Faster Algorithms for the Shortest
Path Problem

by

Ravindra K. Ahuja!?,
Kurt Mehlhorn¥,
James B. Orlin?),

Robert E. Tarjan?).

A 04/88

Abstract: We investigate efficient implementations of Dijkstra’s shortest path algo-
rithm. We propose a new data structure, called the redistributive heap, for use in this
algorithm. On a network with n vertices, m edges, and nonnegative integer arc costs
bounded by C, a one-level form of redistributive heap gives a time bound for Dijkstra’s
algorithm of O(m + nlog C). A two-level form of redistributive heap gives a bound of
O(m+nlogC/loglog C). A combination of a redistributive heap and a previously known
data structure called a Fibonacci heap gives a bound of O(m+n+/log C). The best previ-
ously known bounds are O(m + n log n) using Fibonacci heaps alone and O(m log log C)
using the priority queue structure of Van Emde Boas, Kaas, and Zijlstra.

1) On lenve from Indian Institute of Technology, Kanpur,India

2) Sloan School of Management, M.I.T., Cambridge, MA 02139. Research artially supported by an NSF Presidential Young
Investigator Award, Contract 8451517 ECS, by grant AFORS-88-0088 from the Air Force Office of Scientific Rescarch, and
granis from Analog Devices, Apple Computer, Inc., and Prime Computer.

3) FB 10, Universitit do.l Searlandes, 66 Sasrbricken, West Germany.. Research partially supported by Grant DFG Sonder-
forschungsbereich 124, TB2.

4) Department of Computer Science, Princeton University, Princeton, NJ 08544 and AT< Bell Laboratories, Murray Hill, NJ

07974. Research partially supported by NSF Grant DCR-8605962 and ONR Contract NOD014-87-K-0467.

Faster Algorithms for the Shortest Path Problem

Ravindra K. Ahuja *?
Kurt Mehthorn >
James B. Orlin ®

Robert E. Tarjan .

March, 1988

1. Introduction

Let G = (V,E) be a graph with vertex set V of size n and arc set E of size m. Let s be a dis-
tinguished veriex of G and let ¢ be a function assigning a nonnegative real-valued cost to each arc
of G. We denote the cost of (v,w) e E by c¢(v,w) to avoid extra parentheses. The single-source
shortest path problem is that of computing, for each vertex v reachable from s, the cost of a
minimum-cost path from s to v. (The cost of a path is the sum of the costs of its edges.) We
assume that all vertices are reachable from s; if this is not the case, unreachable vertices can be

deleted from s in a linear-time preprocessing step.

The theoretically most efficient known algorithm for this problem is Dijkstra’s algorithm
[S]. Our description of his algorithm is based on that in Tarjan's monograph [13]. The algorithm
maintains a tentative cost d(v) for each vertex v, such that some path from s to v has total cost
d(v). As the algorithm proceeds, the tentative costs decrease, until at the termination of the algo-
rithm, for each vertex v, d(v) is the cost of a minimum-cost path from s to v. Initially d(s)=0
and d(v) = o for every v # 5. The algorithm maintains a partition of the vertices into three states:
unlabeled vertices, those with infinite tentative costs; labeled vertices, those with finite tentative
cost whose minimum cost is not yet known; and scanned vertices, those whose minimum cost is
known. Initially s is labeled and all other vertices are unlabeled. The algorithm consists of
repeating the following step until all vertices are scanned.

On leave from Indian Institute of Technology, Kanpur, India.
ZSbm School of Management, M1.T., Cambridge, MA 02139. Research partially supported by an NSF Presidential
Young Investigator Award, Contract 8451517 ECS, by grant AFORS-88-0088 from the Air Force Office of Scientific
]sue.m:h. and grants from Analog Devices, Apple Computer, Inc., and Prime Computer.

FB 10, Universiiat des Ssarlandes, 66 Saarbrucken, West Germany. Research panially supported by Grant DFG Sonder-
forschungbereich 124, TB2.
4 Department of Computer Scimnce, Princeton University, Princeion, NJ 08544 and AT&T Bell Laboratories, Murmay Hill,
NJ 07974. Research pantially supponed by NSF Gram DCR-8605962 and ONR Contract NOOO14-87-K-0467.

