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Abstract

We present a new simple algorithm that constructs an Aho Corasick automaton for a set of
patterns, P, of total length n, in O(n) time and space for integer alphabets. Processing a text of
size m over an alphabet ¥ with the automaton costs O(mlog |X|+ k), where there are k occurrences
of patterns in the text.

A new, efficient implementation of nodes in the Aho Corasick automaton is introduced, which
works for suffix trees as well.
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1 Introduction

The exact set matching problem [7] is defined as finding all occurrences in a text T of size m, of
any pattern in a set of patterns, P = {P;, P, ..., P;}, of cumulative size n over an alphabet ¥. The
classic data structure solving this problem is the automaton proposed by Aho and Corasick [2]. Tt is
constructed in O(nlog |X|) preprocessing time and has O(m log |X|+k) search time, where k represents
the number of occurrences of patterns in the text. This solution is suitable especially for applications
in which a large number of patterns is known and fixed in advance, while the text varies. We will
explain the data structure in detail in Section 2.

The suffix tree of a string is a compact trie of all the suffixes of the string. Several algorithms construct
it in linear time for a constant alphabet size [14, 16, 17]. Farach [5] presented a linear time algorithm
for integer alphabets. Generalized suffix trees for a set of strings, as defined in [7], are also constructed
in time linear to the cumulative length of the strings. Lately, much attention has been paid to the suffix
array [6, 13], a sorted enumeration of all the suffixes of a string. The algorithm in [13] constructed
this space-efficient alternative to suffix trees in O(nlogn) time, but recently a few O(n) algorithms
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were suggested [8, 10, 12]. New developments suggest further refinements; the enhanced suffix array
can entirely replace the suffix tree [1] with the same incurred complexities [9]. In [9], a history of the
evolution of suffix trees and arrays was relayed.

The linear time construction of the suffix tree and suffix array for integer alphabets was achieved after
years of research. It is only natural to extend this development to the third “member” of this data
structure family — the Aho Corasick automaton. We answer this challenge and present a new algorithm
which constructs the Aho Corasick automaton in O(n) preprocessing time for integer alphabets. The
search time remains as it was, O(mlog |X| + k).

At the heart of our algorithm lies the observation of a close connection between the Aho Corasick
Failure function and the index structure of the reversed patterns, be it a suffix tree or an enhanced
suffix array. This connection is explained in detail in Section 3.2.

Our algorithm uses the new linear time algorithms to construct suffix arrays and suffix trees for integer
alphabets. In this paper, we handle three issues: constructing the Goto trie for all patterns, using the
linear time construction of suffix arrays; constructing the Failure function for all pattern prefixes by
building a generalized suffix tree, using the linear time construction of suffix trees; and finally, keeping
logarithmic search time in each node, using a new, simple approach.

Our approach to keeping logarithmic search time in each node is simple yet innovative. The traditional
data structures for a node are either an array of size |X|, which is time efficient but not space efficient; a
linked list, which is space efficient but not time efficient; or a balanced search tree, which is considered
a heavy-duty compromise and often not practical. We suggest a new, space efficient implementation
of the nodes. Each node holds a sorted array whose size is equal to the number of the node’s children.
The space usage of this data structure is minimal, and search time is kept logarithmic. Clarity and
ease of use are also important features that arise from using this approach.

The paper is organized as follows: in Section 2, we define the Aho Corasick automaton. In Section 3,
we describe the construction of the automaton in several steps: the Goto function (Section 3.1), the
Failure function (Section 3.2), and the combination of the two (Section 3.3). The original Output
function, which we have not changed, is mentioned briefly in Section 3.4. We explain the new data
structure and show how to maintain the O(mlog|%|+ k) bound on query processing in Section 4, and
summarize our results in Section 5.

2 Preliminaries

The exact set matching problem [7] is defined as finding all occurrences in a text, T', of any pattern
in a set of patterns, P = {Pi, P», ..., P;}. This problem was first solved by Aho and Corasick [2] by
creating a finite state machine to match the patterns with the text in one pass. In other words, their
method defined the following functions (slightly redefined in [7]):

e Goto function: an uncompressed trie representation of the set of patterns. Let L(v) denote the
label along the path from the root to node v. Then, for each node v, L(v) represents the prefix
of one or more patterns; for each leaf u, L(u) represents a pattern. The Goto function is also
known as a keyword tree [2, 7].

e Failure function: based on a generalization of the Knuth-Morris-Pratt algorithm [11], the func-



tion is defined in two parts:

— The Failure function of a string s (which is a prefix of a pattern) is the longest proper suffix
of s that is also a prefix of some pattern [2, 7].

