
Algorithms and Complexity. Exercise session 3+4

Dynamic Programming

Longest Common Substring The string ALGORITHM and the string PLÅGORIS have the com-
mon substring GORI. The longest common substring of these strings has thus length 4. In a
substring the characters must be in a coherent sequence.

Construct an e�cient algorithm that given two strings a1a2 . . . am and b1b2 . . . bn calculates
and returns the length of the longest common substring. The algorithm is based on dynamic
programming and runs in time O(nm).

Solution to Longest Common Substring

Let M [i, j] be the number of letters to the left of (and including) ai complying with the same
number of letters to the left (and including) bj . The length of the longest common string is the
largest number in the matrix M .

M can be de�ned recursively as follows:

M [i, j] =

 0 if i = 0 or j = 0,
M [i− 1, j − 1] + 1 if ai = bj ,
0 otherwise.

The following algorithm computes M and returns the largest number in M .

max← 0
for j ← 0 to n

M [0, j]← 0
for i← 1 to m

M [i, 0]← 0
for j ← 1 to n

if ai = bj then

M [i, j]←M [i− 1, j − 1] + 1
if M [i, j] > max then max←M [i, j]

else M [i, j]← 0
return max

The running time is dominated by the nested for loops and is therefore Θ(nm). 2

Sequences You are given two sequences of positive integers a1, a2, . . . , an and b1, b2, . . . , bn, where
all numbers are less than n2, and a positive integer B, such that B ≤ n3. The problem is to
determine if there is a sequence c1, c2, . . . , cn such that

∑n
i=1 ci = B and ci = ai or ci = bi

for 1 ≤ i ≤ n.

Describe and analyze an algorithm that solves this problem by using dynamic programming.
Moreover, describe how to extend the algorithm so that it also computes the sequence of the
solution, when ci = ai or ci = bi for 1 ≤ i ≤ n.

Solution to Sequences

We create a boolean n × B-matrix M that is initially �lled with zeros. A one in M [k, s] means

that there is a choice of c1, . . . , ck such that
∑k

i=1 ci = s.

1

The recursive equation for M [k, s] becomes:

M [k, s] =

 1 if k = 1 and (s = a1 or s = b1),
1 if k > 1 and (M [k − 1, s− ak] = 1 or M [k − 1, s− bk] = 1),
0 otherwise.

The calculation begins with M [1, a1] and M [1, b1] set to 1. Then we put ones in M [2, a1 + a2],
M [2, a1 + b2], M [2, b1 + a2] and M [2, b1 + b2] in the second row of the array, then we put it ones
in the third row and so on. If it ends up a one in M [n, B], the answer to the problem yes.

The algorithm may look like this in C:

int ExistsC(int n, int a[], int b[], int B)

{ char M[n + 1][B + 1]; /* Dynamc arrays are an extension of gcc */

int i, j;

for (i = 1; i <= n; i++)

for (j = 1; j <= B; j++) M[i][j] = 0;

M[1][a[1]] = M[1][b[1]] = 1;

for (i = 2; i <= n; i++)

for (j = 1; j <= B; j++) {

if (j - a[i] > 0 && M[i - 1][j - a[i]]) M[i][j] = 1;

if (j - b[i] > 0 && M[i - 1][j - b[i]]) M[i][j] = 1;

}

return M[n][B];

}

The nested for loop runs (n−1)B times and each time it performs more than four comparisons
and two assignments, ie a constant number. The whole algorithm is therefore in O(n2) + O((n−
1)B) = O(n2 + nB) ⊆ O(n4). By going from the end (from the n-th row and up) and looking at
what positions there are ones you can compute the solution. The ones in M [n, B] must be there
because of a one in either M [n − 1, B − an] or M [n − 1, B − bn]. Remember which of these it
is. If there is a one in two positions, just choose one of them (as only one solution is requested).
Continue in this way from the selected position until a row has been reached. Implementation in
C is as follows.

void WriteC(int n, int a[], int b[], int B)

{ int c[n + 1], pos;

/* Procedure ExistsC goes here*/

pos = B;

for (i = n; i > 1; i++) {

if (pos - a[i] > 0 && M[i - 1][pos - a[i]]) c[i] = a[i];

else c[i] = b[i];

pos -= c[i];

}

c[1] = pos;

printf("The answer is %d", c[1]);

for (i = 2; i <= n; i++) printf(" + %d", c[i]);

}

2

Protein Folding A protein is a long chain of amino acids. The protein chain is not straight,
but it is folded in an intricate way that minimizes the potential energy. It would nice to be
able to �gure out how a protein will fold itself. In this exercise we will therefore consider a
simple model of protein folding in which amino acids are either hydrophobic or hydrophilic.
Hydrophobic amino acids tend to clump together.

2

For simplicity, we can see the protein as a binary string in which ones correspond to hy-
drophobic amino acids and zeros hydrophilic amino acids. The string (protein) should then
be folded into a two-dimensional square lattice. The goal is to make the hydrophobic amino
acids to stick together, that is to get as many ones as possible to be close to each other.
So we have an optimization problem where the objective function is the number of pairs of
ones that are next to each other in the grid (vertically or horizontally) without being next
to each other in the string.

You will design an algorithm using dynamic programming to construct an optimal accordion
fold of a given protein string of length n. An accordion fold is a fold where the �rst string is
a stretch straight down, then goes straight up, then goes straight down, and so on. In such
a fold, it can be observed that the vertical pairs of adjacent ones will always result in the
string, so it's only horizontal couple of ones that contribute to the objective function.