-2

Scan a Vertex. Select a labeled vertex v such that d(v) is minimum and declare v scanned. For
each arc (v,w), if d(v) + c(v,w) < d(w), replace d(w) by d(v) + c(v,w) and declare w labeled if i1
is currently unlabeled.

The algorithm can easily be augmented to compute actual minimum-cost paths instead of
just the costs of such paths. This computation requires only @(m) additional time.

The key to efficient implementation of Dijkstra’s algorithm is the use of a data structure
called a heap (or priority queue). A heap consists of a set of items, each with an associated real-
valued key, on which the following operations are possible.

insert (h,x): Insert new item x, with predefined key, into heap A.

delete min (h). Find an item of minimum key in heap A, delete it from A, and retumn it as the

result of the operation.

decrease (h.x, value): Replace by value the key of item x in heap k; value must be smaller than
the old key of x.

In a heap-based implementation of Dijkstra’s algorithm, a heap k contains all the labeled
vertices; the tentative cost of a labeled vertex is its key. Initially A = (5). The scanning step is

implemented as follows:

Scan a Vertex. Let v = delete min (h). Declare v scanned. For each arc (v,w), if d(w) = o, let
d(w)=d(v) + c(v,,w) and perform insert (h,w), if d(w) < = and d(v) + c(v,w) < d(w)), perform
decrease (h,w,d(v) + c(v,w)).

Dijkstra’s algorithm runs in O(m) time plus the time required to perform the heap opera-
tions. There are n insert operations (counting one to insert s initially), n delete min operations,
and at most m — n + 1 decrease operations. Dijkstra’s original implementation uses an array to
represent the heap, giving a bound of O(1) time per insert or decrease and O(n) time per delete
min, or O(n?) time overall. A more modem heap implementation, the Fibonacci heap [7], needs
O(1) time per insert or decrease and only O(log n) per delete min, for an overall time bound of
O(m + n log n). The same bound is attainable using relaxed heaps [6] or Vheaps [11].

A time of O(m + n log n) is best possible for Dijkstra’s algorithm, if the arc costs are real
numbers and only binary comparisons are used in the heap implementation. This is because it is
easy to reduce the problem of sorting n numbers to a run of Dijkstra’s algorithm. The question

-8

arises whether the O(m + n log n) bound can be bealen in the special case that all the arc costs

are integers of moderate size. This is the question we explore in this paper.

Henceforth we assume that all arc cosls are integers bounded above by C. Under this
assumption, a data structure of Van Emde Boas, Kaas, and Zijlstra [15,16] can be used to imple-
ment the heap in Dijkstra’s algorithm, giving a time bound of O (log log C) per heap operation, or
O(m log log C) time in total. The space needed for the heap is O(n + C), but this can be reduced
10 O(n + C*®) for any positive constant € using tries [12], or even to O(n) if dynamic perfect hash-
ing is used [4]. (Use of dynamic perfect hashing makes the algorithm randomized instead of
deterministic and the time bound expected instead of worst-case.)

The existence of an O(m + n log n) bound for arbitrary real-valued costs suggests the prob-
lem of obtaining a bound for integer costs of the form O(m + nf(C)) for some function f of the
number sizes, with f growing as slowly as possible. An algorithm independently discovered by
Dial [3] and Johnson [8] runs in O(m +nC) time. Based on the existence of the Van Emde
Boas-Kaas-Zijlstra data structure, one might hope for a bound of O(m + n log log C'). Obtaining
such a bound is an open problem. We shall develop a data structure that results in a bound of
O(m + n \logC). Our data structure, the redistributive heap, exploits special properties of the
heap operations in Dijkstra’s algorithm. The most important of these properties is that successive
delete min operations retum vertices in nondecreasing order by tentative cost. The simplest form
of the data structure, the one-level redistributive heap, was originally proposed by Johnson [9],
who used il 10 obtain an O(m log log C + n log C log log C) time bound for Dijkstra’s algorithm.
By slightly changing the implementation, we reduce the time to O(m +n log C). Section 2
describes this result.

By adding another level to the structure, we obtain a rwo-level redistributive heap. The idea
of adding a second level is borrowed from Denardo and Fox [2]. The new structure reduces the
running time of Dijkstra’s algorithm to O(m + n log C / log log C). Section 3 presents this
result. One more change to the structure, the addition of Fibonacci heaps in the second level,
reduces the time bound further, to O(m + n Viog C). Section 4 discusses this improvement.

