
CS 598CSC: Approximation Algorithms Lecture date: January 28, 2009
Instructor: Chandra Chekuri Scribe: Md. Abul Hassan Samee

1 Introduction

We discuss two closely related NP Optimization problems, namely Set Cover and Maximum
Coverage in this lecture. Set Cover was among the first problems for which approximation
algorithms were analyzed [1]. This problem is also significant from a practical point of view, since
the problem itself and several of its generalizations arise quite frequently in a number of application
areas. We will consider three such generalizations of Set Cover in this lecture. We conclude the
lecture with a brief discussion on how the Set Cover problem can be formulated in terms of
submodular functions.

2 Set Cover and Maximum Coverage

2.1 Problem definition

In both the Set Cover and the Maximum Coverage problems, our input is a set U of n elements,
and a collection S = {S1, S2, . . . , Sm} of m subsets of U such that

⋃
i Si = U . Our goal in the Set

Cover problem is to select as few subsets as possible from S such that their union covers U . In
the Maximum Coverage problem an integer k ≤ m is also specified in the input, and our goal is
to select k subsets from S such that their union has the maximum cardinality.

2.2 Greedy approximation

Both Set Cover and Maximum Coverage are known to be NP-Hard [1]. The most natural
greedy approximation algorithm for these problems is as follows.

Greedy Cover (U ,S):

1: repeat
2: pick the set that covers the maximum number of uncovered elements
3: mark elements in the chosen set as covered
4: until done

In case of Set Cover, the algorithm Greedy Cover is done in line 4 when all the elements in set
U have been covered. And in case of Maximum Coverage, the algorithm is done when exactly k
subsets have been selected from S.

2.3 Analysis of Greedy Cover

Theorem 1 Greedy Cover is a (1− 1
e
) ≃ 0.632 approximation for Maximum Coverage, and

a (ln n + 1) approximation for Set Cover.

The following theorem due to Feige [1] implies that Greedy Cover is essentially the best
possible in terms of the approximation ratio that it guarantees in Theorem 1.



Theorem 2 Unless NP ⊆ DTIME(nO(log log n)), there is no (1−o(1)) ln n approximation for Set
Cover. Unless P=NP, there is no (1− 1

e
− ǫ) approximation for Maximum Coverage.

We proceed towards the proof of Theorem 1 by providing analysis of Greedy Cover separately
for Set Cover and Maximum Coverage. Let OPT denote the value of an optimal solution to the
Maximum Coverage problem. Let xi denote the number of new elements covered by Greedy
Cover in the i-th set that it picks. Also, let yi =

∑i
j=1 xi, and zi = OPT − yi. Note that,

according to our notations, y0 = 0, yk is the number of elements chosen by Greedy Cover, and
z0 = OPT .

Analysis for Maximum Coverage

We have the following lemma for algorithm Greedy Cover when applied on Maximum Cover-
age.

Lemma 3 Greedy Cover is a 1− 1
e

approximation for Maximum Coverage.

We first prove the following two claims.

Claim 4 xi+1 ≥
zi

k
.

Proof: At each step, Greedy Cover selects the subset Sj whose inclusion covers the maximum
number of uncovered elements. Since the optimal solution uses k sets to cover OPT elements, some
set must cover at least 1/k fraction of the at least zi remaining uncovered elements from OPT.
Hence, xi+1 ≥

zi

k
. 2

Claim 5 zi+1 ≤ (1− 1
k
)i+1 ·OPT

Proof: The claim is true for i = 0. We assume inductively that zi ≤ (1− 1
k
)i ·OPT . Then

zi+1 ≤ zi − xi+1

≤ zi(1−
1

k
) [using Claim 4]

≤ (1−
1

k
)i+1 ·OPT.

2

Proof of Lemma 3. It follows from Claim 5 that zk ≤ (1 − 1
k
)k · OPT ≤ OPT

e
. Hence, yk =

OPT − zk ≥ (1− 1
e
) ·OPT . 2

Analysis for Set Cover

We have the following lemma.

Lemma 6 Greedy Cover is a (ln n + 1) approximation for Set Cover.

Let k∗ denote the value of an optimal solution to the Set Cover problem. Then an optimal
solution to the Maximum Coverage problem for k = k∗ would cover all the n elements in set
U , and zk∗ ≤ n

e
. Therefore, n

e
elements would remain uncovered after the first k∗ steps of Greedy

Cover. Similarly, after 2 ·k∗ steps of Greedy Cover, n
e2 elements would remain uncovered. This

easy intuition convinces us that Greedy Cover is a (ln n + 1) approximation for the Set Cover
problem. A more succinct proof is given below.



Proof of Lemma 6. Since zi ≤ (1− 1
k∗ )i · n, after t = k∗ ln n

k∗ steps, zt ≤ k∗. Thus, after t steps,
k∗ elements are left to be covered. Since Greedy Cover picks at least one element in each step,
it covers all the elements after picking at most k∗ ln n

k∗ + k∗ ≤ k∗(ln n + 1) sets. 2

The following corollary readily follows from Lemma 6.

