External sorting

R & G — Chapter 13

Brian Cooper
Yahoo! Research

!

A little bit about Y!

= Yahoo! is the most visited website in the
world
= Sorry Google
= 500 million unique visitors per month
= /4 percent of U.S. users use Y! (per month)
= 13 percent of U.S. users’ online time is on Y!

YAHOO.’ MOVIES YAHOO.’ TY YAHOO-’ FINANCE MYYAHOO"
— del.icio.us
YAHOO! MAIL flickr YAHOO! SEARCH l.

YAHOO! LocaL YARHOO! CALENDAR
YAHOO! ANSWERS RRRe st I T YRHOO! NEWS

Why sort?

Showving 1 to 15 of 200

Sort by: Name Distance Previonn § Mesct
Business Name: Address: Miles**
King Pin Doughnuts 2521 Durant Ave # A 0.2
(510) 843-6688 See reviews on Local Berkeley, CA llap ’
Noah's Bagels 2344 Telegraph Ave 0.2
(510) 849-9951 See reviews on Local Berkeley, CA llap ’
Dream Fluff Donuts 2637 Ashby Ave 10
(510) 649-0471 See reviews on Local Berkeley, CA llap ’
Noah's Bagels 3170 College Ave 14
(510) 654-0944 See reviews on Local Berkeley, CA llap ’
All Star Donut 1255 University Ave 15
(510) 666-0878 See reviews on Local Berkeley, CA l1ap ’
Noah's Bagels 1883 Solano Ave 17
(510) 525-4447 See reviews on Local Berkeley, CA llap ’
Boogie Woogie Bagel Boy 1281 Gilman St 13
(510) 524-3104 See reviews on Local Albany, CA llap ’
Boogie Woogie Bagel Boy 1218 Santa Fe Ave 13
(510) 527-0272 See reviews on Local Albany, CA llap ’
Berkeley Donut Shop 3043 San Pablo Ave 20
(510) 653-9044 See reviews on Local Berkeley, CA llap ’
Happy Donuts 1041 Gilman St 21

(510) 524-9816 See reviews on Local

Berkeley, CA llap

amazoncom

"toy" > Toys & Games

Showing 1 - 24 of 260,516 Results Pr

o

vicus | Page: 1 2 3 ... | Nexts Sort by | Prce: Highto Low v

[0

Steiff Germany: Giant Studio Miss Megan Modular Playground Meade LX200 GPS 16 in. UHTC
Elephant: Overall Size ~ 210cm 3.5 Inch Posts SCT with Super Field Tripod
high (82.68") Buyv new: $12,922.00 Buy new: $10,988.71
Buv new: $22:666-66 $16,000.00 Ususzlly ships in 2 to 3 weeks In Stock
Ususzally ships in 3 to 5 weeks > Show enly SpertsPlay items
4. 5 5. 8 8
Apollo 17 Astronaut Space Suit Meade 14" f/8 RCX Advanced Lizard Thumb Piece Entry Way
Replica Ritchey-Chretien Telescope, Lock Set - ETS241B - Thumbgrip
S S B with UHTC; Tripod - 1408-40-01 Handlesets
y ” ; s
N e Buv new: 4384868 §9,599.99 Currently unavailable
2 Used & new from $9,593.71
In Stock

> Show only MEA items

Why sort?

Users usually want data sorted
Sorting is first step in bulk-loading a B+ tree
Sorting useful for eliminating duplicates

Sort-merge join algorithm involves sorting

Banana

Grapefruit

Apple

Orange

Mango

Kiwi

Strawberry

Blueberry

)

Apple

Banana

Blueberry

Grapefruit

Kiwi

Mango

Orange

Strawberry

So?

= Don’t we know how to sort?
= Quicksort
= Mergesort
= Heapsort
= Selection sort
= Insertion sort
= Radix sort
= Bubble sort
= Etc.

= Why don’t these work for databases?

Key problem in database sorting

4 GB: $300

480 GB: $300

= How to sort data that does not fit in memory?

Example: merge sort

Example: merge sort

Isn’t that good enough?

Consider a file with N records

Merge sort is O(N Ig N) comparisons

We want to minimize disk I/Os

Don’t want to go to disk O(N Ig N) times!

Key insight: sort based on pages, not records

Read whole pages into RAM, not individual records
Do some in-memory processing

Write processed blocks out to disk

Repeat

2-way sort

Pass 0: sort each page

3 5

—
RAM

Pass 1: merge two pages into one run

P P
Sorted - Sorted
Sorted

RAM
Pass 2: merge two runs into one run

Sorted

Sorted

Sorted!

What did that cost us?

P pages in the file
Each pass: read and wrote P pages

How many passes?

= Pass 0

= Pass 1: went from P pages to P/2 runs
= Pass 2: went from P/2 runs to P/4 runs

Total number of passes: [Log, P] + 1

Total cost: 2P * ([Log, P] + 1)

What did that cost us?