— The Failure link, v; — v9, between two nodes in the Goto trie, links v; to a (unique) node
vg such that the Failure function of L(v1) is L(v2) [7].

e Output function: for a node v, the Output function is defined as all patterns which are suffixes
of L(v), i.e., end at this node. As shown in the original article [2] and embellished in [7], the
Output function for each node vy consists of two parts:

— L(v1), if it equals a pattern.

— Output(vy), where v1 — vg is a Failure link. Note that this is a recursive construction.

These three functions, Goto, Failure and Output, completely define an Aho Corasick automaton,
which is no longer an automaton or a state machine in the classic sense. Preprocessing is applied to
the set of patterns, and queries can be made on different texts. When a text is processed, we attempt
to traverse the trie using the Goto function. For a given character, if no appropriate child exists in
the current node, the Failure links are traversed instead, until we find such a node or reach the root.
Whenever a node with a non-empty output is reached, all output words must be found. Figure 1
shows an example of an Aho Corasick automaton for a set P.

3 Building the Aho Corasick automaton

Our algorithm to construct the Aho Corasick automaton consists of three main steps: constructing
the Goto function, constructing the Failure function, and merging the two. We will now explain each
step in detail. We will often use a notation Sp for the concatenation of the patterns in P, with unique
endmarkers separating them: Sp =89 P $1 P2 $2... $,-1 Py 3.

3.1 Building the Goto function

The Goto function is constructed in two steps: sorting the patterns in P and building the trie that
represents them.

The patterns can be sorted using suffix arrays, by constructing the suffix array for Sp, thus sorting
all suffixes of Sp; out of these, we can filter only the complete words and receive their sorted order.
Alternatively, a two-pass radix sort can be employed to sort the strings [3, 15]. The sorting then
costs O(D + |X|), where D represents the minimal amount of characters needed to distinguish among
the patterns, which must be smaller than their cumulative length. For the purpose of radix sort, the
alphabet can also be considered to be bounded by the size of the patterns, so the sorting phase takes
O(D +|X]) = O(n).

Once the patterns are sorted, the trie is built simply by traversing and extending it for each pattern
in the sorted order. We keep a list of children for each node, with the invariant that they are ordered
alphabetically. For each pattern in turn, we will attempt to traverse the trie, knowing that if the next



character exists, it will be at the tail of the list of children in the current node. If not, we may create
it and insert it to the tail, thus keeping the invariant. Once a character was not found, we can extend
the trie for the rest of the pattern from this point on. This is nearly identical to the original method
employed by Aho and Corasick [2], with the sole difference that they kept arrays of size |¥| in each
node, whereas we keep sorted lists.

Time Complexity. Sorting takes O(n) time for integer alphabets using a suffix array for Sp [8]. As for
the trie, the work for each character is either traversing a link at a known position or creating a new
node; both take up O(1). The work for each pattern is proportional to its length, so for the entire set
it will be O(n).

3.2 Building the Failure Function

Having constructed the trie representing the Goto function for P, we turn to construct the Failure
links on top of it. We chose to describe the algorithm using a suffix tree for simplicity, but an enhanced
suffix array can easily replace it [1, 9]. Implementation considerations can be taken into account to
choose among the two.

We have defined Sp as the string representing the patterns in P. We define T to be the suffix tree of
the reverse of this string, that is, the suffix tree of (Sp)®. The properties of trees for reverse strings
were discussed in [4]. Also, Gusfield [7] has discussed generalized suffix trees for a set of strings. In
Section 6.4 of [7], he showed how to construct this tree without creating synthetic suffixes that combine
two or more patterns. Therefore, $ signs never appear in the middle of edges of the suffix tree, and
only mark the end of a label.

Observe the tree in Figure 2. This is T for the same patterns seen in Figure 1. The following
properties of T are relevant to our discussion:

e For each node v in the trie representing the Goto function, there exists a unique node u in T
which represents its reverse label, that is, L(v) = L(u)®. For example, in Figure 1, node 16,
labeled “their”, has its match in Figure 2, with node m, labeled “rieht”.

e When considering a node u; and its ancestor ug in T, the label of uy is a prefix of the label of
u1. Since these are reverse labels of the original string, the original label of us is a suffix of the
original label of u;.

e When a node u in T is marked by a $, this means that its original label begins with a $; i.e.,
the reverse label of u is a prefix of some pattern in P.

e In Lemma 1 we will show that all nodes in 7% which are marked by a $, and only those, have a
corresponding node in the trie.