Section 5 discusses the effect of increasing the cost of doing arithmetic; all the results men-
tioned above are predicated on the assumption that integers of size O(nC) can be added or com-
pared in constant time. In the semilogarithmic model studied in Section 5, in which arithmetic on
integers of O(log n) bits takes O(1) time, the m-term in the bounds given above increases to
O(m log C /log n), while the n-term remains the same.

2. One-Level Redistributive Heaps
Redistributive heaps rely on the following properties of Dijkstra’s algorithm:

(i) For any veriex v, if d(v) is finite, d(v) € [0..nC). !
(ii) For any vertex v # 5, if v is labeled, d(v) € [d(x)..d(x) + C], where x is the most recently
scanned vertex.

Property (ii) implies in particular that successive delere min operations return vertices in
nondecreasing order by tentative cost.

A one-level redistributive heap is a collection of B =[1g (C + 1)] +2 buckets, ? indexed
from 1 through B. Each bucket has an associated size. The size of bucket i is denoted by size(i)

and defined as follows:
size (1) =1;
size(iY=2"2for2<i $B-1;

size(B) = nC + 1.

Observe that the bucket sizes satisfy the following important inequality:

-1
(4)) JE size(i) 2 min (size (), C +1} for2<j < B.

i=]

Each bucket also has a range that is an interval of integers. Initially the ranges of the buck-
ets partition the interval [0..nC + 1]. In general the ranges partition the interval [dpg,..nC + 1],
where d,;,, is the maximum label of a scanned node. For each bucket / the upper bound u(i) of
its interval is maintained; the range of bucket i is range(i) = [u(i—1) + 1..u(i)], with the conven-
tions that u(0) = dpnin—1 and range(i) =@ if u(i—1) 2 u(i). Whereas the sizes of all buckets are
fixed throughout the computation, the ranges change; for each bucket i, u(i) is a nondecreasing
function of time.

i i 1
We denote the interval of integers (x | / < x S u) by [L..u].
2We denote log 7 by Ig.

-5

Initially u(i) =2""' =1 for 1 i S B-1, u(B) = nC + 1. Observe that this implies | range(i) |
< size(i). This inequality is maintained throughout the computation for each bucket. The labeled
vertices are stored in the buckets, with vertex v stored in bucket i if d(v) € range(i). Initally, ver-
tex s is inserted into bucket 1. The range of bucket 1 is maintained so that every vertex v in
bucket 1 has d(v) = u(1); thus the effective range of bucket 1 contains only u(1).

Each bucket is represented by a doubly-linked list of its vertices, to make insertion and
deletion possible in constant time. In addition, stored with each vertex is the index of the bucket
containing it.

The three heap operations are implemented as follows. To insert a newly labeled vertex v,
examine values of i in decreasing order, starting with { = B, until finding the largest { such that
u(i) < d(v); then insert v into bucket i + 1. To decrease the key of a vertex v, remove v from its
current bucket, say bucket j. Reduce the key of v. Proceed as in an insertion to reinsert v into the
correct bucket, but begin with bucket i = .

For a single vertex v, the time spent on insertion and all decrease operations is O(log C)
plus O(1) per decrease, because the index of the bucket containing v can never increase. Thus
the total time for all such operations during a run of Dijkstra’s algorithm is O(m + n logC).

The most complicated operation is delete min, which is performed as follows. If bucket 1 is
nonempty, return any vertex in bucket 1. Otherwise, find the nonempty bucket of smallest index,
say bucket j. By scanning through the items in bucket j, find a vertex of smallest tentative cost,
say v. Save v to retumn as the result of the delere min and distribute the remaining vertices in
bucket i among buckets of smaller index, as follows. Replace u(0) by d(v)}-1, u(1) by d(v), and
for i running from 2 through j—1, replace u({) by min {u(i—1) + size(i), u(j)}. Remove each ver-
tex from bucket j and reinsert it as in decrease; do not reinsert v.

Inequality (1) guarantees that, if j 2 2 in a delete min, every vertex in bucket j will move to
a bucket of strictly smaller index. It follows that the time spent on delete min operations is
O(log C) per delete min plus O(log C) per vertex, for a total of O(n log C) during a run of
Dijkstra’s algorithm. We conclude that the total running time of Dijkstra’s algorithm with this
implementation is O(m + n log C). The space required is O(m +log C). Johnson, using the
same data structure, obtained a bound worse by a factor of log log C, because he used binary
search instead of sequential scan to reinsert vertices into buckets.

