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A little bit about Y!

= Yahoo! is the most visited website in the
world
= Sorry Google
= 500 million unique visitors per month
= /4 percent of U.S. users use Y! (per month)
= 13 percent of U.S. users’ online time is on Y!
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Why sort?

Showving 1 to 15 of 200

Sort by: Name Distance Previonn § Mesct
Business Name: Address: Miles**
King Pin Doughnuts 2521 Durant Ave # A 0.2
(510) 843-6688 See reviews on Local Berkeley, CA llap ’
Noah's Bagels 2344 Telegraph Ave 0.2
(510) 849-9951 See reviews on Local Berkeley, CA llap ’
Dream Fluff Donuts 2637 Ashby Ave 10
(510) 649-0471 See reviews on Local Berkeley, CA llap ’
Noah's Bagels 3170 College Ave 14
(510) 654-0944 See reviews on Local Berkeley, CA llap ’
All Star Donut 1255 University Ave 15
(510) 666-0878 See reviews on Local Berkeley, CA l1ap ’
Noah's Bagels 1883 Solano Ave 17
(510) 525-4447 See reviews on Local Berkeley, CA llap ’
Boogie Woogie Bagel Boy 1281 Gilman St 13
(510) 524-3104 See reviews on Local Albany, CA llap ’
Boogie Woogie Bagel Boy 1218 Santa Fe Ave 13
(510) 527-0272 See reviews on Local Albany, CA llap ’
Berkeley Donut Shop 3043 San Pablo Ave 20
(510) 653-9044 See reviews on Local Berkeley, CA llap ’
Happy Donuts 1041 Gilman St 21

(510) 524-9816 See reviews on Local

Berkeley, CA llap




amazoncom

"toy" > Toys & Games

Showing 1 - 24 of 260,516 Results Pr

o

vicus | Page: 1 2 3 ... | Nexts Sort by | Prce: Highto Low v

[0

Steiff Germany: Giant Studio Miss Megan Modular Playground Meade LX200 GPS 16 in. UHTC
Elephant: Overall Size ~ 210cm 3.5 Inch Posts SCT with Super Field Tripod
high (82.68") Buyv new: $12,922.00 Buy new: $10,988.71
Buv new: $22:666-66 $16,000.00 Ususzlly ships in 2 to 3 weeks In Stock
Ususzally ships in 3 to 5 weeks > Show enly SpertsPlay items
4. 5 5. 8 8
Apollo 17 Astronaut Space Suit Meade 14" f/8 RCX Advanced Lizard Thumb Piece Entry Way
Replica Ritchey-Chretien Telescope, Lock Set - ETS241B - Thumbgrip
S S B with UHTC; Tripod - 1408-40-01 Handlesets
y ” ; s
N e Buv new: 4384868 §9,599.99 Currently unavailable
2 Used & new from $9,593.71
In Stock

> Show only MEA items



Why sort?

Users usually want data sorted
Sorting is first step in bulk-loading a B+ tree
Sorting useful for eliminating duplicates

Sort-merge join algorithm involves sorting
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So?

= Don’t we know how to sort?
= Quicksort
= Mergesort
= Heapsort
= Selection sort
= Insertion sort
= Radix sort
= Bubble sort
= Etc.

= Why don’t these work for databases?



Key problem in database sorting

4 GB: $300

480 GB: $300

= How to sort data that does not fit in memory?



Example: merge sort




Example: merge sort




Isn’t that good enough?

Consider a file with N records

Merge sort is O(N Ig N) comparisons

We want to minimize disk I/Os

Don’t want to go to disk O(N Ig N) times!

Key insight: sort based on pages, not records

Read whole pages into RAM, not individual records
Do some in-memory processing

Write processed blocks out to disk

Repeat



2-way sort

Pass 0: sort each page
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—
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Pass 1: merge two pages into one run

P P
Sorted - Sorted
Sorted

RAM
Pass 2: merge two runs into one run

Sorted

Sorted

Sorted!



What did that cost us?

P pages in the file
Each pass: read and wrote P pages

How many passes?

= Pass 0

= Pass 1: went from P pages to P/2 runs
= Pass 2: went from P/2 runs to P/4 runs

Total number of passes: [Log, P] + 1

Total cost: 2P * ([Log, P] + 1)



What did that cost us?

