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Readings

• Reading 
› Alas not in your book. So it won’t be on the final!
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Euler
• Euler (1707-1783): might be the most prolific 

mathematician of all times (analysis, 
differential geometry, number theory etc.)
› For example, e, the natural base for logarithms, is 

named after him; he introduced the notation f(x), the 
notation for complex numbers (a + i b) ….

› Contributions in optics, mechanics, magnetism, 
electricity

› “Read Euler, read Euler, he is our master in 
everything” (Quote from Laplace a 19th Century 
French mathematician)
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Euler and Graph Theory
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The Seven Bridges Problem

• Each “area” is a vertex
• Each bridge is an edge

Find a path that 
traverses each edge 
exactly once
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Related Problems: Puzzles

Two problems:                                                   
1) Can you draw these without lifting your pen, 
drawing each line only once                                     
2)   Can you start and end at the same point.                 

A B C
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Related Problems: Puzzles

• Puzzle A: 1) yes and 2) yes
• Puzzle B: 1) yes if you start at lowest 

right (or left) corner and 2) no
• Puzzle C: 1) no and 2) no
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Euler Paths and Circuits

• Given G(V,E), an Euler path is a path 
that contains each edge once (Problem 
1)

• Given G(V,E) an Euler circuit is an Euler 
path that starts and ends at the same 
vertex (Problem 2)
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An Euler Circuit for Puzzle A
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Euler Circuit Property

• A graph has an Euler circuit if and only
if it is connected and all its vertices have 
even degrees (cf. Puzzle A)
› Necessary condition (only if): a vertex has 

to be entered and left, hence need an even 
number of edges at each vertex

› Sufficient condition: by construction (linear 
time algorithm)
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Euler Path Property

• A graph has an Euler path if and only if
it is connected and exactly two of its
vertices have odd degrees (cf. Puzzle B)

› One of the vertices will be the start point 
and the other one will be the end point 

• to construct it, add an edge (start,end). Now all 
vertices have even degrees. Build the Euler 
circuit starting from “start” and at the end delete 
the edge (start,end).
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Back to Euler Seven Bridges

Sorry, no Euler Circuit 
(not all vertices have 
even degrees)

Sorry, no Euler path 
(more than 2 vertices 
have odd degrees)
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Finding an Euler Circuit

• Check than one exists (all vertices have 
even degrees)

• Starting from a vertex vi (at random)
While all edges have not been “marked”

DFS(vi) using unmarked edges (and marking them) 
until back to vi

Pick a vertex vj on the (partial) circuit with a remaining 
unmarked edge and repeat the loop; Splice this new 
circuit in the old one and repeat.
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Example
A

B C

D E

F

G

Pick vertex A

DFS(A) yields circuit 
ABCA and edges 
(A,B),(B,C) and (C,A) 
are marked

Pick a vertex in circuit 
with an unmarked 
edge, say B
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Example (ct’d)
A

B C

D E

F

G

ABCA

Picking B yields circuit 
BDECGB (note that when 
we reached C, we had to 
go to G since (C,B), (C,A) 
and (C,E) were marked

Slice the green circuit in 
the blue one

ABDECGBCA
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Example (end)
A

B C

D E

F

G

ABDECGBCA

Pick vertex with unmarked 
edge D

DFS(D) yields DFEGD

Splicing yields Euler circuit

ABDFEGDECGBCA
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Euler Circuit Complexity

• Find degrees of vertices: O(m)
• Mark each edge once (in each direction) 

thus traverse each edge once: O(m)
› This might require slightly improved 

adjacency list
• Splice the circuits:at most n cycles (use 

linked lists: O(n))
• Linear time O(n+m)
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Hamiltonian Circuit

• A Graph G(V,E) has an hamiltonian circuit if 
there exists a path which goes through each 
vertex exactly once

• Seems closely related to Euler circuit
• It is NOT!
• Euler circuit can be solved in linear time
• Hamiltonian circuit requires exhaustive 

search (exponential time) in the worse case
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Sir William Hamilton

• Irish mathematician 
(1805-1865)
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Examples

Does Graph I have 

an Euler circuit?

an Hamiltonian circuit?

Does Graph II have 

an Euler circuit?

an Hamiltonian circuit?



Circuits 21

Finding Hamiltonian Circuits

• Apparently easier “Yes” or “No” 
question: “Does G contain an 
Hamiltonian circuit?”
› NO known “easy” algorithm, i.e., no 

algorithm that runs in O(np), or polynomial 
time in the number of vertices

› Requires exhaustive search (brute force)



Circuits 22

Example of Exhaustive 
Search

How many paths?

Let B be the average 
branching factor at 
each node for DFS

Total number of 
paths to be examined 
B.B.B….B = O(Bn)

Exponential time!
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Time Complexity of Algorithms

• If one has to process n elements, can’t 
have algorithms running (worse case) in 
less than O(n)

• But what about binary search, deletemin
in a heap, insert in an AVL tree etc.?
› The input has been preprocessed 
› Array sorted for binary search, buildheap

for the heap, AVL tree already has AVL 
property etc. all ops that took at least O(n)
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The Complexity Class P

• Most of the algorithms we have seen 
have been polynomial time O(np)
› Searching (build the search structure and 

search it), sorting, many graph algorithms 
such as topological sort, shortest-path, 
Euler circuit 

› They form the class P of algorithms that 
can be solved (worse case) in polynomial 
time
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Are There Problems not in P?

• For some problems, there are no known 
algorithms that run (worse case) in 
polynomial time
› Hamiltonian circuit
› Circuit satisfiability

• Given a Boolean formula find an assignment of variables 
such that the formula is true (even if only 3 variables)

› Traveling Salesman problem
• Given a complete weighted graph G and an integer K, is 

there a circuit that visits all vertices only once of cost less 
than K

› Etc.
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Undecidability

• There are problems that cannot be solved 
algorithmically: they are undecidable

• The most well-known one is the Turing 
Halting Problem
› Turing proved that it is impossible to write a 

“computer program” that can read another 
computer program, and, if that program will run 
forever without stopping, tell us, after some finite 
(but unbounded) time this fact.