3. Two-Level Redistributive Heaps

Reducing the running time of the algorithm of Section 2 requires reducing the number of
reinsertions of vertices into buckets. This can be done by increasing the bucket sizes, but then
inequality (1) no longer holds. We overcome this problem by dividing each bucket into

-6 -

segments. All segments within a bucket have the same size.

A two-level redistributive heap is defined by a parameter X, determining the number of seg-
ments within a bucket. The number of buckets is B =[logx(C + 1)] + 1. The sizes of the buck-

ets are as follows:
size(i)=K' for1<i <B-1;
size(BY=nC + 1.

As in the one-level scheme, bucket { has range(i) = [k(i—1) + 1..u(i)]), with u(0) =dpip—1
and u(B) =nC + 1. The remaining upper bounds on ranges have the following initial values:

i
u@j)= 3 K'-1 forl1<j<B-1.

i=]

For 1 <i < B-1, bucket { is partitioned into X segments, each of size K'~!. Segments arc
indexed by ordered pairs; segment (i,k) is segment k of bucket i. Bucket B consists of a single
segment.

Each segment has an associated range, which is a function of the range of its bucket. The
range of segment (i, k) is range(i,k) = [u(i,k—1) + 1..u(i, k)] where u(i,k) is defined as follows:

u(ik)=max {u(i-1), u@i) - (K—k)K'').

Observe that | range(i,k) | < K*! = size(i,k) for 1 Si SB—1and 1Sk S K. The algorithm
maintains the invariant that for 1 S i < B-1, | range(i) | S K"

The algorithm maintains the ranges of buckets (i.e. the u(i)’s) explicitly, but computes the
ranges of segments as needed. Observe that, given an integer x € range(i), the value of k such
that x € range(i,k) can be computed in constant time using the formula

k=K—|uG)x)/ K" .

Choosing K to be a power of two simplifies this computation on a computer whose number
representation is binary, but this is not necessary for our theoretical results.

The labeled vertices are stored in the segments, with veriex v stored in segment (i,k) if
d(v) e range(i,k). Each segment is represented by a doubly-linked list. The three heap

-7

operations are implemented as follows. An insert or decrease operation on a vertex v is per-
formed as in a one-level heap, except that once the bucket { such that d(v) € range(i) is located,
the k such that d(v) € range(i,k) is computed (in constant time), and v is inserted into segment
(i,k). The total time for all inserr and decrease operations during a run of Dijkstra’s algorithm is
O(m+Bn)=0(m +nlogx C).

The delete min operation is implemented much as in a one-level heap, except that only the
contents ‘of a single segment are distributed, not the contents of an entire bucket. To perform
delete min, find the first non-empty bucket, say j. Find the first nonempty segment within bucket
J. say (j,k). (f j=B, k=1, since bucket B consists of only a single segment.) If j =1, remove
and return any vertex in segment (j,k). Otherwise, scan the vertices in segment (j,k) to find one,
say v, with minimum tentative cost. Redefine u(i) for 0 <i{ < j—1 as in a one-level heap. Distri-
bute all vertices in segment (f,&) (except v) into their new correct segments, which lie in buckets
1 through j-1.

A few details of the data structure deserve comment. To facilitate locating the first
nonempty bucket, a bit for each bucket is maintained that indicates whether or not the bucket is
empty. Determining j in a delete min then takes O(B) time. The segments are represented as an
array of doubly-linked lists, with the index of segment (i,k) being K(i—1) + &£. Since each verex
in a segment that is distributed moves to a lower bucket, the total number of such movements is
O(Bn). The total time for all the delete min operations is O(8n) plus the time for n steps of the
form, *‘find the first nonempty segment in a given bucket.”’

If each such segment is found merely by scanning all the segments in the bucket, the time
for one such step is O(K'), and the total running time of Dijkstra’s algorithm is O(m + (B + K)n).
Choosing K proportional to log C /loglog C gives
B =[logy (C+1)] +1=0(0gC /loglog C), and the total running time is
O(m+nlogC /loglog C). The space required is O(m + (log C / log log C)?), reducible to
O(m + (log C / log log C)*) for any constant € > 0 using a trie [12] or even to O(m) using ran-
domization and dynamic perfect hashing [4].

