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A little bit about Y!

 Yahoo! is the most visited website in the
world
 Sorry Google
 500 million unique visitors per month
 74 percent of U.S. users use Y! (per month)
 13 percent of U.S. users’ online time is on Y!



Why sort?





Why sort?
 Users usually want data sorted
 Sorting is first step in bulk-loading a B+ tree
 Sorting useful for eliminating duplicates
 Sort-merge join algorithm involves sorting
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So?
 Don’t we know how to sort?

 Quicksort
 Mergesort
 Heapsort
 Selection sort
 Insertion sort
 Radix sort
 Bubble sort
 Etc.

 Why don’t these work for databases?



Key problem in database sorting

4 GB: $300

480 GB: $300

 How to sort data that does not fit in memory?



Example: merge sort
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Example: merge sort

Apple

Banana
Grapefruit

Orange

Strawberry

Mango
Kiwi

Blueberry

Grapefruit

Apple
Banana

Orange

Strawberry

Kiwi
Blueberry

Mango

Blueberry

Apple
Banana

Grapefruit

Strawberry

Mango
Kiwi

Orange



Isn’t that good enough?
 Consider a file with N records

 Merge sort is O(N lg N) comparisons

 We want to minimize disk I/Os
 Don’t want to go to disk O(N lg N) times!

 Key insight: sort based on pages, not records
 Read whole pages into RAM, not individual records
 Do some in-memory processing
 Write processed blocks out to disk
 Repeat



 Pass 0: sort each page

 Pass 1: merge two pages into one run

 Pass 2: merge two runs into one run

 …

 Sorted!
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What did that cost us?
 P pages in the file
 Each pass: read and wrote P pages
 How many passes?

 Pass 0
 Pass 1: went from P pages to P/2 runs
 Pass 2: went from P/2 runs to P/4 runs
 …
 Total number of passes: Log2 P + 1

 Total cost: 2P * (Log2 P + 1)



What did that cost us?
 Why is this better than plain old merge sort?

 N >> P
 So O(N lg N) >> O(P lg P)

 Example:
 1,000,000 record file

 8 KB pages
 100 byte records
 = 80 records per page
 = 12,500 pages

 Plain merge sort: 41,863,137 disk I/O’s
 2-way external merge sort: 365,241 disk I/O’s
 4.8 days versus 1 hour



Can we do better?
 2-way merge sort only uses 3 memory buffers

 Two buffers to hold input records
 One buffer to hold output records

 When that buffer fills up, flush to disk

 Usually we have a lot more memory than that
 Set aside 100 MB for sort scratch space = 12,800 buffer

pages

 Idea: read as much data into memory as possible
each pass
 Thus reducing the number of passes
 Recall total cost:

2P * Passes



External merge sort
 Assign B input buffers and 1 output buffer

 Pass 0: Read in runs of B pages, sort, write to disk

 Pass 1: Merge B runs into one
 For each run, read one block
 When a block is used up, read next block of run

 Pass 2: Merge B runs into one

 …
 Sorted!
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What did that cost us?
 P pages in file, B buffer pages in RAM

 P/B runs of size B

 Each pass: read and write P pages

 How many passes?
 LogB-1  P/B   + 1

 Total cost: 2P * LogB-1  P/B   + 1



Example

 1,000,000 records in 12,500 pages
 Use 10 buffer pages in memory
 4 passes
 100,000 disk I/Os

 17 minutes versus 1 hour for 2-way sort



Can I do two passes?
 Pass 0: sort runs
 Pass 1: merge runs

 Given B buffers
 Need:

 No more than B-1 runs
 Each run no longer than B pages

 Can do two passes if P ≤ B * (B-1)

 Question: what’s the largest file we can sort in three
passes? N passes?



Make I/Os faster
 Cost = I/Os is a simplification

 Sequential I/Os are cheaper than random I/Os

 Read blocks of pages at a time
 X = Blocking factor
 B = buffer pages
 (B/X – X) input “buffer blocks”, one output “buffer block”

 Result
 Fewer runs merged per pass = more passes
 Less time per I/O = quicker passes
 Tradeoff!

 Maximize total sort time by choosing X given B, P and I/O
latencies



Overlap computation and I/O

 Problem: CPU must wait for I/O
 Suppose I need to read a new block

 Stop merging
 Initiate I/O
 Wait
 Complete I/O
 Resume merging



Solution: double buffering

 Keep a second set of buffers
 Process one set while waiting for disk I/O

to fill the other set
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Solution: double buffering
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What if the data is already sorted?

 Yay!

 Often this happens because of a B+
tree index
 Leaf level of a B+ tree has all records in

sorted order
 Two possibilities: B+ tree is clustered or

unclustered



Clustered B+ tree
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Clustered B+ tree
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What did that cost us?

 Traverse B+ tree to left-most leaf page
 Read all leaf pages

 For each leaf page, read data pages

 Data not in B+ tree:
 Height + Width + Data pages

 Data in B+ tree:
 Height + Width



Example
 1,000,000 records, 12,500 data pages
 Assume keys are 10 bytes, disk pointers are 8 bytes

 So ≈ 300 entries per 8 KB B+ tree page (if two-thirds full)

 Data not in B+ tree
 12,500 entries needed = 42 leaf pages
 Two level B+tree
 Total cost: 1 + 42 + 12,500 = 12,543 I/Os
 2 minutes versus 17 minutes for external merge sort

 Data in B+ tree
 Three level B+ tree, 12,500 leaf pages
 Total cost: 2 + 12,500 = 12,502 I/Os
 Also about 2 minutes



What if the B+ tree is unclustered?

 We know the proper sort order of the
data

 But retrieving the data is hard!



What if the B+ tree is unclustered?

 Result is that in the worst case, may
need one disk I/O per record
 Even though we know the sort order!

 Usually external merge sort is better in
these cases
 Unless all you need is the set of keys



Summary
 Sorting is very important

 Basic algorithms not sufficient
 Assume memory access free, CPU is costly
 In databases, memory (e.g. disk) access is costly, CPU is

(almost free)

 Try to minimize disk accesses
 2-way sort: read and write records in blocks
 External merge sort: fill up as much memory as possible
 Blocked I/O: try to do sequential I/O
 Double buffering: read and compute at the same time
 Clustering B+ tree: the data is already sorted. Hooray!
 Unclusered B+ tree: no help at all




