
External sorting

R & G – Chapter 13

Brian Cooper
Yahoo! Research

A little bit about Y!

 Yahoo! is the most visited website in the
world
 Sorry Google
 500 million unique visitors per month
 74 percent of U.S. users use Y! (per month)
 13 percent of U.S. users’ online time is on Y!

Why sort?

Why sort?
 Users usually want data sorted
 Sorting is first step in bulk-loading a B+ tree
 Sorting useful for eliminating duplicates
 Sort-merge join algorithm involves sorting

Blueberry

Strawberry

Kiwi

Mango

Orange

Apple

Grapefruit

Banana

Blueberry

Strawberry

Orange

Mango

Kiwi

Grapefruit

Banana

Apple

So?
 Don’t we know how to sort?

 Quicksort
 Mergesort
 Heapsort
 Selection sort
 Insertion sort
 Radix sort
 Bubble sort
 Etc.

 Why don’t these work for databases?

Key problem in database sorting

4 GB: $300

480 GB: $300

 How to sort data that does not fit in memory?

Example: merge sort

Apple

Banana

Blueberry

Grapefruit

Kiwi
Mango
Orange

Strawberry

Apple

Banana

Blueberry

Grapefruit

Kiwi
Mango

Orange

Strawberry

Apple

Banana
Grapefruit

Orange

Blueberry

Kiwi
Mango

Strawberry

Apple

Banana
Grapefruit

Orange

Blueberry

Kiwi
Mango

Strawberry

Example: merge sort

Apple

Banana
Grapefruit

Orange

Strawberry

Mango
Kiwi

Blueberry

Grapefruit

Apple
Banana

Orange

Strawberry

Kiwi
Blueberry

Mango

Blueberry

Apple
Banana

Grapefruit

Strawberry

Mango
Kiwi

Orange

Isn’t that good enough?
 Consider a file with N records

 Merge sort is O(N lg N) comparisons

 We want to minimize disk I/Os
 Don’t want to go to disk O(N lg N) times!

 Key insight: sort based on pages, not records
 Read whole pages into RAM, not individual records
 Do some in-memory processing
 Write processed blocks out to disk
 Repeat

 Pass 0: sort each page

 Pass 1: merge two pages into one run

 Pass 2: merge two runs into one run

 …

 Sorted!

2-way sort

Unsorted Sorted

RAM

Sorted Sorted

RAMSorted

Sorted Sorted

RAM

Sorted

What did that cost us?
 P pages in the file
 Each pass: read and wrote P pages
 How many passes?

 Pass 0
 Pass 1: went from P pages to P/2 runs
 Pass 2: went from P/2 runs to P/4 runs
 …
 Total number of passes: Log2 P + 1

 Total cost: 2P * (Log2 P + 1)

What did that cost us?
 Why is this better than plain old merge sort?

 N >> P
 So O(N lg N) >> O(P lg P)

 Example:
 1,000,000 record file

 8 KB pages
 100 byte records
 = 80 records per page
 = 12,500 pages

 Plain merge sort: 41,863,137 disk I/O’s
 2-way external merge sort: 365,241 disk I/O’s
 4.8 days versus 1 hour

Can we do better?
 2-way merge sort only uses 3 memory buffers

 Two buffers to hold input records
 One buffer to hold output records

 When that buffer fills up, flush to disk

 Usually we have a lot more memory than that
 Set aside 100 MB for sort scratch space = 12,800 buffer

pages

 Idea: read as much data into memory as possible
each pass
 Thus reducing the number of passes
 Recall total cost:

2P * Passes

External merge sort
 Assign B input buffers and 1 output buffer

 Pass 0: Read in runs of B pages, sort, write to disk

 Pass 1: Merge B runs into one
 For each run, read one block
 When a block is used up, read next block of run

 Pass 2: Merge B runs into one

 …
 Sorted!

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

What did that cost us?
 P pages in file, B buffer pages in RAM

 P/B runs of size B

 Each pass: read and write P pages

 How many passes?
 LogB-1  P/B   + 1

 Total cost: 2P * LogB-1  P/B   + 1

Example

 1,000,000 records in 12,500 pages
 Use 10 buffer pages in memory
 4 passes
 100,000 disk I/Os

 17 minutes versus 1 hour for 2-way sort

Can I do two passes?
 Pass 0: sort runs
 Pass 1: merge runs

 Given B buffers
 Need:

 No more than B-1 runs
 Each run no longer than B pages

 Can do two passes if P ≤ B * (B-1)

 Question: what’s the largest file we can sort in three
passes? N passes?