If C < n, the rurming time of the algorithm can be reduced 1o O(m + n log C / log log n) by
using table lookup 1o find nonempty segments. Specifically, choose K =[lg n| . For each bucket
(other than bucket B), maintain an integer of [1g #] bits whose k™ bit is one if segment k of the
bucket is nonempty and zero otherwise. During a preprocessing step, construct an array of n
positions, indexed from 1 to n, such that position i contains & if and only if the k* bit of i
(expressed in binary) is the first nonzero bit. Construction of this array takes O(n) time, and once
the array is constructed, the first nonempty segment of a nonempty bucket can be found in 0(1)
time by accessing the array position indexed by the integer encoding the nonempty segments.

. 8-

By choosing the appropriate one of the two methods above for finding the first nonempty
segment in a bucket, we obtain a ime bound of O(m + n log C/ log log (nC)) for Dijkstra’s algo-
rithm.

4. Use of Fibonacci Heaps

Our final improvement reduces the running time of Dijkstra’s algorithm to
O(m + n Vlog C) by using a variant of Fibonacci heaps to find nonempty segments. Throughout
this section we shall refer 10 each segment by its index; as in Section 3, the index of segment (i, k)
is K (i-1) + k, which is an integer in the interval [1.XB-K + 1]. We associate with each labeled
vertex the index of the segment containing it. We need to be able to maintain the collection of
labeled vertices under the following three kinds of operations:

delete min: Find a labeled vertex of minimum index, mark it scanned, and retumn it.
insert(x): Declare x to be a newly labeled vertex, with predefined index.

decrease(x,value): Replace the index of labeled vertex x by value,; value must be smaller than the

old index of x.

In other words, we must maintain the set of labeled vertices as a heap, with the key of each
vertex equal to its index. A run of Dijkstra’s algorithm requires n insert operations, n delete min
operations, and at most m decrease operations, in addition to the time for maintaining bucket
boundaries and recomputing segments. The total time for all the latter bookkeeping is
O(m + Bn).

Fibonacci heaps (abbreviated F-heaps) support delete min in O (log n) amortized time ' and
inser: and decrease in O(1) amortized time [7], where n is the maximum heap size. But in our
application, the number of possible index values is much smaller than the number of vertices.
We shall describe how 1o extend Fibonacci heaps so that if the keys are integers in the interval
[1..N], the amortized time per delete min is O(log min {n,N}), while the amortized time per
insert or decrease remains O(1). In the application at hand, we can take N = KB. The choice of
Kk =2V8C1 gives B = 0(Qogy C) = 0(\iog C), and log N = O(vog C); therefore the total run-
ning time of Dijkstra’s algorithm is O(m + n Viog C).

1 ; B : ; ;
By amortized time we mean the time per operation averaged over a worst-case sequence of operations. Sec
Tarjan's survey paper [14] or Mehlhorn's book [10].

It remains for us to make the necessary changes to F-heaps. The main idea is to make sure
that such a heap contains at most N items, i.c., at most one item per key value. Making this idea
work in the presence of decrease operations requires some care and some knowledge of the inter-
nal workings of F-heaps.

We need to know the following facts about F-heaps. An F-heap consists of a collection of
heap-ordered trees whose nodes are the items in the heap. (A heap-ordered tree is a rooted tree
such that if p(x) is the parent of node x, the key of x is no greater than the key of p(x).) Each
node in an F-heap has a rank equal to the number of its children. A fundamental operation on F-
heaps is linking, which combines two heap ordered trees into one by comparing the keys of their
roots and making the root of smaller key the parent of the root of larger key, breaking a tie arbi-
trarily. A link operation takes O(1) time. Only trees with roots of equal rank are linked.

Each nonroot node in a F-heap is in one of two states, marked or unmarked. When a node
becomes a nonroot by losing a comparison during a link, it becomes unmarked. Nodes become
marked during decrease operations, as described below.

The three heap operations are performed as follows. To insernt a new item, merely make it
into a one-node tree and add this tree to the collection of trees. This takes O(1) time.

To perform a decrease operation on a node x, begin by updating the key of x. Then, if x is
not a root, cut the edge joining x and p(x) and repeat the following step, with y initially equal to
the old p(x), until y is unmarked or y is a tree root; cut the edge joining y and its parent p(y), and
replace y by the old p(y). Afier the last such cut, if the last node y is not a root, mark it.