Observe the Failure links in Figure 1. For example, the Failure function of node 10, “iris”, is node
11, “is”, as seen by the dotted arrow between the two nodes. Now, let us turn our attention to their
corresponding nodes in T%. Here, node n, “si” (the reverse of “is”), is the nearest ancestor of node o,
“siri” (the reverse of “iris”), and it is also marked by a $. In other words, “is” is the longest proper
suffix of “iris” which is also a prefix of some pattern: exactly the definition of the Failure function.

Also, notice node 8, labeled “ir”, which corresponds to node I, “ri”, in 7. The Failure function of
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Figure 1: An Aho Corasick automaton for the set P. The dotted arrows represent Failure links. For
brevity’s sake, we did not include Failure links that point to the root. Nodes that have a non-empty
output are emphasized.
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ir” is not “r”, since “r” is not a prefix of any pattern. Indeed, node j representing “r” in T is not
marked by a $ sign, and additionally, there is no node in the original trie representing “r”. Therefore
the Failure function of “ir” is ¢ (node z), its nearest ancestor in 7% with a $ sign.

Definition 1 Consider node uy in T. We define the proper ancestor of ui, us = PA(uy), as the
closest ancestor of uy in Tgr which is marked by a $.

PA can be computed for every node in T% by a simple preorder traversal of T*.

Now, consider nodes v; and vy in the trie, so that there exists a Failure link v; +— vo. Let u1,us be
the corresponding nodes in 7%. Then ug = PA(u;). Our algorithm is based on this property. Now
that we’ve found this information in 7, we would like to relay it to the nodes in the trie. Each node
in the trie must be connected to its corresponding node in 7, and we will handle this in Section 3.3.

Time Complexity. The suffix tree T built in this step can be constructed in linear time, either using
Farach’s algorithm [5], or indirectly using suffix arrays and Longest Common Prefix values [5, 8]. The
tree is then traversed once in order to find PA, but in a preorder fashion and not as a search, therefore
the traversal is also linear.
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Figure 2: T for the patterns of Figure 1. Since the labels are reversed, we included the original label
in parenthesis. For example, node ¢ representing “eht” in T corresponds to node 14 representing
“the” in the trie of Figure 1. The endmarker, $, marks one of two options: for a leaf, its label ends
with a $; for an internal node, it has a son which represents this label ending with a $. If we treat an
internal node as marked by a $, this is actually shorthand for noting the second case.

3.3 Integrating Failure with Goto

We have shown how to obtain PA(x) for each node in 7%, but we must integrate this information with
the trie representing the Goto function. We do this once, during construction, recording the Failure
links in the trie nodes, so that the trie is a self-contained Aho Corasick automaton. The integration
is based upon the ability to infer, for each node in the trie, its corresponding $-marked node in T%,
and vice versa. This is achieved through the actual string Sp, in the following steps:

e During or after construction of the Goto function, we compute the following: for each character
in Sp, we will keep a pointer to its representative node in the trie — the one visited or constructed
when this character was dealt with. An example of this is shown in Figure 3(a).

e As part of the construction of any suffix tree, and so of T%, each node records the first and last
indices of one of the appearances of its label in the string, (Sp)f in our case. From these indices
we can compute the corresponding appearance of the original label in Sp: for $-marked nodes,
the label’s last index in Sp represents a prefix of some pattern. An example of this appears in
Figure 3(b) and (c).

e Combining the information we have about Sp, we map a trie node for each $-marked node in
T and vice versa. Lemma 1 below shows that this is a one-to-one mapping, as shown also in
Figure 3(d).



e We use this mapping to record the information of PA, garnered from T, among nodes in the
trie as Failure links. For each node v; in the trie, we:

— Find node u; in T® which corresponds to 1.
Find ug = PA(uy).

— Find node v in the trie which corresponds to us.

— Create a Failure link, v — v9, among the trie nodes.

e Once these steps are completed, one can discard T® entirely.

Lemma 1 There ezists a one-to-one mapping between $-marked nodes in T® and nodes in the trie.

Proof: Any $-marked node u in T represents a prefix of some pattern in Sp, and thus has a unique
corresponding node v in the trie. Now we prove the other direction: a label of any node v in the trie
represents a prefix of a pattern. Hence, in Sp the label is preceded by a $, meaning that its reversed
label in (Sp) is followed by a $. Therefore, there is a single $-marked node v in T% corresponding
to v. Note that there can be $ signs only at the end of a node’s label in a generalized suffix tree [7].

