci heaps so thaI if the keys are integers in the inlerval 

[I..N1, the amortized time per delete mi. is OOog min {n,N)), while the amortized time per 

insert or decrease remains 0(1). In the application at hand, we can take N zKB. 'The choice of 

K E i..1i?l gives B = 000&.< C) E o (v1og C), and log N z O(.,roge); therefore the IOtal run­

ning time of Dijkslra's a1goridun is Oem + n .,roge). 
1 By Qm(If'tiud tintl we mUll the time per opa'alion ner.,ed over ..... anH_e MqUe1"IU of operatioru. See 

Tarjan'ssUJ"Vey ptIpCI' (I") Of Mehlhorn's book (10). 
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It remains for us to make the necessary chllnges to F-heaps. The main idea is to make sure 

that such a heap contains at most N items. i.e .. at most one item per key value. Making this idea 

wort in the presence of dec"as. operations requires some CAre and some knowledge of the inter­

nal worungs of F-heaps. 

We need to know the foUowing facts about F-heaVS. An F-heap consists of a coUection of 

heap-ordered trees whose nodes are the items in the heap. (A heap-ordered tree is a rooted tree 

such that if pix) is the parent of node %, the key of % is no greater than the key of p(%).) Each 

node in an F-heap has I ranJc equal 10 the number of its children. A fundamental operation on F­

heaps is liMing, which combines fWO heap ordered trees into one by oomparing the keys of their 

lOOts and makin, the fOOl ofsmalier key the poren! of the fOOl of larger key, breaking a tie arbi­

trarily. A linlr. operation takes 0(1) time. Only trees with roots of equal ranIr. are linlr.ed. 

Each nonroot node in a F-heap is in one of two states. marud or unmarked. When a node 

becomes a nonroot by losing a comparison during a linlr.. it becomes unmarted. Nodes become 

marted during d.crease operations, as described below. 

The three heap operations are performed as foUows. To iosen a new item, merely make it 

into lone-node tree and add this tree to the coUection of trees . This takes 0(1) time. 

To perform a decrease operation on a node %, begin by updating the key of %. Then. if x is 

not a lOOt, cut the edge joining x and p(%) and repeat the foUowing step, with y initially equal to 

the old p(x). until y is unmarted or y is a tree lOOt; cut the edge joining y and its parent p(y). and 

replace y by the old p(y). After the last such cut, if the last node y is not a root, mart it. 

The overali effect of such. decrease operation is to possibly break the initial tree conuin­

ing % into several trees, one of which has lOOt %. The time required by the decrease operation is 

0(1) plus 0(1) per cut. Since only one node is marted per cut, and since one node becomes 

unmarted per cut except for at most one cut per decrease operation, the total number of cuts dur­

ing a sequence of decrtaSt operations is at most twice the number of decrease operations, even 

though a single decrease can resuit in many cuts. 

To perform the third heap operation, delete min, scan ali the tree lOOts and identify one, say 

.>:, of minimum Ir.ey. Remove x from its tree, thereby making each of its children I tree IOOl 

Finally, repeatedly linIr. trees whose roots have equal ranIr., until no two tree lOOts have equal 

ranlt 

The key 10 the lIlIIysis of F-heaps is that manipulation of IOOICd trees in the ways described 

above maintains the foUowing invarillll: f()( any node.>:, ran.t(%) - OOog siu(%», where size(.>: ) is 

the number of nodes in the subtree fOOled at.>:. A simple analysis gives an amortized time bound 

of 0(1) for insert and dec"ase, and 000& n) for de~le min. 
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Now we extend F-heaps to reduce the amonized time per dele/( min to OOog min (n.N)) . 

For each value i E (LNJ . the algorithm maintains the set SCi ) of items with key i. One item in 

SCi) is designated the representative of S(i). All the items. both the representatives and the non­

representatives. are pouped into heap-<>rdered ttces of the kind manipulated by the F -heap algo­

rithm. These trees an: divided iW) two aroups: activ~ trUSt those whose roots are representa­

tives. and passive tretS, those whose roots Ire nonrepresentatives. 

1lJe algorithm maintains the following two invariants: 

(i) 'The key of a nooroot node x is IllicUy less than that of its parent (a strengtherung of the 

heap order propenYl; 

(ii ) Every no~presentative is a root. 