The overall effect of such a decrease operation is to possibly break the initial tree contain-
ing x into several trees, one of which has root x. The time required by the decrease operation is
O(1) plus O(1) per cut. Since only one node is marked per cut, and since one node becomes
unmarked per cut except for at most one cut per decrease operation, the total number of cuts dur-
ing a sequence of decrease operations is at most twice the number of decrease operations, even
though a single decrease can result in many cuts.

To perform the third heap operation, delete min, scan all the tree roots and identify one, say
x, of minimum key. Remove x from its tree, thereby making each of its children a tree root.
Finally, repeatedly link trees whose roots have equal rank, until no two tree roots have equal
rank.

The key to the analysis of F-heaps is that manipulation of rooted trees in the ways described
above maintains the following invariant: for any node x, rank(x) = O(log size(x)), where size(x) is
the number of nodes in the subtree rooted at x. A simple analysis gives an amortized time bound
of O(1) for insert and decrease, and O(log n) for delete min.

210 -

Now we extend F-heaps to reduce the amonrtized time per delete min o O(log min {n,N}).
For each value i € [1..N], the algorithm maintains the set S(i) of items with key i. One item in
S(i) is designated the representative of S(i). All the items, both the representatives and the non-
representatives, are grouped into heap-ordered trees of the kind manipulated by the F-heap algo-
rithm. These trees are divided into two groups: active trees, those whose roots are representa-

tives, and passive trees, those whose roots are nonrepresentatives.

The algorithm maintains the following two invariants:

@) The key of a nonroot node x is strictly less than that of its parent (a strengthening of the
heap order property);

(ii) Every nonrepresentative is a root.

Invariant (ii) implies that all nodes in active trees are representatives and hence have dis-
tinct keys; thus the number of nodes in active trees is at most N. Invariants (i) and (ii) together
imply that the representative of minimum key is the root of an active tree; hence delete min need

only scan the roots of active trees.

The three heap operations are performed as follows. To insent an item x, make it into a one
node tree, which becomes active or passive depending on whether the set S(i) into which x is
inserted is empty or not; if it is, x becomes the representative of S(i). To perform a decrease
operation, proceed as on an ordinary F-heap as described above, with the following addition:
move x from its old set, say S(i), to the appropriate new set, say S(j). Make some other item (if
any) in S(i), say y, the representative of S(i) and make the tree with root y active. If x is the only
item in S(j), make the tree rooted at x active; otherwise, make it passive. Make other new trees
created by cuts active. The total time required by a decrease operation is O(1) plus O(1) per cut,
including the time to move trees between the active and passive groups.

To perform delete min, proceed as on an ordinary F-heap, with the following changes: scan
only the roots of active trees to find a minimum, and perform repeated linking only on active
trees; that is, after deleting the active node of minimum key, repeatedly link active trees whose
roots have equal rank until all active trees have roots of different ranks.

The efficiency analysis of the extended data structure is almost the same as that of the origi-
nal. Define the potential of the data structure to be the number of trees plus twice the number of
marked nodes. Define the amortized time of a heap operation to be its actual time (measured in
suitable units) plus the net increase in potential it causes. The initial potential is zero (if the ini-
tial heap is empty) and the potential is always nonnegative. It follows that, for any sequence of
heap operations, the total amortized time is an upper bound on the total actual time.

- 11 -

The amortized time of an insertion is O(1), since it increases the potential by one. A
decrease operation causing k cuts adds O(1)—k to the potential: each cut except for at most one
adds a ree but removes a marked node; marked nodes count for two in the potential. Thus a
decrease takes O (1) amortized time if a cut is regarded as taking unit ome.

Each link during a delete min operation reduces the potential by one and thus has an amor-
tized time of zero, if a link is regarded as taking unit time. Not counting links, the time spent
during a delete min is O(log min {a,N}), as is the increase in potential caused by removing a
node of minimum key: the maximum rank of any node is O(log min {n,N}). Thus the amortized
time of delete min is O(log min {n,N}), as desired.

The idea used here, that of grouping trees into active and passive, applies as well to Vheaps
[11] to give the same time bounds, but it does not scem to apply to relaxed heaps [6]. The
extended F-heap, if used directly in the implementation of Dijkstra’s algorithm, gives a running
time of O(m + n log C), the same as that obtained in Section 2.