= Why is this better than plain old merge sort?
= N>>P

= SOO(NIgN)>>O(PlgP)

= Example:
= 1,000,000 record file
= 8 KB pages
= 100 byte records

= = 80 records per page
= = 12,500 pages

= Plain merge sort: 41,863,137 disk I/O’s

= 2-way external merge sort: 365,241 disk I/O’s
= 4.8 days versus 1 hour

Can we do better?

= 2-way merge sort only uses 3 memory buffers
= Two buffers to hold input records

= One buffer to hold output records
= When that buffer fills up, flush to disk

= Usually we have a lot more memory than that

= Set aside 100 MB for sort scratch space = 12,800 buffer
pages

= Idea: read as much data into memory as possible
each pass
= Thus reducing the number of passes
= Recall total cost:

2P * Passes

External merge sort

Assign B input buffers and 1 output buffer
Pass 0: Read in runs of B pages, sort, write to disk

Pass 1. Merge B runs into one
= For each run, read one block
= When a block is used up, read next block of run

Pass 2: Merge B runs into one

Sorted!

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

Example

Input Output

What did that cost us?

P pages in file, B buffer pages in RAM
P/B runs of size B
Each pass: read and write P pages

How many passes?
= [Logg[P/B]]+1

Total cost: 2P * [Logg. [P/B]|+ 1

Example

= 1,000,000 records in 12,500 pages
= Use 10 buffer pages in memory

= 4 passes

= 100,000 disk I/Os
= 17 minutes versus 1 hour for 2-way sort

Can I do two passes?

Pass 0: sort runs
Pass 1. merge runs

Given B buffers
Need:

= No more than B-1 runs
= Each run no longer than B pages

Can do two passes if P < B * (B-1)

Question: what's the largest file we can sort in three
passes? N passes?

Make I/Os faster

= Cost = I/Os is a simplification
= Sequential I/Os are cheaper than random I/Os

= Read blocks of pages at a time
= X = Blocking factor
= B = buffer pages
= (B/X —X) input “buffer blocks”, one output “buffer block”

= Result
= Fewer runs merged per pass = more passes

= Less time per I/O = quicker passes

= [radeoff!

= Maximize total sort time by choosing X given B, P and I/O
latencies

Overlap computation and I/O

= Problem: CPU must wait for I/0O

= Suppose I need to read a new block
= Stop merging
= Initiate I/O
« Wait
=« Complete I/O
= Resume merging

Solution: double buffering

= Keep a second set of buffers

= Process one set while waiting for disk I/O
to fill the other set

Input Output

Solution: double buffering

= Keep a second set of buffers

= Process one set while waiting for disk I/O
to fill the other set

Solution: double buffering

= Keep a second set of buffers

= Process one set while waiting for disk I/O
to fill the other set

Solution: double buffering

= Keep a second set of buffers

= Process one set while waiting for disk I/O
to fill the other set

Input Output

Solution: double buffering

= Keep a second set of buffers

= Process one set while waiting for disk I/O
to fill the other set

Input Output

Solution: double buffering

= Keep a second set of buffers

= Process one set while waiting for disk I/O
to fill the other set

Input Output

What if the data is already sorted?

O Yay'

= Often this happens because of a B+
tree index

= Leaf level of a B+ tree has all records in
sorted order

= Two possibilities: B+ tree is clustered or
unclustered

Clustered B+ tree

Sweep through leaf layer, reading data blocks in order

~—— ‘v<

S

Clustered B+ tree

Sweep through leaf layer, reading leaf blocks in order

What did that cost us?

= Traverse B+ tree to left-most leaf page

= Read all leaf pages
= For each leaf page, read data pages

= Data not in B+ tree:
= Height + Width + Data pages

= Data in B+ tree:
= Height + Width

Example

1,000,000 records, 12,500 data pages

Assume keys are 10 bytes, disk pointers are 8 bytes
= S0 = 300 entries per 8 KB B+ tree page (if two-thirds full)

Data not in B+ tree

= 12,500 entries needed = 42 leaf pages

= Two level B+tree

= Total cost: 1 +42 + 12,500 = 12,543 I/Os

= 2 minutes versus 17 minutes for external merge sort

Data in B+ tree

= Three level B+ tree, 12,500 leaf pages
= Total cost: 2 + 12,500 = 12,502 I/Os
= Also about 2 minutes

What if the B+ tree is unclustered?

= We know the proper sort order of the
data

= But retrieving the data is hard!

What if the B+ tree is unclustered?

= Result is that in the worst case, may
need one disk I/O per record

=« Even though we know the sort order!

= Usually external merge sort is better in
these cases

= Unless all you need is the set of keys

Summary

= Sorting is very important

= Basic algorithms not sufficient
= Assume memory access free, CPU is costly

In databases, memory (e.g. disk) access is costly, CPU is
(almost free)

= Try to minimize disk accesses

2-way sort: read and write records in blocks

External merge sort: fill up as much memory as possible
Blocked I/O: try to do sequential I/O

Double buffering: read and compute at the same time
Clustering B+ tree: the data is already sorted. Hooray!
Unclusered B+ tree: no help at all