Invariant ( ii ) implies that all nodes in active trees are representatives and hence have dis­

tinct keys; thus the number of nodes in active trees is at most N. Invariants (i ) and (ii) together 

imply that the representative of minimum key is the root of an active tree; hence dtleu min need 

only scan the roots of active trees. 

The three heap operations are perfonned as follows . To insen an item x. make it into a one 

node tree. which becomes active or passive depending on whether the set S(i) into which x is 

insened is empty or not; if it is. x becomes the representative of SCi). To perform a decrease 

operation. proceed as on an ordinary F·heap as described above. with the following addition: 

move x from its old set. say S Ci). to the appropriate new set. say S U). Make some other item (if 

lilY) in S (i). say y. the representative of S Ci) and make the tree with root y active. If x is the only 

item in SU ). make the tree rooted at x active; otherwise. make it passive. Make other new trees 

created by cuts active. 'The total time required by a tkcrease operation is 0(1) plus 0 (1 ) per cut. 

including the time to move trees between the active and passive poups. 

To perform tklete min. proceed as on III ordinary F-heap. with the following changes: scan 

only the roots of active trees to find a minimum. and perform repeated linking only on active 

trees; that is. after deleting the active node of minimum key. repeatedly link active trees whose 

roots have equal rank until all active trees have roots of different ranks. 

TIle efficiency analysis of the extended data structure is almost the same as that of the origi­

nal. Define the porefllial of the data structure to be the number of trees plus twice the number of 

milled nodes. Deline the amonized lime of a heap operation to be its actual time (measured in 

suitable units) plus the net increase in potential it causes. 'The initial potential is zero (if the ini ­

lial heap is emply) and the potcolial is always nonnegative_ It fonows that. for any sequence of 

heap operations. the total amortiud time is an upper bound on the total aclualtime. 
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TIle amortized time of an insertion is 0(1), since it increases the potential by one. A 

tkcrtase operation causing k cuts adds O(1}-k to the potential: each cut except for at most one 

adds a tree but removes a marked node; marked nodes count for two in the potential. Thus a 

decrease takes 0(1) amortized time if a cut is regarded as taking unit time. 

Each link during a tkl'/t min operation reduces the potential by one and thus has an amor­

tized time of zero, if a link is regarded as taking unit time. Not counting links, the time spent 

during a delete min is O(log min [n,N)), as is the increase in potential caused by removing a 

node of minimum key: the maximum rank of any node is O(log min (n,N}). Thus the amortized 

time of delott min is O(log min (n,N)), as dlsired. 

TIle idea used here, that of grouping trees into active and passive, applies as well to Vheaps 

[Ill to give the same time bounds, but it does not seem to apply to relaxed heaps [6l. The 

extended F-heap, if used directly in the implementation of Dijkstra's algorithm, gives a running 

time of 0 (m + n log C), the same as that obtained in Section 2. 

S. Time Bounds in a Semilogarithmic Computation Model 

In the previous sections. we analyzed our algorithms using a unit-coSl random-access 

machine (I l as the computation model. In particular, we assumed that addition and comparison 

of integer> in the interval [O __ nCl takes 0(1) time. If C is large. this assumption may not be real­

istic. In this section, we derive bounds for the algorithms assuming a semilogarithmic cost com­

putation model. We show that in this model. the m-term in our bounds becomes m r Ig C / Ig n 1 ' 
while the n-term remains unchanged. The following two assumptions define the semilogarithmic 

model: 

(I) Arithmetic on integer> of length OOog n) and all other random access machine operations 

(index calculations. pointer assignmenlS. etc.) take 0(1) time; 

In our algorithms, we represent arc COsls and tentative coalS d(v) as anrays of length 

rIg (nC + I) I Rl , where R : Llg n I 2J ' Each anray element is an integer in the range [O __ 2R-ll. 

By assumption (I), indexing into these anrays .. os 0(1) time, but this is only reasonable if the 

indices are O(log n) in length, which is the reason for imposing assumption (2). Henceforth in 

this section we also assume that log C - n (log n); if log C - O(log n), the bounds of the previ­

ous sections bold without change for the semilogarithmic modoL If log C = n (log n), then 

Ig(nC + I) = O(log C), a fact that we shall use repeatedly without further comment. 