5. Time Bounds in a Semilogarithmic Computation Model

In the previous sections, we analyzed our algorithms using a unit-cost random-access
machine [1] as the computation model. In particular, we assumed that addition and comparison
of integers in the interval [0..nC] takes O(1) time. If C is large, this assumption may not be real-
istic. In this section, we derive bounds for the algorithms assuming a semilogarithmic cost com-
putation model. We show that in this model, the m-term in our bounds becomes m[1g C /1g n] ,
while the n-term remains unchanged. The following two assumptions define the semilogarithmic
model:

(1) Arithmetic on integers of length O (log n) and all other random access machine operations
(index calculations, pointer assignments, etc.) take O(1) time;

(2) logC=n0,

In our algorithms, we represent arc costs and tentative costs d(v) as arrays of length
g (nC +1) / R], where R =|1g n / 2] . Each array element is an integer in the range [0..2%-1].
By assumption (1), indexing into these arrays takes O(1) time, but this is only reasonable if the
indices are O(log n) in length, which is the reason for imposing assumption (2). Henceforth in
this section we also assume that log C = £2 (log n), if log C = O(log n), the bounds of the previ-
ous sections hold without change for the semilogarithmic model. If log C = Q (log n), then
1g(nC + 1) = O(log C), a fact that we shall use repeatedly without further comment.

Let us first analyze the algorithm of Section 2. We shall revise and reformulate the algo-
rithm to fit into the semilogarithmic model better. In particular, we emphasize the bit manipula-
tion involved in the computation. Let B =[1g (nC +1)|. At a given time in the algorithm, let V
be a labeled vertex with minimum tentative cost d(v). Let o_;...o; be the binary representation

B-1 _
of d(v), i.e. o; € (0,1} and d(v)= ¥ o 2!, The algorithm maintains buckets numbered 1
=]
through B containing the labeled vertices, with bucket 1 containing every vertex u such that
d(u) =d(v) and bucket i, for 2 £i £ B, conlaining every vertex u such that position i—1 is the
largest position in which the binary representations of 4(u) and d(v) differ. Note that in this vari-
ant of the Section 2 algorithm, bucket ranges are represented implicitly rather than explicitly.

Finding the smallest nonempty bucket by a sequential scan over the buckets takes
O(log (nC + 1)) = O (log C) time. Distributing the vertices in a bucket is done by scanning down
through the appropriate bits of the tentative costs of the vertices in the bucket. Such distribution
takes O(log (nC + 1))=0O(log C) time per vericx over the entire algorithm. (Extracting the
appropriate bit of a tentative cost can be done either by appropriate shifting and masking opera-
tions, or, if these are not available, by table lookup. In either case, the time to extract a bit is
0(1).) Updating tentative costs takes O(m log C / log n) time over the entire algorithm. It fol-
lows that the total running time of Dijkstra’s algorithm is O(m log C / log n + n log C).

Next we tumn to the algorithms of Sections 3 and 4. In these algorithms each bucket is
divided into K segments. In the spirit of assumption (1), we restrict ourselves 1o
log K = O(log n). The number of buckets is B =[logx (nC +1)] . The assignment of labeled
vertices to buckets and segments is as follows. Let op_;...0p be the K-ary expansion of the
minimum tentative cost of a labeled vertex, say v. A labeled vertex 4 belongs to segment k of
bucket i if either i =1, k=09 + 1, and d(u) =d(v); or if i—1 is the largest position at which the
K-ary expansions of d(u) and d(v) differand k = ¢;_; + 1.

The time to find the first nonempty segment (by scanning over buckets, then over segments
within a bucket) is O(B + K). The total time for distributing vertices among segments is O(8)
per vertex. The total running time of the method is thus O(m log C / log n + nB + nK). Choos-
ing K proportional to 1g(nC)/lglg(nC) gives a total rnning time of
O(mlogC /logn+nlog(nC)/loglog(n C))=0(mlogC /logn+nlogC /loglog C).

Adding an extended F-heap to represent the nonempty segments, as in Section 4, reduces
the time 1o find the first nonempty segment to O((log (BK))? / log n): there are O(log (BK))
steps, each of which manipulates integers in the interval [1..BK], which is the range of the seg-
ment indices.) The m decrease operations on the F-heap take O(m log (BK') / log n) time. The
total time 10 run Dijkstra’s algorithm is thus
O(m (log C / log n +log (BK) / logn) + n(B + (log (BK))? / log n)). Choosing K =2 1Y)l

if lg(nC)s (]gn)’, K=n if 1g(nC)> (Ign)2 gives a total running time of
O(mlog C /log n +n \log C).