Time Complexity. Constructing the mapping takes constant time for each node, and the creation of
Failure links consists of a traversal of the trie. The entire phase takes O(n) time.

3.4 Building the Output Function

The Output function can be computed, just as in [2], during the computation of the Goto and Failure
functions, with a traversal on the trie. Gusfield refines these computations and explains them in detail
in Section 3.4.6 of [7]. The recursive manner of the Output function is exemplified in Figure 1, where
node 14 labeled “the” has an output of “he”, due to its Failure link to node 5.

Time Complexity. Computing the Output function consists of some constant-time processing during
the construction of the Goto function, and a traversal of the trie with the Failure links, so it costs
O(n) time.

4 Processing Queries

It is a generally accepted fact that, for non-negligible alphabets, there exists a tradeoff between the
space consumed and the time required to search in each node, depending on the branching method in
the nodes [7, 9]. If an array of size |X| is used in each node, the time to search will be constant. If
only a list of actual sons is held, the cumulative space for the tree will be proportional to the number
of nodes, but search time in each node will rise to O(|X|). Finally, the generally accepted, heavy-duty
solution, is to hold a balanced search tree in each node, thus limiting the space needed in the tree
overall, but increasing both insertions and search time to the tree by a factor of log|X|. Here, we
suggest a new data structure that is at once simple and efficient - a sorted array, built to size.
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Figure 3: Integrating the Goto and Failure functions shown in Figures 1 and 2. (a) Sp and the trie
nodes corresponding to each character. (b) (Sp)f and corresponding indices in Sp. (c) T nodes and
the indices in Sp corresponding to their labels. The first index is always a $, and the last index (in
bold) is the relevant one. A label may appear more than once in the string, e.g. node b representing
“he” has two possible mappings to the string. (d) T nodes and their corresponding trie nodes,
computed from parts (a) and (c) combined. For example, the label “thei”, which is a prefix of the
pattern “their”, spans indices 4-8 in Sp (including $); its last index, 8, maps to trie node 15 as shown
in (a). Its reverse label, “ieht”, is represented by node h, as shown in (c); combining these, we map
node 15 to node h in (d). Note that even if several options exist in (c), they all map to the same trie
node. Also note that node j, which is not marked by a $, has no corresponding node in the trie.



Constructing the Goto trie as described in our algorithm will yield an alphabetically ordered linked
list of children in each node. Hence, we can visit every node and allocate an array in size equal to the
number of its sons, then transfer the list of sorted sons to this array, in O(n) total time. The array of
children can then be searched in O(log(#ofsons)), which is in the worst case O(log |X]).

It is important to note that this simple, yet novel approach can be used also when constructing a
suffix tree indirectly from a suffix array and Longest Common Prefix values. This construction [5, 8]
also proceeds in lexicographic fashion, and so can likewise use this approach, and keep linear space.
At the same time, the new data structure will be simpler to use than the traditional balanced search
tree in each node, while also reducing the constants involved.

Time Complezity. Traversing the automaton costs O(mlog|X|) time for a text of length m. The
Output function allows a constant time spent for each occurrence of any pattern in the text, so finding
the output patterns will cost O(k) where k denotes the number of occurrences of patterns from P in
the text. Hence, the entire complexity of query processing is O(mlog|X| + k).

5 Summary

We have presented a new algorithm, which is simple to understand and implement, that constructs
the Aho Corasick automaton in O(n) time. This algorithm is an addition to a growing group of linear
algorithms for string problems over integer alphabets.

We have brought forth an interesting observation regarding the Failure function of the Aho Corasick
automaton [2]. This Failure function is intimately connected with the generalized suffix tree of the
reverse patterns, and this has provided the basis for our algorithm.

We suggested a new, simple data structure for maintaining node structure, which is the sorted array
of minimal size. This data structure is also applicable to other indexing structures that are built
lexicographically, such as the suffix tree constructed from a suffix array. Using our novel approach can
improve these data structures significantly. Both space and time complexities are kept at the accepted
levels, while simplifying implementation and reducing the constants involved.

Our algorithm constructs the Aho Corasick automaton indirectly, using other algorithms for construct-
ing suffix trees and arrays. Therefore, it is important to note that the algorithm’s space and time
usage depends on the other algorithms used, and may be quite large in practice. It remains an open
problem to construct the Aho Corasick automaton directly in O(n) time.

Acknowledgments. We would like to thank Maxime Crochemore, Raffaele Giancarlo, Moshe Lewen-
stein, Kunsoo Park and Pierre Peterlongo for helpful discussions.
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