Corollary 7 If |Si| ≤ d, then Greedy Cover is a (ln d + 1) approximation for Set Cover.

Proof: Since k∗ ≥ n
d
, ln n

k∗ ≤ ln d. Then the claim follows from Lemma 6. 2

Proof of Theorem 1. The claims follow directly from Lemma 3 and 6. 2

A tight example for Greedy Cover when applied on Set Cover

Let us consider a set U of n elements along with a collection S of k+2 subsets {R1, R2, C1, C2, . . . , Ck}
of U . Let us also assume that |Ci| = 2i and |R1 ∩Ci| = |R2 ∩Ci| = 2i−1 (1 ≤ i ≤ k), as illustrated
in Fig. 1.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

C1 C2 Ci Ck

. . .

. . . . . .

. . .

R1

R2

2i−1 elements

Figure 1: A tight example for Greedy Cover when applied on Set Cover

Clearly, the optimal solution consists of only two sets, i.e., R1 and R2. Hence, OPT = 2.
However, Greedy Cover will pick each of the remaining k sets, namely Ck, Ck−1, . . . , C1. Since
n = 2 ·

∑k−1
i=0 2i = 2 · (2k − 1), we get k ≈ Ω(log2 n). Hence the example is tight.

Exercise: Consider the weighted version of the Set Cover problem where a weight function

w : S → R+ is given, and we want to select a collection S ′ of subsets from S such that ∪X∈S′X = U ,
and

∑
X∈S′ w(X) is the minimum. Prove that the greedy heuristic gives a 2·(ln n+1) approximation

for this problem.
Hint 1: Note that the greedy algorithm never picks a set of cost more than OPT. Hint 2: By

the first time the total cost of sets picked by the greedy algorithm exceeds OPT, it has covered a
(1− 1/e) fraction of the elements.

3 Three generalizations of Set Cover

We will discuss here three generalizations of the Set Cover problem: Dominating Set, Vertex
Cover, and Multiple Knapsack. Design and analysis of approximation algorithm for each of



these problems is similar to that for Set Cover.

3.1 Dominating Set

A dominating set in a graph G = (V,E) is a set S ⊆ V such that for each u ∈ V , either u ∈ S,
or some neighbor v of u is in S. In the Dominating Set problem, our goal is to find a smallest
dominating set of G.

A natural greedy algorithm for this problem is to iteratively choose a vertex with the highest
degree. It can be proved that this heuristic gives a (ln n+1), or more accurately, a (ln (∆ + 1) + 1)
approximation for the Dominating Set problem.

Exercises:

1. Prove the approximation guarantees of the greedy heuristic for Dominating Set.

2. Show that Dominating Set is a special case of Set Cover.

3. Show that Set Cover can be reduced to Dominating Set.

3.2 Vertex Cover

A vertex cover of a graph G = (V,E) is a set S ⊆ V such that for each edge e ∈ E, at least one end
point of e is in S. In the Vertex Cover problem, our goal is to find a smallest vertex cover of
G. In the weighted version of the problem, a weight function w : V →R+ is given, and our goal is
to find a minimum weight vertex cover of G. The unweighted version of the problem is also known
as Cardinality Vertex Cover.

It can be shown that, the Greedy Cover algorithm can give an O(ln ∆ + 1) approximation
for both weighted and unweighted versions of the Vertex Cover problem.

Exercises:

1. Show that Vertex Cover is a special case of Set Cover.

2. Construct a tight example for Greedy Cover when applied on the Vertex Cover problem.

3.2.1 Better (constant) approximation for Vertex Cover

Cardinality Vertex Cover : The following is a 2-approximation algorithm for the Cardinal-
ity Vertex Cover problem.

Greedy Cardinality VC (G):

1: S ← ∅
2: Compute a maximal matching M in G
3: for each edge (u, v) ∈M do
4: add both u and v to S
5: Output S

Theorem 8 Greedy Cardinality VC is a 2-approximation algorithm.



The proof of Theorem 8 follows from two simple claims.

Claim 9 Let OPT be the size of the vertex cover in an optimal solution. Then OPT ≥ |M |.

Proof: Since the optimal vertex cover must contain at least one end vertex of every edge in M ,
OPT ≥ |M |. 2

Claim 10 Let S(M) = {u, v|(u, v) ∈M}. Then S(M) is a vertex cover.

Proof: If S(M) is not a vertex cover, then there must be an edge e ∈ E such that neither of its
endpoints are in M . But then e can be included in M , which contradicts the maximality of M . 2

Proof of Theorem 8. Since S(M) is a vertex cover, Claim 9 implies that |S(M)| = 2 · |M | ≤
2 ·OPT . 2

Weighted Vertex Cover: 2-approximation algorithms for the Weighted Vertex Cover
problem can be designed based on LP rounding or Primal-Dual technique. These will be covered
later in the course.