It is worthwhile to compare these bounds with the running time of the straight F-heap-based
algorithm [7]. That algorithm requires O(m + n log n) steps, each of which involves addition or
comparison of integers in the range [0..nC] and thus takes O(log C / log n) time in the semiloga-
rithmic model. The total time of the algorithm is thus O(m log C / log n + n log C), the same as
the time for the modified Section 2 algorithm. The F-heap algorithm is more complicated, how-
ever. The algorithms of Sections 3 and 4 are both faster than the F-heap algorithm, for appropri-
ate values of the parameters. Note that the time to read the problem input is £2 (m log C / log n).
Assuming that solving the problem requires reading the input, the algorithm that combines a
two-level distributive heap with an F-heap is optimum to within a constant factor if
log C = Q ((og n)*),ie.,C =nE™ orifm=Q (nlogn / Viog C).

References

(1 A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, MA, 1974,

[2] E. V. Denardo and B. L. Fox, *‘Shortest-route methods: 1. Reaching, pruning, and buck-
ets,"’ Operations Research 27 (1979), 161-186.

[3] R. Dial, ‘*Algorithm 360: shortest path forest with topological ordering,”” Comm. ACM 12
(1969), 632-633.

[4] M. Dietzfelbinger, A. Karlin, K. Mehlhom, F. Meyer auf der Heide, H. Rohnert, and R.
Tarjan, ‘' Dynamic perfect hashing: upper and lower bounds,’’ to appear.

[5) E. W. Dijkstra, ‘A note on two problems in connexion with graphs,'' Numer. Math. 1
(1959), 269-271.

[6] J. R. Driscoll, H. N. Gabow, R. Shraimman, and R. E. Tarjan, ‘‘Relaxed heaps: an alterna-
tive to Fibonacci heaps,'’ Technical Report CS-TR-109-87, Department of Computer Sci-
ence, Princeton University, Princeton, NJ, 1987, Comm. ACM, to appear.

(7] M. L. Fredman and R. E. Tarjan, *‘Fibonacci heaps and their uses in improved network
optimization algorithms,”’ J. Assoc. Comput. Mach. 34 (1987), 596-615.

[8] D. B. Johnson, ‘‘Efficient algorithms for shortest paths in sparse networks,'’ J. Assoc.
Comput. Mach. 24 (1977), 1-13.

[9] D. B. Johnson, ‘‘Efficient special-purpose priority queues,’” Proc. 15 Annual Allerton
Conf. on Comm., Control, and Computing (1977), 1-7.

(10]

(11]

[12]

[13]

[14)

[15]

[16]

-14 -

K. Mehlhom, Data Structures and Algorithms 1: Sorting and Searching, Springer-Verlag,
New York, NY, 1984

G. L. Peterson, ‘A balanced tree scheme for meldable heaps with updates,”’ Technical
Report GIT-TCS-87-23, School of Information and Computer Science, Georgia Institute
of Technology, Atlanta, GA, 1987.

R. E. Tarjan and A. C. - C. Yao, **Storing a sparse table,”” Comm. ACM 22 (1979), 606-
611.

R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA 1983.

R.E. Tarjan, ‘*‘Amonrized computational complexity,'’ SIAM J. Alg. Disc. Meth. 6 (1985),
306-318.

P. Van Emde Boas, R. Kaas, and E. Zijlstra, “‘Design and implementation of an efficient
priority queue,”” Math. Sys. Theory 10 (1977), 99-127,

P. Van Emde Boas, ‘‘Preserving order in a forest in less than logarithmic time and linear
space,”’ Inform. Process. Lett. 6 (1977), 80-82.

	A_1988_04 0000_1heitscover
	A_1988_04 0001
	A_1988_04 0002
	A_1988_04 0003
	A_1988_04 0004
	A_1988_04 0005
	A_1988_04 0006
	A_1988_04 0007
	A_1988_04 0008
	A_1988_04 0009
	A_1988_04 0010
	A_1988_04 0011
	A_1988_04 0012
	A_1988_04 0013
	A_1988_04 0014
	A_1988_04 0015
	A_1988_04 0016