1~ 

Let us first analyze the algoritlun of Section 2. We shall revise and refonnulate the algo­

rithm to fit into the semilogarithmic model betteT. In particular. we emphasize the bit manipula­

tion involved in the computation. Let B =flg (nC + 1)1. At. given time in the algoritlun, let V 

be a labeled vertex with minimum tentative cost d(v). Let a,,-I ... al be the binary representation 
'-1 

of d(v), i.e. ai E (0,1) and d(v) = L IX; 2i- l . TIte algoritlun maintains buckets numbered I 

through B containing the labeled vertices, with bucket I containing every vertex u such that 

d(u) = d(v) and bucket i, for 2 $ i $ B, containing every venex u such thaI position i-I is the 

largest position in which the binary representations of d(u) and d(v) differ. Note that in this vari­

ant of the Section 2 algoritlun, bucket ranges are represented implicitly rather than explicitly. 

Finding the smallest nonemply bucket by a sequential scan over the buckets takes 

O(log (nC + 1» = 0 (log C) time. Distributing the venices in a bucket is done by scanning down 

through the appropriate bits of the tentative costs of the venices in the bucket. Such distribution 

takes O(log (nC + I» = O(log C) time per vertex over the entire algoritlun. (Extracting the 

appropriate bit of a tentative cost can be done either by appropriate shifting and masking opera­

tions, or, if these are not available, by table lookup. In either case, the time to extract a bit is 

0(1).) Updating tentative costs takes O(m log C I log n) time over the entire algoritlun. It fol­

lows that the total running time of Dijkstra's algoritlun is O(m log C I log n + n log C). 

Next we tum to the algoritluns of Sections 3 and 4. In these algoritluns each bucket is 

divided into K segments. In the spirit of assumption (I), we restrict ourselves to 

log K = O(log n). TIte number of buckets is B =rlogK (nC + 1)1. TIte assigrunent of labeled 

vertices to buckets and segments is as follows. Let a,,-I ... no be the K-ary expansion of the 

minimum tentative cost of a labeled venex, say v. A labeled venex u belongs to segment k of 

bucket i if either i = I, k = no + I , and d(u) ~ d(v); or if i-I is the largest position at which the 

K-ary expansions of d(u) and d(v) differ and k - ai-t + I. 

TIte time to find the first nonemply segment (by scanning over buckets, then over segments 

within a bucket) is O(B + K). TIte total time for distributing vertices among segments is O(B) 

per vertex. TIle toW running time of the method is thus O(m log C I log n + nB + nK). Oloos­

ing K proponiooal to Ig(nC) II&1g(nC) gives a toW running time of 

O(m log C I log n + n log (n C) I log log (n C» z O(m log C I log n + n log C I log log C), 

Adding an eKtended F-heap to represent the nonemply segments, as in Section 4, reduces 

the time to find the first nonemply sep>enl to O(Oog (BX»2 I log n): there are O(log (BK» 

steps, each of which manipulates integers in the interval [1 . .BKJ, which is the range of the seg­

ment indices.) TIte m decrease operations on the F-heap take O(m log (BK) I log n) time, TIle 

total time 10 run Dijkstra's algoritlun is thus 

O(m (log C I log n + log (BK) Ilogn) + n(B + (log (BK»2 I log n». Oloosing K =Ai 0, ~)l 
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if Ig(nC)" (lgn)2, K = n if Ig(nC) > (lgn)2 gives a total running time of 

Oem log C I log n +n -Ilog C). 

It is worthwhile to compare these bounds with the running time of the straight F-heap-based 

algorithm [7]. That algorithm requires Oem +. log .) steps, each of which involves addition or 

comparison of integers in the range IO ..• C] and thus takes O(log C I log .) time in the semiloga­

rithmic model. 1be total time of the algorithm is thus Oem log C I log n + n log C), the same as 

the time for the modified Section 2 algorithm. 1be F-heap algorithm is more complicated, how­

ever. The algorithms of Sections 3 and 4 are both faster than the F-heap algorithm, for appropri­

ate values of the parameters. Note that the time to read the problem input is n (m log C I log n) . 

Assuming that solving the problem requires reading the input, the algorithm that combines a 

two-level distributive heap with an F-heap is optimwn to within a constant factor if 

log C = n ((log n)2), i.e .. C = nn(los .>, or if m = n (n log n I -Ilog C). 
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