Make I/Os faster
 Cost = I/Os is a simplification

 Sequential I/Os are cheaper than random I/Os

 Read blocks of pages at a time
 X = Blocking factor
 B = buffer pages
 (B/X – X) input “buffer blocks”, one output “buffer block”

 Result
 Fewer runs merged per pass = more passes
 Less time per I/O = quicker passes
 Tradeoff!

 Maximize total sort time by choosing X given B, P and I/O
latencies

Overlap computation and I/O

 Problem: CPU must wait for I/O
 Suppose I need to read a new block

 Stop merging
 Initiate I/O
 Wait
 Complete I/O
 Resume merging

Solution: double buffering

 Keep a second set of buffers
 Process one set while waiting for disk I/O

to fill the other set

Input Output

Solution: double buffering

 Keep a second set of buffers
 Process one set while waiting for disk I/O

to fill the other set

Input Output

Solution: double buffering

 Keep a second set of buffers
 Process one set while waiting for disk I/O

to fill the other set

Input
Output

Solution: double buffering

 Keep a second set of buffers
 Process one set while waiting for disk I/O

to fill the other set

Input Output

Solution: double buffering

 Keep a second set of buffers
 Process one set while waiting for disk I/O

to fill the other set

Input Output

Solution: double buffering

 Keep a second set of buffers
 Process one set while waiting for disk I/O

to fill the other set

Input Output

What if the data is already sorted?

 Yay!

 Often this happens because of a B+
tree index
 Leaf level of a B+ tree has all records in

sorted order
 Two possibilities: B+ tree is clustered or

unclustered

Clustered B+ tree

Apple -
Banana

Pear -
Strawberry

Kiwi -
Lemon

Lime -
Mango

Nectarine -
Orange

Blueberry -
Grapefruit

Tomato -
Wolfberry

N
ec

ta
rin

e

To
m

at
o

Ki
w

i

Bl
ue

be
rr

y

Li
m

e

Pe
ar

Sweep through leaf layer, reading data blocks in order

Clustered B+ tree

Kiwi -
Lemon

Nectarine -
Orange

Pear -
Strawberry

Apple -
Banana

Tomato -
Wolfberry

Lime -
Mango

Blueberry -
Grapefruit

N
ec

ta
rin

e

To
m

at
o

Ki
w

i

Bl
ue

be
rr

y

Li
m

e

Pe
ar

Sweep through leaf layer, reading leaf blocks in order

What did that cost us?

 Traverse B+ tree to left-most leaf page
 Read all leaf pages

 For each leaf page, read data pages

 Data not in B+ tree:
 Height + Width + Data pages

 Data in B+ tree:
 Height + Width

Example
 1,000,000 records, 12,500 data pages
 Assume keys are 10 bytes, disk pointers are 8 bytes

 So ≈ 300 entries per 8 KB B+ tree page (if two-thirds full)

 Data not in B+ tree
 12,500 entries needed = 42 leaf pages
 Two level B+tree
 Total cost: 1 + 42 + 12,500 = 12,543 I/Os
 2 minutes versus 17 minutes for external merge sort

 Data in B+ tree
 Three level B+ tree, 12,500 leaf pages
 Total cost: 2 + 12,500 = 12,502 I/Os
 Also about 2 minutes

What if the B+ tree is unclustered?

 We know the proper sort order of the
data

 But retrieving the data is hard!

What if the B+ tree is unclustered?

 Result is that in the worst case, may
need one disk I/O per record
 Even though we know the sort order!

 Usually external merge sort is better in
these cases
 Unless all you need is the set of keys

Summary
 Sorting is very important

 Basic algorithms not sufficient
 Assume memory access free, CPU is costly
 In databases, memory (e.g. disk) access is costly, CPU is

(almost free)

 Try to minimize disk accesses
 2-way sort: read and write records in blocks
 External merge sort: fill up as much memory as possible
 Blocked I/O: try to do sequential I/O
 Double buffering: read and compute at the same time
 Clustering B+ tree: the data is already sorted. Hooray!
 Unclusered B+ tree: no help at all