3.2.2 Set Cover with small frequencies

Vertex Cover is an instance of Set Cover where each element in U is in at most two sets (in
fact, each element was in exactly two sets). This special case of the Set Cover problem has given
us a 2-approximation algorithm. What would be the case if every element was contained in at most
three sets? More generally, given an instance of Set Cover, for each e ∈ U , let f(e) denote the
number of sets containing e. Let f = maxe f(e), which we call the maximum frequency.

Exercise: Give an f -approximation for Set Cover, where f isthe maximum frequency of an
element. Hint: Follow the approach used for Vertex Cover .

3.3 Multiple Knapsack

This problem will be discussed in the next lecture.

4 Two important aspects of greedy approximation for Set Cover

4.1 Greedy approximation for implicit instances

It turns out that the universe U of elements and the collection S of subsets of U are not restricted
to be finite or explicitly enumerated in the Set Cover problem. For instance, a problem could
require covering a finite set of points in the plane using disks of unit radius. There is an in-
finite set of such disks, but our greedy approximation algorithm can still be applied. For such
implicit instances, the greedy algorithm can be used if we have access to an oracle, which, at
each iteration, selects a set having the optimal density. However, an oracle may not always be
capable of selecting an optimal set. In such cases, it may have to make the selections approxi-

mately. We call an oracle an α-approximate oracle if, at each iteration, it selects a set S such that
density(S) ≥ α ·Optimal Density, for some α > 1.

Exercise: Prove that the approximation guarantee of greedy approximation with an α-approximate

oracle would be α(ln n + 1) for Set Cover, and (1− 1
eα ) for Maximum Coverage.



4.2 Greedy approximation for submodular functions

In a more general sense, the greedy approximation works for any submodular set function. Given
a finite set E, a function f : 2E → R+ is submodular iff f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for
all A,B ⊆ E. Alternatively, f is a submodular functions iff f(A + i)− f(A) ≥ f(B + i)− f(B) for
all i ∈ E and A ⊂ B. This second characterization is due to the property of decreasing marginal

utility of submodular functions. Intuitively, adding element i to a set A will help at least as much
as adding it to to a (larger) set B ⊃ A.

Exercise: Prove that the two characterizations of submodular functions are equivalent.

A submodular function f(·) is monotone if f(A + i) ≥ f(A) for all i ∈ E and A ⊆ E. We
assume that f(∅) = 0. Submodular set functions arise in a large number of practical fields includ-
ing combinatorial optimization, probability, and geometry [2]. Examples include rank function of
a matroid, the sizes of cutsets in a directed or undirected graph, the probability that a subset of
events do not occur simultaneously, entropy of random variables, etc. In the following we show
that the Set Cover and Maximum Coverage problems can be easily formulated in terms of
submodular set functions.

Exercise. Suppose we are given a universe U and a collection S = {S1, S2, . . . , Sm} of subsets of
U . Now if we take N = {1, 2, . . . ,m}, f : 2N → R+, and define f(A) = | ∪i∈A Si| for A ⊆ E, then
show that the function f is submodular.

4.2.1 Submodular Set Cover

When formulated in terms of submodular set functions, the Set Cover problem is the following.
Given a monotone submodular function f (whose value would be computed by an oracle) on
N = {1, 2, . . . ,m}, find the smallest set S ⊆ N such that f(S) = f(N). Our previous greedy
approximation can be applied to this formulation as follows.

Greedy Submodular (f,N):

1: S ← ∅
2: while f(S) 6= f(N)
3: find i to maximize f(S + i)− f(S)
4: S ← S ∪ {i}

Exercises:

1. Prove that the greedy algorithm is a ln f(N)+1 approximation for Submodular Set Cover.

2. Prove that the greedy algorithm is a ln (maxi f(i)) + 1 approximation for Submodular Set
Cover.

4.2.2 Submodular Maximum Coverage

By formulating the Maximum Coverage problem in terms of submodular functions, we seek to
maximize f(S) such that |S| ≤ k. We can apply algorithm Greedy Submodular for this problem
by changing the condition in line 2 to be: while |S| ≤ k.



Note. For the Submodular Maximum Coverage problem, function f must be both submodular
and monotone.

References

[1] U. Feige. A Threshold of ln n for Approximating Set Cover. J. of the ACM 45(5): 634–652,
1998.

[2] M. X. Goemans and V. S. Ramakrishnan. Minimizing submodular functions over families of
sets . Combinatorica 15(4): 499–513, 1995.


	Introduction
	Set Cover  and Maximum Coverage 
	Problem definition
	Greedy approximation
	Analysis of Greedy Cover 

	Three generalizations of Set Cover 
	Dominating Set
	Vertex Cover
	Better (constant) approximation for Vertex Cover 
	Set Cover with small frequencies

	Multiple Knapsack

	Two important aspects of greedy approximation for Set Cover 
	Greedy approximation for implicit instances
	Greedy approximation for submodular functions
	Submodular Set Cover
	Submodular Maximum Coverage