= Why is this better than plain old merge sort?
= N>>P

= SOO(NIgN)>>O(PlgP)

= Example:
= 1,000,000 record file
= 8 KB pages
= 100 byte records

= = 80 records per page
= = 12,500 pages

= Plain merge sort: 41,863,137 disk I/O’s

= 2-way external merge sort: 365,241 disk I/O’s
= 4.8 days versus 1 hour



Can we do better?

= 2-way merge sort only uses 3 memory buffers
= Two buffers to hold input records

= One buffer to hold output records
= When that buffer fills up, flush to disk

= Usually we have a lot more memory than that

= Set aside 100 MB for sort scratch space = 12,800 buffer
pages

= Idea: read as much data into memory as possible
each pass
= Thus reducing the number of passes
= Recall total cost:

2P * Passes



External merge sort

Assign B input buffers and 1 output buffer
Pass 0: Read in runs of B pages, sort, write to disk

Pass 1. Merge B runs into one
= For each run, read one block
= When a block is used up, read next block of run

Pass 2: Merge B runs into one

Sorted!
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What did that cost us?

P pages in file, B buffer pages in RAM
P/B runs of size B
Each pass: read and write P pages

How many passes?
= [Logg[P/B]]+1

Total cost: 2P * [Logg. [ P/B ]|+ 1



Example

= 1,000,000 records in 12,500 pages
= Use 10 buffer pages in memory

= 4 passes

= 100,000 disk I/Os
= 17 minutes versus 1 hour for 2-way sort



Can I do two passes?

Pass 0: sort runs
Pass 1. merge runs

Given B buffers
Need:

= No more than B-1 runs
= Each run no longer than B pages

Can do two passes if P < B * (B-1)

Question: what's the largest file we can sort in three
passes? N passes?



Make I/Os faster

= Cost = I/Os is a simplification
= Sequential I/Os are cheaper than random I/Os

= Read blocks of pages at a time
= X = Blocking factor
= B = buffer pages
= (B/X —X) input “buffer blocks”, one output “buffer block”

= Result
= Fewer runs merged per pass = more passes

= Less time per I/O = quicker passes

= [radeoff!

= Maximize total sort time by choosing X given B, P and I/O
latencies



Overlap computation and I/O

= Problem: CPU must wait for I/0O

= Suppose I need to read a new block
= Stop merging
= Initiate I/O
« Wait
=« Complete I/O
= Resume merging



Solution: double buffering

= Keep a second set of buffers

= Process one set while waiting for disk I/O
to fill the other set

Input Output
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What if the data is already sorted?

O Yay'

= Often this happens because of a B+
tree index

= Leaf level of a B+ tree has all records in
sorted order

= Two possibilities: B+ tree is clustered or
unclustered



Clustered B+ tree

Sweep through leaf layer, reading data blocks in order

~—— ‘v<
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Clustered B+ tree

Sweep through leaf layer, reading leaf blocks in order




What did that cost us?

= Traverse B+ tree to left-most leaf page

= Read all leaf pages
= For each leaf page, read data pages

= Data not in B+ tree:
= Height + Width + Data pages

= Data in B+ tree:
= Height + Width



Example

1,000,000 records, 12,500 data pages

Assume keys are 10 bytes, disk pointers are 8 bytes
= S0 = 300 entries per 8 KB B+ tree page (if two-thirds full)

Data not in B+ tree

= 12,500 entries needed = 42 leaf pages

= Two level B+tree

= Total cost: 1 +42 + 12,500 = 12,543 I/Os

= 2 minutes versus 17 minutes for external merge sort

Data in B+ tree

= Three level B+ tree, 12,500 leaf pages
= Total cost: 2 + 12,500 = 12,502 I/Os
= Also about 2 minutes



What if the B+ tree is unclustered?

= We know the proper sort order of the
data

= But retrieving the data is hard!




What if the B+ tree is unclustered?

= Result is that in the worst case, may
need one disk I/O per record

=« Even though we know the sort order!

= Usually external merge sort is better in
these cases

= Unless all you need is the set of keys



Summary

= Sorting is very important

= Basic algorithms not sufficient
= Assume memory access free, CPU is costly

In databases, memory (e.g. disk) access is costly, CPU is
(almost free)

= Try to minimize disk accesses

2-way sort: read and write records in blocks

External merge sort: fill up as much memory as possible
Blocked I/O: try to do sequential I/O

Double buffering: read and compute at the same time
Clustering B+ tree: the data is already sorted. Hooray!
Unclusered B+ tree: no help at all