The following �gure shows the string 00110001001100001001000001 of accordion weights in
such a way that the objective function becomes 4.

De�nition of the problem Protein accordion fold:
Input A binary string of n characters.
Problem: Find the accordion fold of input string that provides the greatest value
to the objective function, ie the largest number of pairs of ones located next to
each other, but not close to each other in the string.

Construct and analyze the time complexity of an algorithm that solves protein accordion
folding problem with dynamic programming.

Use the following algorithm which calculates the number of pairs of ones in a row (ie between
two lines) lying next to each other (but not to each other in the string). Suppose that the
protein is stored in an array p[1..n]. The parameters a and b indicate the index in the
array for the �rst trait endpoints. The parameter c indicates the index for the second trait
endpoint. Look at the �gure below on the right.

profit(a,b,c) =

shortest←min(b-a,c-(b+1));

s←0;

for i←1 to shortest do

if p[b-i]=1 and p[b+1+i]=1 then

s←s+1;

return s;

Note: Protein folding is an important algorithmic problem studied in bioinformatics. Similar
problems are studied in the Algoritmisk bioinformatik course.

Solution to Protein folding

Let qa,b be the maximum value of the objective function obtained for the folding of part p[a..n]

3

of the protein, where the �rst trait of the folding are the endpoints a and b. We can express qa,b

recursively as follows :
qa,b = max

b+1<c≤n
(profit(a, b, c) + qb+1,c).

The base case is qa,n = 0 if 1 ≤ a < n. Then, we answer by computing max
1<b≤n

q1,b.

Now it remains to calculate according to these formulas in the right order:

for a←1 to n-1 do q[a,n]←0;

for b←n-1 downto 2 do

for a←1 to b-1 do

t←-1;

for c←b+2 to n do

v←profit(a,b,c)+q[b+1,c];

if v>t then t←v;

q[a,b]←t;

max←0;

for b←2 to n do

if q[1,b]>max then max←q[1,b];

return max;

Since we mostly have three nested for-loops and a call to profit takes time O(n), the time
complexity is obviously O(n4). 2

Analyzer for context-free grammars A context-free grammar is usually used to describe the
syntax of particular programming language. A context-free grammar in Chomsky Normal

Form is described by

• a variety of �nal symbols T (usually written in small letters),

• a variety of non-�nal symbol N (usually written in capital letters),

• the start symbol S (a non-�nal symbol in N),

• a number of rewrite rules that are either in the form A→ BC or A→ a, for A, B, C ∈ N
and a ∈ T .

If A ∈ N we de�ne L(A) as

L(A) = {bc : b ∈ L(B) and c ∈ L(C) whereA→ BC} ∪ {a : A→ a}.

The language generated by the grammar is now de�ned as L(S), ie. by all the strings of the
�nal symbols that can be formed by a rewriting chain starting with the start symbol S.

Example: Consider the grammar T = {a, b}, N = {S, A,B,R}, start symbol S and rules
S → AR, S → AB, A→ a, B → b, R→ SB. We can see that the string aabb belongs to the
language generated by the grammar using the following chain of rewritings:

S → AR→ aR→ aSB → aSb→ aABb→ aaBb→ aabb.

In fact, one can show that the language generated by the grammar is all strings consisting
of k symbols a followed by k symbols b, where k is a positive integer.

Your task is to design and analyze an e�cient algorithm that determines if a string belongs to
the language generated by a grammar. The input is thus a context-free grammar in Chomsky
Normal Form, and a string of �nal symbols. The output is true or false depending on whether
the string could be generated by the grammar or not. Calculate the time complexity of your
algorithm in terms of number of rules m of the grammar and the length n of the string.

You can read more on grammars in the course Arti�ciella språk och syntaxanalys.

4

Solution to Analyzer for context-free grammars

We use dynamic programming to solve this problem. Here we will determine the order and the
substring rules to apply.

The input is a set of rules R and a vector w[1..n] which is indexed from 1 to n. Let us build
a matrix M[1..n,1..n], where the elements of M[i,j] indicate the set of non-�nal symbols from
which one can derive the substring w[i..j] by means of a chain of rewriting rules. M[i,j] is
recursively de�ned as:

M[i, j] =
{
{X : (X → w[i]) ∈ R} if i = j
{X : (X → AB) ∈ R ∧ ∃k : A ∈ M[i, k − 1] ∧B ∈ M[k, j]} if i < j

Since each position in the array is a set of non-�nal symbols, we must choose an appropriate
data structure for this. Let us represent a variety of non-�nal symbols as a bit vector indexed by
non-�nal symbols. A 1 means that the symbol is in the set and a 0 means that it is not in the set.
Example: If M[i,j][B]= 1, the non-�nal symbol B is in the set M[i,j], namely, there is a chain
of rewrite rules from B to the substring w[i..j].

The algorithm computes the matrix M[i,j] and returns true if the string belongs to the lan-
guage generated by the grammar:
for i←1 to n do

M[i,i]←0; /* all bits are reset */

for each rule X →w[i] do

M[i,i][X]←1;

for len←2 to n do

for i←1 to n-len+1 do

j←i+len-1;

M[i,j]←0;

for k←i+1 to j do

for each rule X → AB do

if M[i,k-1][A]=1 and M[k,j][B]=1 then

M[i,j][X]←1;

return M[1,n][S]= 1;

Time complexity: O(n3m). Memory: O(n2m) (because m is an upper limit on the number of
non-�nal symbols). 2

5

